郭乃辉,张文忠,圣忠华,胡培松
利用CRISPR/Cas9技术编辑增强水稻休眠性
郭乃辉1,2,张文忠1,圣忠华2,胡培松1,2
1沈阳农业大学水稻研究所,沈阳 110866;2中国水稻研究所/国家水稻改良中心,杭州 310006
【目的】休眠是水稻重要的农艺性状。适当的休眠可以抑制水稻的穗发芽现象,是确保产量和品质的关键因素。然而,水稻休眠调控的基因及其调控网络仍需进一步研究。已知基因编码未知功能的蛋白,负向调控水稻脱落酸信号和抗旱性,但其调控水稻休眠的功能未知。研究在调控水稻休眠中的功能,有助于完善水稻休眠调控网络,同时为抗穗发芽遗传育种提供新的理论基础和种质资源。【方法】根据RGAP数据库公布的基因序列,构建的CRISPR-Cas9敲除载体,通过农杆菌介导的遗传转化方法转化中花11(ZH11)愈伤组织,从而获得水稻转基因植株;利用PCR扩增、测序技术及qRT-PCR技术筛选并鉴定敲除纯合系;根据2个突变系(KO-1和KO-2)的CDS得到突变系的氨基酸序列,然后,用DNAMAN对比ZH11和2个突变系(KO-1和KO-2)的蛋白序列;利用Linux系统筛选出在水稻中的同源基因;取开花后35 d的种子,调查ZH11和敲除系的发芽率;利用酵母单杂和LUC试验验证的上游基因。【结果】查找到水稻中有6个的同源基因,分别为、、、、和;成功构建了敲除载体,并转入ZH11中,获得2个纯合突变系(KO-1和KO-2);qRT-PCR结果表明,2个突变系(KO-1和KO-2)的表达量显著降低;蛋白序列分析表明,KO-1和KO-2的移码突变造成了蛋白翻译的提前终止;发芽率结果显示,2个突变系(KO-1和KO-2)的发芽率在吸水第3天比ZH11分别显著降低了15%和15%;之后差异逐渐扩大,在第6天差异达到最大,比ZH11分别显著降低35%和35%;2个突变系(KO-1和KO-2)的穗发芽现象显著低于ZH11;酵母单杂试验结果表明,在酵母中,ABI5可以结合的启动子区域,并且进一步把结合范围缩小至300 bp以内;LUC结果显示,加入ABI5的荧光值是单独加NONE空载荧光值的2.6倍,说明ABI5可以激活的表达。【结论】敲除可以增加种子的休眠,可能通过ABA信号途径调控种子休眠。
水稻;休眠;ABI5;
【研究意义】水稻是重要的粮食作物,世界一半以上的人口以水稻为主食[1-2]。而在我国甚至有65%以上的人以水稻为主食,因此,保证水稻的产量对国家的粮食安全至关重要。穗发芽是指还没收获的种子在植株上发芽的现象,水稻在高温高湿的环境下尤其容易发生穗发芽,每年有大约5%的常规稻种植区域会发生穗发芽现象,而杂交稻在制种过程中大量使用“九二零”,穗发芽面积甚至可以达到60%—80%,对水稻的产量和品质造成巨大的损失[3-5]。种子休眠是指活力正常的种子在适宜的环境里一段时间内不发芽的现象[6],适当的休眠可以很好地抑制穗发芽现象,因此,研究水稻种子休眠调控的基因,挖掘休眠的分子机制,对培育抗穗发芽品种,保证水稻的产量和品质至关重要。【前人研究进展】种子休眠是一个复杂的生理现象,受多重因素的影响,如脱落酸(ABA)促进休眠,而赤霉素(GA)释放休眠;同时也受多基因的调控,是一个典型的数量性状。目前,种子休眠的检测方法有发芽率检测法、激素检测法和α-淀粉酶活性检测法等,一般以发芽率检测法作为评价指标。因此,研究人员常用低发芽率和高发芽率的水稻品种构建群体,定位休眠相关的QTL。到目前为止,利用野生稻[7-10]、杂草稻[11-14]和栽培稻[15-20]等种质资源定位到了160多个休眠相关的QTL[21],但只有少数几个被克隆。如Sugimoto等[22]利用低发芽率的籼稻品种Kasalath和高发芽率的粳稻品种日本晴构建了回交定位群体,定位并克隆了第一个水稻休眠相关的基因,进一步研究发现,该基因受ABA信号传导途径关键基因的正调控[23]。Ye等[24]利用杂草稻SS18-2和籼稻EM93-1构建片段代换系,定位到,该基因与等位,编码GA合成途径中的关键酶,增加GA含量降低种子休眠。Xie等[25]利用强休眠籼稻品种N22和非休眠粳稻品种南粳35构建BC6F2分离群体在第1染色体上定位到一个休眠QTL——;进一步发现编码类似DOG1的蛋白OsDOG1L-3,能上调ABA合成和信号传导相关基因表达,增加ABA含量,从而正调控种子休眠[26]。Gu等[27]在杂草红稻中克隆了控制种子休眠的QTL——促进了ABA生物合成关键基因的表达,导致ABA的积累,促进种子的休眠;此外,研究发现等基因促进对ABA信号的感知,增加种子对ABA的敏感性,从而抑制穗发芽[28]。近来,基因[29]、[30]和[21]通过直接调控ABA代谢基因的表达,从而影响ABA的含量,最终调控种子的休眠。CRISPR/Cas9基因编辑技术具体操作简单,成本低,成功率高等优点。利用该技术敲除功能基因的方法已经被广泛应用到定向改良作物农艺性状中。如Li等[31]利用CRISPR/Cas9技术对ZH11中的4个基因进行编辑,成功获得、和功能缺失的突变体;并且、和突变体分别表现出粒数增加、直立穗和籽粒变大。中国水稻研究所优质稻课题组在前期研究中,利用强休眠的水稻品种孟加拉小粒与中花11构建回交群体,从中得到一个染色体片段代换系IL[32]。IL具有强休眠性,在其代换的染色体片段中发现一个与ABA信号相关的基因。编码未知功能的蛋白,介导OsbZIP46的失活和降解,负向调控水稻脱落酸信号和抗旱性[33]。【本研究切入点】负向调控水稻脱落酸信号和抗旱性,但其调控水稻休眠的功能未知。【拟解决的关键问题】本研究以粳稻品种ZH11敲除得到的种子休眠突变体为研究对象,通过对进行生物信息学分析,对突变体进行测序分析、休眠表型分析、基因表达量分析和上游调控分析,以期解析调控种子休眠的分子机制,为培育抗穗发芽的优质水稻奠定基础。
以粳稻品种ZH11为背景材料,由武汉伯远公司通过农杆菌EHA105介导法侵染愈伤组织得到转基因植株。所有材料于2022年种植在中国水稻研究所实验基地(杭州)。
大肠杆菌DH5α感受态购自擎科生物有限公司,CRISPR/Cas9敲除载体BGK03购自百格生物技术有限公司,T4连接酶及KOD扩增酶购自TaKaRa,质粒提取试剂盒与琼脂糖凝胶回收试剂盒购自北京雅安达生物技术有限公司,引物合成与测序由浙江尚亚生物技术有限公司完成。
利用E-CRISP Design网站进行靶位点设计[34]。在E-CRISP Design网站(http://www.e-crisp.org/E-CRISP/)输入的CDS序列,在Start application中选择medium,网站给出多个前间隔序列临近基序(protospacer adjacent motif,PAM)附近的20个碱基序列。选择特异性高且编辑效率高的序列作为靶位点,再通过水稻全基因组对比网站(http://rapdb.dna.affrc. go.jp/tools/blast)BLAST验证靶位点的特异性。在F引物的5′端加上碱基“TGTGTG”,在R引物的5′端和3′端分别加上碱基“AAAC”和“CA”。
将合成的引物,加ddH2O水稀释成10 µmol·L-1。稀释好的F和R引物各取1 µL,混合18 µL的Buffer Aneal,95 ℃ 3 min,然后,以0.2 ℃/秒缓慢降至20 ℃。双链化的引物取1 µL,加入6 µL ddH2O、2 µL CRISPR/Cas载体和1 µL Enzyme Mix,混匀后室温(25 ℃)反应1 h。将连接好的重组载体转化大肠杆菌超级感受态DH5α,用引物CX-F测序,筛选阳性克隆。引物见表1。
以基因的CDS为模板,利用Linux系统筛选出在水稻中的同源基因,利用国家水稻数据中心数据库(https://www.ricedata.cn/index.htm)查找同源基因的氨基酸序列,进一步用DNAMAN构建的系统进化树。
根据2个突变系的CDS,用编码序列和氨基酸序列转换网站(http://bio.lundberg.gu.se/edu/translat.html)得到突变系的氨基酸序列。然后用DNAMAN对比ZH11和2个突变系的蛋白序列。
以开花后35 d的新鲜种子为材料,对ZH11和突变系的进行实时荧光定量分析(quantitative real-time PCR,qRT-PCR)。采用Trizol法提取种子的总RNA,然后用DNase I(Takara,Recombinant DNase I,2270A)消化总RNA中的基因组序列。用TOYOBO的Rever Tra Ace试剂盒反转录获得cDNA,稀释3倍后,用TOYOBO的THUNDERBIRD qPCR Mix试剂盒进行qRT-PCR反应。反应体系为2 µL cDNA、1.5 µL F引物、1.5 µL R引物和5 µL Mix。以水稻()作为内参,以2-∆∆CT法计算的相对表达量。3次生物学重复。引物见表1。
将刚收获的种子脱粒后,置于叠有两层滤纸的圆形培养皿(直径9 cm)中,加入10 ml ddH2O,每个培养皿放置80粒种子,置于培养箱中(25 ℃,80%的湿度,12 h光照/12 h黑暗),每组样品3次重复。每天记录种子发芽数目,胚根长至种子的一半长或者胚芽长至种子的全长记为发芽。共统计7 d。
将的全长cDNA与pB42AD(Clontech)连接,将的启动子与pLacz(Clonteech)连接。将其共转化到酵母菌株EGY48中。先在SD-Ura-Trp培养基上培养3 d(温度为28 ℃),随机挑选5个单克隆在SD-Ura-Trp培养基上培养,该培养基含有2%(w/v)半乳糖、1%(w/v)棉子糖、1×盐缓冲液(7 g·L-1Na2HPO4·7H2O、3 g·L-1Na2HPO4,pH 7.0)和80 mg·L-15-溴-4-氯-3-吲哚基-β-D-吡喃半乳糖酸(Clontech)。28 ℃黑暗培养1 d后观察拍照。引物见表1。
将的启动子区与p190-LUC载体连接,作为报告质粒。将的全长cDNA与NONE载体连接,作为效应质粒。将质粒组合导入水稻原生质体中,以空NONE载体作为对照。将转化的细胞于28 ℃黑暗条件下孵育24 h,并用双荧光素酶报告物测定仪(Promega)测量相对LUC活性,同时测量萤火虫LUC和对照Renilla LUC的活性。引物见表1。
表1 文中的引物
使用IBM SPSS统计软件(v25)进行单因素方差检验。
通过Linux操作系统结合国家水稻数据中心数据库,查找到水稻中有6个MODD的同源基因,分别为、、、、和(图1),都是未被报道的基因。
水稻编码区序列全长为1 206 bp,编码401个氨基酸。通过搜索分析,在第二个外显子区域内一个PAM位点处设计sgRNA(图2-A),将引物双链化后与百格的CRISPR/Cas9载体BGK03连接(图2-B)。利用农杆菌转化法将测序正确的重组载体转化水稻的愈伤组织,最终在ZH11背景下获得多个转基因株系,测序分析显示,有2种变异类型的突变,一种缺失了4个碱基,另一种增加了1个碱基(图3-A—B)。qRT-PCR分析显示,与野生型ZH11相比,2个突变系KO-1和KO-2的表达量显著降低(图3-C)。蛋白序列分析表明,KO-1和KO-2的移码突变造成了蛋白翻译的提前终止(图3-D)。
红线代表MODD的基因登录号
A:MODD靶点示意图,红色三角形代表靶点位置;B:BGK03载体示意图,红色箭头代表gRNA插入位置
为了明确突变系的休眠性是否增强,收获开花后35 d的种子做发芽试验。发芽率显示,2个突变系的发芽率在吸水第3天比ZH11分别显著降低了15%和15%;之后差异逐渐扩大,在第6天差异达到最大,比ZH11分别显著降低了35%和35%(图4-B)。2个突变体系的穗发芽现象显著低于ZH11(图4-A)。而破休眠后,2个突变系的发芽率与ZH11相比无显著差异(图4-C)。结果表明,敲除可以增强ZH11的休眠性,从而降低了穗发芽现象。
为了研究基因在水稻休眠的调控网络中所处的位置,探索上游调控因子。是调控ABA信号传导的关键转录因子之一,与种子的休眠密切相关,因此,可能调控的表达。酵母单杂试验结果表明,在酵母中,ABI5可以结合的启动子区(图5-A),为了进一步缩小结合的区间,根据网站(http://bioinformatics.psb.ugent.be/ webtools/plantcare/html/)预测ABI5可能结合的区域,将启动子分为4段,分别与ABI5结合,结果显示,第3段启动子(300 bp)可以与ABI5结合,而其他3段不能结合(图5-B)。为了明确ABI5是抑制或者激活的表达,利用双荧光素酶(LUC)水稻原生质体转化系统进行研究。LUC结果显示,加入ABI5的荧光值是单独加NONE空载荧光值的2.6倍(图5-C),说明ABI5可以激活的表达。表明可能通过ABI5介导的ABA信号传导途径调控种子的休眠。
迄今为止,已经在水稻中鉴定了160多个与休眠相关的QTL,但只有少数基因被克隆[21]。水稻穗发芽问题在长江中下游稻区普遍存在,而适当的种子休眠能很好地抑制穗发芽现象。因此,克隆更多的休眠基因对培育抗穗发芽品种具有重大意义。本研究敲除显著增加了ZH11的休眠性,生物信息学分析发现水稻中有6个没有被克隆的同源基因(图1),这为丰富水稻休眠分子调控网络提供了基础。
A:2个突变系的碱基类型,下划线和蓝色字体表示PAM位点,----表示缺失的碱基序列,红色字体表示插入的碱基;B:2个突变系的测序结果;C:2个突变系MODD的表达量,**:P<0.01,下同;D:2个突变系的氨基酸类型,深色背景代表野生型和突变系的氨基酸相同。KO-1和KO-2:MODD突变系
A:modd突变系和ZH11发芽第6天的穗发芽表型;B:modd突变系和ZH11的发芽率;C:破休眠后,modd突变系和ZH11的发芽率
A:酵母单杂验证ABI5结合MODD启动子;B:缩小ABI5结合MODD启动子的区域,红色字体代表ABI5结合MODD启动子的区域;C:LUC验证ABI5激活MODD表达
种子休眠主要受ABA诱导[35],一方面过表达ABA合成基因会导致种子的深度休眠,如增强种子中的表达,导致ABA水平增加9—73倍,种子表现出异常的深度休眠,持续时间超过3个月[36]。另一方面敲除ABA代谢降解途径的基因也会导致相似的结果,如ABA分解代谢基因的缺失,提高了ABA的含量,从而增加了种子的休眠[37]。另外,ABA信号传导途径也影响种子的休眠,如ABA信号通路的调控因子和正调控种子休眠[38-39],负调控种子发芽[40]。本研究敲除后发现突变体发芽率显著降低(图4),表明负调控种子休眠,而LUC试验却表明,ABI5可以激活的表达(图5),二者对休眠的调控作用相反,结果表明,可能有别的基因参与ABI5-MODD的种子休眠调控途径;另外,前人研究结果表明,介导OsbZIP46的失活和降解,负向调控水稻脱落酸信号[33],而ABI5同属于bZIP类型的转录因子,所以MODD也可能参与调控ABI5的转录活性,从而形成一个ABI5-MODD之间的反馈作用,其具体的调控关系需要更深入地研究。
鉴定基因的优异单倍型是有效利用基因的重要方法,如通过对水稻的单倍型分析,鉴定出了抗旱优异单倍型,这为水稻抗旱分子育种提供了优异的基因资源和种质资源[41]。本研究发现是一个新的调控水稻种子休眠的基因,可以为培育抗穗发芽品种提供新的基因资源。在未来的研究中,除了继续探索其调控休眠的分子机理外,还可以利用实验室的种质资源鉴定出的休眠优异单倍型,并筛选出合适的休眠品种作为供体。然后,将供体中的等位基因导入优质水稻品种中(如恢复系中恢261),以期改良其穗发芽抗性。
敲除可以增加种子的休眠,可能通过ABA信号途径调控种子休眠。
[1] CHENG S H, CAO L Y, ZHUANG J Y, CHEN S G, ZHAN X D, FAN Y Y, ZHU D F, MIN S K. Super hybrid rice breeding in China: Achievements and prospects. Journal of Integrative Plant Biology, 2007, 49(6): 805-810.
[2] WANG H, LEE A R, PARK S Y, JIN S H, LEE J, HAM T H, PARK Y, ZHAO W G, KWON S W. Genome-wide association study reveals candidate genes related to low temperature tolerance in rice () during germination. 3Biotech, 2018, 8(5): 235.
[3] 胡伟民, 马华升, 樊龙江, 阮松林. 杂交水稻制种不育系穗上发芽特性. 作物学报, 2003, 29(3): 441-446.
HU W M, MA H S, FAN L J, RUAN S L. Characteristics of pre-harvest sprouting in sterile lines in hybrid rice seeds production. Acta Agronomica Sinica, 2003, 29(3): 441-446. (in Chinese)
[4] 马良勇, 杨长登, 李西明, 庄杰云. 早稻穗发芽对水稻产量和米质的影响. 中国稻米, 2004, 10(1): 15-16.
MA L Y, YANG C D, LI X M, ZHUANG J Y. effect of ear germination on rice yield and quality. China Rice, 2004, 10(1): 15-16. (in Chinese)
[5] 钱松, 王春歌, 杨亚东, 王春松, 黄欢. 穗发芽对南粳9108稻米品质的影响. 农业工程技术, 2021, 41(32): 18-19.
QIAN S, WANG C G, YANG Y D, WANG C S, HUANG H. Effect preharvest germination on rice quality of Nanjing 9108. Agricultural Engineering Technology, 2021, 41(32): 18-19. (in Chinese)
[6] 彭智群, 王道泽, 王宏. 种子休眠及其解除方法. 上海蔬菜, 2009(4): 80-81.
PENG Z Q, WANG D Z, WANG H. Seed dormancy and its release method. Shanghai Vegetables, 2009(4): 80-81. (in Chinese)
[7] CAI H W, MORISHIMA H. Genomic regions affecting seed shattering and seed dormancy in rice. Theoretical and Applied Genetics, 2000, 100(6): 840-846.
[8] THOMSON M J, TAI T H, MCCLUNG A M, LAI X H, HINGA M E, LOBOS K B, XU Y, MARTINEZ C P, MCCOUCH S R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population betweenand thecultivar Jefferson. Theoretical and Applied Genetics, 2003, 107(3): 479-493.
[9] LEE S J, OH C S, SUH J P, MCCOUCH S R, AHN S N. Identification of QTLs for domestication‐related and agronomic traits in an×BC1F7population. Plant Breeding, 2005, 124(3): 209-219.
[10] LI C B, ZHOU A L, SANG T. Genetic analysis of rice domestication syndrome with the wild annual species,. The New Phytologist, 2006, 170(1): 185-193.
[11] GU X Y, KIANIAN S F, FOLEY M E. Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (). Genetics, 2004, 166(3): 1503-1516.
[12] GU X Y, KIANIAN S F, FOLEY M E. Isolation of three dormancy QTLs as Mendelian factors in rice. Heredity, 2006, 96(1): 93-99.
[13] GU X Y, KIANIAN S F, HARELAND G A, HOFFER B L, FOLEY M E. Genetic analysis of adaptive syndromes interrelated with seed dormancy in weedy rice (). Theoretical and Applied Genetics, 2005, 110(6): 1108-1118.
[14] GU X Y, LIU T L, FENG J H, SUTTLE J C, GIBBONS J. Theunderlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice. Plant Molecular Biology, 2010, 73(1): 97-104.
[15] LIN S Y, SASAKI T, YANO M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice,Lusing backcross inbred lines. Theoretical and Applied Genetics, 1998, 96(8): 997-1003.
[16] DONG Y J, TSUZUKI E, KAMIUNTEN H, TERAO H, LIN D Z, MATSUO M, ZHENG Y F. Identification of quantitative trait loci associated with pre-harvest sprouting resistance in rice (L.). Field Crops Research, 2003, 81(2/3): 133-139.
[17] GUO L B, ZHU L H, XU Y B, ZENG D L, WU P, QIAN Q. QTL analysis of seed dormancy in rice (L.). Euphytica, 2004, 140(3): 155-162.
[18] WAN J M, CAO Y J, WANG C M, IKEHASHI H. Quantitative trait loci associated with seed dormancy in rice. Crop Science, 2005, 45(2): 712-716.
[19] WAN J M, JIANG L, TANG J Y, WANG C M, HOU M Y, JING W, ZHANG L X. Genetic dissection of the seed dormancy trait in cultivated rice (L.). Plant Science, 2006, 170(4): 786-792.
[20] WANG L, CHENG J P, LAI Y Y, DU W L, HUANG X, WANG Z F, ZHANG H S. Identification of QTLs with additive, epistatic and QTL×development interaction effects for seed dormancy in rice. Planta, 2014, 239(2): 411-420.
[21] XU F, TANG J Y, WANG S X, CHENG X, WANG H R, OU S J, GAO S P, LI B S, QIAN Y W, GAO C X, CHU C C. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nature Genetics, 2022, 54(12): 1972-1982.
[22] Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, Hattori T, Yano M. Molecular cloning of, a regulator involved in seed dormancy and domestication of rice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 5792-5797.
[23] Chen W Q, Wang W, Lyu Y S, WU Y W, HUANG P L, HU S K, WEI X J, JIAO G A, SHENG Z H, TANG S Q, SHAO G N, LUO J.activatesexpression to control rice seed dormancy via the ABA signaling pathway. The Crop Journal, 2021, 9(1): 68-78.
[24] YE H, FENG J H, ZHANG L H, ZHANG J F, MISPAN M S, CAO Z Q, BEIGHLEY D H, YANG J C, GU X Y. Map-based cloning of seed dormancy1-2 identified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice. Plant Physiology, 2015, 169(3): 2152-2165.
[25] XIE K, JIANG L, LU B Y, YANG C Y, LI L F, LIU X, ZHANG L, ZHAO Z G, WAN J M. Identification of QTLs for seed dormancy in rice (L.). Plant Breeding, 2011, 130(3): 328-332.
[26] WANG Q, LIN Q B, WU T, DUAN E C, HUANG Y S, YANG C Y, MOU C L, LAN J, ZHOU C L, XIE K, LIU X, ZHANG X, GUO X P, WANG J, JIANG L, WAN J M. OsDOG1L-3 regulates seed dormancy through the abscisic acid pathway in rice. Plant science, 2020, 298: 110570.
[27] GU X Y, FOLEY M E, HORVATH D P, ANDERSON J V, FENG J H, ZHANG L H, MOWRY C R, YE H, SUTTLE J C, KADOWAKI K I, CHEN Z X. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics, 2011, 189(4): 1515-1524.
[28] WANG J, DENG Q W, LI Y H, YU Y, LIU X, HAN Y F, LUO X D, WU X J, JU L, SUN J Q, LIU A H, FANG J. Transcription factorsandcoordinately regulate preharvest sprouting tolerance in red pericarp rice. Journal of Agricultural and Food Chemistry, 2020, 68(50): 14748-14757.
[29] WANG M, LI W Z, FANG C, XU F, LIU Y C, WANG Z, YANG R, ZHANG M, LIU S L, LU S J, LIN T, TANG J Y, WANG Y Q, WANG H R, LIN H, ZHU B G, CHEN M S, KONG F J, LIU B H, ZENG D L, JACKSON S A, CHU C C, TIAN Z X. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nature Genetics, 2018, 50(10): 1435-1441.
[30] CHEN Y, XIANG Z P, LIU M, WANG S Y, ZHANG L, CAI D, HUANG Y, MAO D D, FU J, CHEN L B. ABA biosynthesis genecontributes to preharvest sprouting resistance and grain development in rice. Plant, cell &environment, 2023, 46(4): 1384-1401.
[31] LI M R, LI X X, ZHOU Z J, WU P Z, FANG M C, PAN X P, LIN Q P, LUO W B, WU G J, LI H Q. Reassessment of the four yield-related genes,,, and
[32] GUO N H, TANG S J, WANG J Y, HU S K, TANG S Q, WEI X J, SHAO G N, JIAO G A, SHENG Z H, HU P S. Transcriptome and proteome analysis revealed that hormone and reactive oxygen species synergetically regulate dormancy of introgression line in rice (L.). International Journal of Molecular Sciences, 2023, 24(7): 6088.
[33] TANG N, MA S Q, ZONG W, YANG N, Lü Y, Yan C, Guo Z L, LI J, LI X, XIANG Y, SONG H Z, XIAO J H, Li X H, Xiong L Z. MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice. The Plant cell, 2016, 28(9): 2161-2177.
[34] HEIGWER F, KERR G, BOUTROS M. E-CRISP: fast CRISPR target site identification. Nature methods, 2014, 11(2): 122-123.
[35] VAISTIJ F E, GAN Y B, PENFIELD S, GILDAY A D, DAVE A, HE Z S, JOSSE E M, CHOI G, HALLIDAY K J, GRAHAM I A. Differential control of seed primary dormancy inecotypes by the transcription factor SPATULA. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(26): 10866-10871.
[36] NONOGAKI M, SALL K, NAMBARA E, NONOGAKI H. Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds. The Plant Journal, 2014, 78(3): 527-539.
[37] MATAKIADIS T, ALBORESI A, JIKUMARU Y, TATEMATSU K, PICHON O, RENOU J P, KAMIYA Y, NAMBARA E, TRUONG H N. Theabscisic acid catabolic geneplays a key role in nitrate control of seed dormancy. Plant Physiology, 2009, 149(2): 949-960.
[38] SHU K, ZHANG H W, WANG S F, CHEN M L, WU Y R, TANG S Y, LIU C Y, FENG Y Q, CAO X F, XIE Q.regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in. PLoS Genetics, 2013, 9(6): e1003577.
[39] DING Z J, YAN J Y, LI G X, WU Z C, ZHANG S Q, ZHENG S J.controlsseed dormancy via direct regulation oftranscript levels not downstream of ABA. The Plant Journal, 2014, 79(5): 810-823.
[40] KANAI M, NISHIMURA M, HAYASHI M. A peroxisomal ABC transporter promotes seed germination by inducing pectin degradation under the control of. The Plant Journal, 2010, 62(6): 936-947.
[41] SUN X M, XIONG H Y, JIANG C H, ZHANG D M, YANG Z L, HUANG Y P, ZHU W B, MA S S, DUAN J Z, WANG X, LIU W, GUO H F, LI G L, QI J W, LIANG C B, ZHANG Z Y, LI J J, ZHANG H L, HAN L J, ZHOU Y H, PENG Y L, LI Z C. Natural variation ofconfers drought adaptation in upland rice. Nature communications, 2022, 13: 4265.
CRISPR/Cas9-mediated editing ofenhances rice dormancy
1Rice Research Institute, Shenyang Agricultural University, Shenyang 110866;2China National Rice Research Institute/China National Rice improvement Centre, Hangzhou 310006
【Objective】 Dormancy is an important agronomic trait of rice. Proper dormancy can inhibit the preharvest sprouting of rice and is a key factor to ensure yield and quality. However, the genes and regulatory networks of rice dormancy regulation still need further study. Theencoded a protein with unknown function, and it negatively regulate rice abscisic acid signaling and drought resistance, but its function in regulating rice dormancy is unknown. Studying the function ofin regulating rice dormancy will help to improve the rice dormancy regulatory network, and at the same time provide a new theoretical basis and germplasm resources for genetic breeding of preharvest sprouting resistance.【Method】Based on the gene sequences published in the RGAP database, a CRISPR-Cas9 knockout vector forwasconstructed, and the calli of Zhonghua 11 was transformed through agrobacterium mediated genetic transformation to obtain transgenic rice plants. Theknockout homozygous lines were screened and identified using PCR amplification, sequencing technology, and qRT-PCR technology. The amino acid sequences of the two mutant lines (KO-1 and KO-2) were obtained according to the CDS of the two mutant lines, and then the protein sequences of ZH11 and the two mutant lines (KO-1 and KO-2) were compared by DNAMAN. The homologous genes ofin rice were screened using Linux system. Take the seeds 35 days after heading and investigated the germination rate of ZH11 and knockout lines. The yeast hybridization and LUC experiments were used to verify the upstream gene of.【Result】Sixhomologous genes were found in rice, which were,,,,,. The knockout vector was successfully constructed and transferred it into ZH11, two homozygous mutant lines (KO-1 and KO-2) were obtained. The qRT-PCR results showed that the expression level ofin the two mutant line (KO-1 and KO-2) was significantly reduced. Protein sequence analysis showed that the frameshift mutations of KO-1 and KO-2 caused the early termination of protein translation. The germination rate of the two mutant lines (KO-1 and KO-2) was significantly lower than that of ZH11 by 15% and 15% respectively on the third day after water absorption; After that, the difference gradually expanded and reached the maximum on the 6th day, which was significantly lower than that of ZH11 by 35% and 35% respectively. The preharvest sprouting of two mutant lines (KO-1 and KO-2) was significantly lower than that of ZH11. The results of Y1H experiment showed that ABI5 could bind to the promoter region ofin yeast, and the binding range was further reduced to less than 300bp. LUC results showed that the fluorescence value of ABI5 was 2.6 times that of none alone, indicating that ABI5 could activate the expression of.【Conclusion】Knocking outcould increase seed dormancy, andmay regulate seed dormancy through ABA signaling pathway.
rice; dormancy; ABI5;
10.3864/j.issn.0578-1752.2024.02.001
2023-06-13;
2023-07-24
国家自然科学基金(31871597)、浙江省农业新品种选育科技重大专项(2021C02063-2)、中国水稻研究所重点研发计划(CNRRI-2020-02)
郭乃辉,E-mail:guonaihuirice@163.com。张文忠,E-mail:zwzhong@126.com。郭乃辉和张文忠为同等贡献作者。通信作者圣忠华,E-mail:shengzhonghua666@163.com。通信作者胡培松,E-mail:peisonghu@126.com
(责任编辑 李莉)