周雅君 何明郡 刘 聪 贺双颜 , 姜庆岩 韩 玉 陈 栋 ① 李培良
(1. 浙江大学海洋学院 浙江舟山 316021; 2. 浙江大学海南研究院 海南三亚 572024; 3. 海南热带海洋学院崖州湾创新研究院 海南三亚 572024; 4. 浙江省海洋观测-成像试验区重点实验室 浙江舟山 316021)
珊瑚礁生态系统以其高初级生产力和丰富的生物多样性被称为“海中热带雨林”(张睿等, 2022), 除了为海洋生物提供栖息地, 珊瑚礁作为天然防波堤和旅游资源也为人类带来了巨大收益(Wilkinsonetal,2012; Yu, 2012; 王丽荣等, 2014; 余克服等, 2014;Becketal, 2018; Lietal, 2019; Masonetal, 2020)。但由于人类活动和自然环境变化, 珊瑚礁正在逐步退化(Davenportetal, 2006; Halpernetal, 2008, 2015;Laietal, 2015; Asneretal, 2017; Eakinetal, 2019;Sullyetal, 2019)。对珊瑚礁进行监测有助于评估珊瑚礁受影响的程度, 跟踪珊瑚礁的退化或恢复情况, 并为保护、治理珊瑚礁生态系统提供依据和方向。
实地对珊瑚礁进行持续、详细的监测成本很高,且难以全面覆盖珊瑚礁生长的区域。卫星遥感以其覆盖范围广、重访周期短的特点被应用于珊瑚礁监测,弥补了传统野外调查的不足(Lubinetal, 2001; Mumbyetal, 2004; Hameletal, 2010; 黄荣永等, 2019)。利用卫星遥感技术获得大范围珊瑚礁分布情况、底质信息和健康状况越来越普遍(do Nascimento Araújoetal,2016; Da Silveiraetal, 2021; Whiteetal, 2021; 马珍妮等, 2022; 吴柯等, 2022; 岳子琳等, 2022)。卫星遥感识别珊瑚礁底质类型的能力取决于传感器光谱、空间、时间分辨率以及水深、水质条件等环境因素(Hochbergetal, 2003a)。高空间分辨率(约1 m)卫星遥感数据可以提供比中分辨率(约10~30 m)遥感数据更详细的地理信息, 但其高昂的费用使其应用受到限制。中分辨率卫星, 如Landsat 系列和Sentinel-2 等, 其数据公开获取方便, 在珊瑚礁识别中表现良好, 在珊瑚礁监测研究中常被选择。对于少数底质类别(3~5 类),使用SPOT 和Landsat 中分辨率遥感数据的分类精度约为60%~80%; 然而, 当底质类型超过7 类时, 受到空间和光谱分辨率的限制, 它们难以提供更详细的珊瑚礁信息(Capolsinietal, 2003)。相比之下Quickbird、IKONOS、WorldView-2 等更高空间分辨率的商业卫星表现更加良好(Mumbyetal, 2002;Roelfsemaetal, 2013; Xuetal, 2019; 万佳馨等, 2019)。
基于像素的分类方法和面向对象的图像分析(object-based image analysis, OBIA)方法是星载遥感识别珊瑚礁底质和地貌的常用方法。其中基于像素的分类方法没有考虑相同底质区域内像素特征的相似性, 容易产生其中某些分散的像素点分类错误的误差, 而面向对象的方法考虑一个区域内像素的平均灰度值、颜色、纹理以及相邻像素间的关联信息, 避免了分类结果出现“椒盐”现象(陈云浩等, 2006)。已有部分研究证明了OBIA 在珊瑚礁底质分类中的能力(Phinnetal, 2012; Wahidinetal, 2015; Xuetal, 2016;Setiawanetal, 2022; 吴虹蓉等, 2022)。
珊瑚礁不仅在生态环境中扮演重要角色, 也为许多沿海地区的旅游业增加收入。靠近旅游景点的珊瑚礁, 容易受到频繁人类活动的影响而处于更大的生存压力之下, 其健康状况更应该被关注。西岛位于三亚珊瑚礁国家级自然保护区, 是我国国家级4A 级景区, 受人类活动影响大, 近些年西岛珊瑚礁退化已受到当地重视并出台了一系列珊瑚礁恢复和保护政策(三亚市自然资源和规划局, 2017, 2020; 海南省自然资源和规划厅, 2023)。有效、快速地获得西岛沿岸珊瑚礁区域的底质变化, 对保护措施效果评估和生态维护至关重要。卫星遥感具备大面积、长时序观测识别的优势, 然而目前缺乏对近岸小型珊瑚岛礁珊瑚底质的卫星遥感识别分类统一方法, 本研究基于时序的Sentinel-2 卫星影像利用OBIA 方法对西岛沿岸珊瑚礁底质进行识别分类和覆盖面积变化分析, 以实现利用卫星遥感对海南西岛珊瑚礁进行遥感监测, 为海南西岛珊瑚礁监测和管理提供方法和数据参考。
西岛(18.24°N, 109.37°E)位于我国海南三亚湾国家自然保护区(图1), 面积2.8 km2, 地处热带地区,年平均气温23.4 °C, 最低气温高于17 °C。西岛周围海域拥有丰富的珊瑚资源, 但由于社会经济的发展和旅游活动的增加, 西岛周边自然环境受到干扰, 这可能对附近珊瑚礁的生存带来了巨大影响(董栋等,2015; 黄建中等, 2020)。
图1 西岛位置示意图及现场水质和底质测量数据站点分布Fig.1 Location of Xidao Island and distribution of field measurement sites for water quality and substrates
1.2.1 遥感影像数据 本文选用Sentinel-2 卫星数据作为珊瑚礁底质分类的影像数据。Sentinel-2A 于2015 年6 月23 日发射, Sentinel-2B 于2017 年3 月7 日发射, 两颗卫星同时运行时重访周期为 5 d。Sentinel-2 卫星搭载的多光谱影像仪(multi-spectral instrument, MSI)覆盖13 个光谱波段, 可提供空间分辨率为10、20 和60 m 的遥感影像。研究选取10 m地面分辨率的波段2 (蓝波段B, 中心波长492 nm)、波段3 (绿波段G, 中心波长559 nm)、波段4 (红波段R, 中心波长664 nm)、波段8 (近红外波段NIR, 中心波长832 nm)四个波段的影像对西岛沿海海域进行底质分类。近红外波段8 用来区分水体和陆地。珊瑚、沙子、藻类等底质在可见光波段具有一定的可分性(Hochbergetal, 2003b), 因此利用可见光波段2、3、4 提取浅水底质信息。
美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration, NOAA)基于海表面温度(sea surface temperature, SST)数据开发的珊瑚礁白化热点(HotSpot)和周热度(degree heating weeks, DHW)指数产品可以对珊瑚礁白化的发生提供较高准确度的预测(Goreauetal, 2000; Wellingtonetal, 2001)。根据NOAA珊瑚礁监测(coral reef watch, CRW)官方网站的5 km 白化热点数据, 西岛附近海域大约在每年 11 月至次年4 月的白化热点小于等于0, 如图2 所示, 说明在这个时间段内西岛附近的珊瑚礁处于无危险状态, 没有发生白化的趋势, 相较同年5~10 月, 此时间段内珊瑚面积相对稳定, 因此选择每年11 月至次年4 月时间段内的晴空Sentinel-2 Level-1C 遥感影像作为研究数据,研究使用的Sentinel-2 卫星影像信息如表1。本研究利用7 幅Sentinel-2 卫星影像开展, 其中3 幅在2017 年12 月至2018 年3 月间、4 幅在2021 年11~12 月间采集得到。Sentinel-2 Level-1C 数据下载自欧空局(https://scihub.copernicus.eu/dhus/#/home)。
表1 本研究使用的Sentinel-2 卫星影像信息Tab.1 The Sentinel-2 satellite images used in this study
图2 2017 年、2018 年、2021 年和2022 年西岛沿海每日白化热点Fig.2 The daily hotspots around Xidao Island in 2017, 2018, 2021 and 2022
1.2.2 现场测量数据 本研究人员于2021 年10 月23 日、2022 年5 月4 日、2022 年12 月16 日前往西岛开展了珊瑚礁水质或底质现场调查。利用GPS、水下摄像机、多参数水质仪、照相机等采集了经纬度、水下照片、水质参数(温度、盐度、溶解氧、浊度、深度)、水面照片等数据资料, 并现场采集水样在实验室中测定化学需氧量(chemical oxygen demand, COD)、溶解无机氮(dissolved Inorganic Nitrogen, DIN)和溶解无机磷(dissolved inorganic phosphate, DIP)。COD 用碱性高锰酸钾法测定。营养盐浓度用德国SEAL-AA3连续流动分析仪测定, 其中, 氨氮()用水杨酸钠法测定, 硝酸盐氮()用铜-镉还原法测定, 亚硝酸盐氮()用盐酸萘乙二胺法测定, DIP 用磷钼蓝法测定。其中底质分类数据站位一共采集了132 个,水质数据站位一共采集了14 个, 站位分布如图1 所示, 底质类型包括珊瑚礁、沙地、岩石和沙砾、海藻和海草, 用于后文珊瑚礁底质分类精度验证。站位数量及分类如表2 所示。
表2 西岛沿岸现场调查不同底质站位数量Tab.2 Number of substrate types obtained in field surveys along the coast of Xidao Island
1.2.3 潮汐数据 本文采用的Sentinel-2 遥感影像过境时间均为格林威治时间03:00 (北京时间11:00)左右, 卫星影像获取时间时的潮高信息在表1 中给出。图3 以2021 年11 月为例, 给出西岛附近三亚港(18.23°N, 109.49°E)的一个典型潮汐月变化周期潮高曲线, 本研究所用卫星数据的潮高范围为50~112 cm,其中2018 年2 月17 日、2021 年11 月18 日、2021 年12 月3 日卫星影像时间对应的潮高标在图中作为参考。该潮高数据来自中国海事服务网(https://www.cnss.com.cn/html/tide.html), 潮高基准面在平均海平面下90 cm。
图3 2021 年11 月潮汐高度变化曲线Fig.3 Variations of tides levels in November 2021
卫星传感器获取的可见光遥感影像通常受到大气、云覆盖等环境因素影响, 因此分类前先对下载的Sentinel-2 Level-1C 遥感影像进行大气校正和裁剪融合预处理。
首先, 利用 SNAP 软件支持的插件 Sen2Cor(http://step.esa.int/main/snap-supported-plugins/sen2cor/)对本文所用的7 幅影像进行大气校正得到各波段水体反射率数据, 并使用ENVI5.3 对大气校正后遥感影像进行裁剪。
然后, 对图像4 个波段的反射率进行算术平均处理。本文所用7 幅遥感影像的4 个波段反射率标准差如图4a~4d。对于相同波段, 在不同日期获得的遥感反射率数据标准差较大, 说明在不同日期获得的遥感反射率数据数值差异较大。因此, 不同日期获得的遥感图像难以使用相同的参数进行后续的分割和分类操作。
图4 本文所用7 幅遥感图像在进行算数平均处理前的波段2、波段 3、波段4、波段8 的反射率标准差(a~d)和算数平均处理后两幅图像的反射率标准差(e~h)Fig.4 The standard deviations of reflectance at B, G, R, and NIR bands of total 7 images (a~d, respectively) used in this study before arithmetic average processing and the standard deviations of the reflectance at band2, band3, band4, and band8 of 2 images (e~h,respectively) after arithmetic average processing
为使不同时期获得的遥感影像的反射率差异尽可能小, 本研究选择了6 幅晴空影像进行处理, 以获得用于底质识别的遥感图像。利用2017 年12 月24 日、2018 年2 月7 日、2018 年3 月24 日获得的3 幅遥感图像, 分别对波段2、波段 3、波段4、波段8 四个波段的反射率进行算术平均计算, 得到 2018 年初西岛遥感合成图像。对2021 年12 月3 日、2021 年12 月13 日、2021 年12 月18 日获得的3 幅遥感图像进行相同处理, 得到2021 年末年西岛遥感合成图像。计算2018 年初和2021 年末西岛遥感合成影像对应各波段的标准差, 结果如图4e~4h。平均值计算处理后,对于相同波段, 不同时期获得的遥感图像的反射率差异明显减小, 有利于后续使用相同参数对上述两幅图像进行分割及分类操作。
不同潮高情况下获取的遥感影像显著不同, 尤其是水陆分界线差异很大, 为了在不同影像中使用统一的水陆分界线, 选择较高潮高时的数据进行分析, 以获得较高精度的用于水陆分类的遥感图像。本研究对2021 年11 月18 日、2021 年12 月3 日获得的2 幅遥感图像也进行了反射率算术平均处理, 得到2021 年西岛较高潮高遥感合成图像, 并利用该遥感合成影像识别提取出水体和陆地。然后, 分别利用2018 年初和2021 年末西岛遥感合成图像对西岛周边沿岸水体进行了底质分类。
本研究采用eCognition6.4 软件对3 幅平均后的影像进行多尺度分割和面向对象分类操作。分割的尺度参数决定了分割对象所能允许的最大差异性, 尺度参数越大越大, 创建的对象就越大。较小的尺度参数不能准确描述水体和陆地的边界, 且分割结果较为破碎, 而较大的尺度参数不能准确描述珊瑚礁区域的地物边界。波段权重同样也会影响分割结果。水体对于近红外光吸收强烈, 增大近红外波段的权重可以提高分割水体和陆地的准确性。而在对水体部分进行分割时, 增大可见光波段的权重可以提高水体中底质分割的准确性。
首先, 本研究在对2021 年西岛较高潮高遥感图像进行分割时选择了较大的尺度参数(设置尺度参数为100)和较大的近红外波段权重(波段2:波段3:波段4:波段8=1:1:1:8)。利用阈值分类算法, 将NIR 反射率大于等于0.085 的对象识别为陆地, NIR 反射率小于0.085 的对象识别为水体。然后, 利用2018 年初和2021 年末的两幅西岛遥感合成图像, 对其水体部分进行再分割。再分割时选择了较小的尺度参数(设置尺度参数为15)和较大的可见光波段权重(波段2∶波段3∶波段4∶波段8=1∶1∶1∶0)。对再分割后的两幅图像进行阈值分类。本研究提取出波段2 反射率小于0.073 的对象为珊瑚礁, 提取出波段3 反射率大于0.1 的对象为岩石和沙砾, 提取出波段4 反射率大于等于0.045、小于等于0.073 的对象为海藻和海草, 其他部分为沙地。基于Sentinel-2 遥感影像的西岛底质识别分类过程如图5 所示。
图5 基于Sentinel-2 遥感影像的西岛底质识别分类流程图Fig.5 Flowchart of substrate classification around Xidao Island using Sentinel-2 images
本文使用生产者精度(producer’s accuracy)、用户精度(user’s accuracy)、总体精度(overall accuracy)和Kappa 系数(Kappa coefficient)来评价分类结果。生产者精度表示研究区域内正确分类为某类的样本数与该类实际样本数的比值。生产者精度体现了某个实际类别被正确分类的概率, 生产者精度越高, 说明对该实际类别漏分的情况越少。用户精度表示研究区域内正确分类为某类的样本数与分到该类的样本数的比值。用户精度体现了某个类别的分类结果中正确分类的概率, 用户精度越高, 说明分类结果中错分的情况更少。总体精度表示所有类别中被正确分类的样本数与所有样本数的比值。Kappa 系数用于衡量分类结果与实际类别的一致性。总体精度Po计算方法如下:
其中,m表示类别数量,aii表示每个类别中被正确分类的样本数,n表示样本总数。Kappa 系数K计算方法如下:
其中,Pe表示偶然一致性,ai表示每个类别实际样本数量,bi表示每个类别的预测样本数量。
利用2021 年西岛较高潮高Sentinel-2 遥感图像进行水陆分类, 分类结果如图6c 所示。为了方便与本文分类结果对比, 分别在图6a 和6b 给出了2021 年较高潮高遥感影像NIR 波段灰度图和2018 年2 月17 日较低潮高遥感影像NIR 波段灰度图。可以明显看到由于海水退潮, 较低潮高图像相比较高潮高图像陆地面积更大。
图6 2021 年较高潮高遥感影像NIR 波段灰度图(a), 2018 年2 月17 日较低潮高遥感影像NIR 波段灰度图(b), 和本文水陆分类结果 (c)Fig.6 NIR grayscale image of the high tide level in 2021(a), NIR grayscale image of the low tide level on 17 February 2018 (b), and the water and land classification results (c)
本研究利用2018 年初和2021 年末两个时期的Sentinel-2 遥感合成图像, 分别进行底质识别分类为珊瑚礁、沙地、岩石和沙砾、海藻和海草四类, 然后将2021 年末时期的遥感影像分类结果与2021~2022 年期间在西岛沿岸的实测数据进行了比较, 计算得到的生产者精度、用户精度、总体精度和Kappa 系数如表3 所示。
表3 基于实地调查数据的遥感影像底质分类精度Tab.3 The accuracy in classification of remote sensing image substrate based on field data
从表3 结果可以看到, 岩石和沙砾、沙地分类精度普遍较高, 生产者精度、用户精度和总体精度都超过84%; 珊瑚礁的生产者分类精度为78.6%、用户精度为100%, 因此, 分类结果较为可靠; 相比之下, 海藻和海草的分类精度略低, 生产者分类精度为72.0%、用户精度为62.1%。Kappa 系数为0.71, 表明分类结果与实际类别具有高度的一致性。
根据实地调查, 珊瑚礁主要分布于西岛周边10 m水深以浅沿岸海域。因此, 选取西岛周边水域面积约1.73 km2且水深小于10 m 的区域(图7 所有彩色部分)用于计算不同底质面积的比例。西岛底质分类结果如图7 所示, 不同底质的面积和比例如表4 所示。
表4 基于Sentinel-2 遥感影像的西岛两个时期的底质面积及比例Tab.4 Area and proportion of substrates around Xidao Island based on Sentinel-2 images in two time periods
图7 基于Sentinel-2 影像得到的2018 年初(a)和2021 年末(b)西岛底质分布Fig.7 Substrate distributions derived from Sentinel-2 data around Xidao Island at the beginning of 2018 (a) and the end of 2021 (b)
西岛沿岸沙地面积最大, 大部分沙地位于水深较深(>10 m)的区域。其次面积较大的是珊瑚礁、岩石和沙砾。西岛沿岸离陆地最近的底质是岩石和沙砾,由于潮汐变化这类底质在低潮位时可能会露出水面,且该区域游客活动频繁, 该区域不适合珊瑚生长。珊瑚礁主要分布在沙地和岩石沙砾之间, 水深约3~10 m的区域。面积最小的是海藻和海草, 主要分布在珊瑚和岩石砂砾之间的区域。
西岛2018 年初时珊瑚礁总面积约为0.249 km2, 占水体面积14.4%; 西侧珊瑚礁面积(约0.189 km2, 10.9%)高于东侧(约0.060 km2, 3.5%)。2021 年末时珊瑚礁总面积约为0.306 km2, 占水体面积17.7%; 西侧珊瑚礁面积(约0.196 km2, 11.3%)高于东侧(约0.110 km2, 6.4%)。西岛东西两侧珊瑚礁分布不均, 西侧珊瑚礁覆盖情况均优于东侧, 尤其东北侧珊瑚覆盖程度较低。从2018 年初至2021 年末, 西岛西侧珊瑚礁面积变化很小, 增加了0.007 km2(0.4%), 东侧珊瑚礁面积增加较多,为0.050 km2(2.9%)。
吴钟解等(2012)在2006~2009 年用断面监测法在西岛若干站位用水下摄像机获得了活珊瑚、死珊瑚、砂质、礁石的图像并在计算机上进行判读, 计算它们的覆盖度, 指出2006 年西岛珊瑚礁覆盖度为47.31%,2009 年下降至35.90%。黄建中等(2020)在2018 年4月用截线样条法在西岛10 个站位用水下摄像机获得了多种活珊瑚、死珊瑚、礁石、沙砾和其他生物及底质的图像并在计算机上进行判读, 计算活珊瑚的覆盖度, 指出2018 年西岛珊瑚礁覆盖度为13.6%。本研究利用Sentinel-2 遥感影像通过底质分类得到2018 年初珊瑚礁覆盖面积0.249 km2, 2021 年末0.306 km2。可以看出, 西岛活珊瑚自2006~2018 年有退化趋势,2018 年至2022 年有恢复趋势。
西岛从2000 年1 月至2021 年7 月的日平均海表面温度如图8。日平均海表面温度数据来自NOAA 提供的最优插值海温分析数据(optimum interpolation 1/4 degree daily sea surface temperature analysis,version 2)。该时间段内西岛日平均海表面温度在20.3~31.4 °C 之间波动, 年平均海表面温度在26.2~27.4 °C 之间波动。一般认为, 造礁珊瑚生长的水温要在18 °C 以上, 最适宜的水温范围是25~30 °C(施祺等, 2007)。因此, 尽管西岛年平均温度范围适宜珊瑚礁生长, 该海域5~9 月的水温升高可能会威胁珊瑚礁的生存, 尤其是2006~2018 年间, 2006 年、2011年、2014~2017 年都出现过海表面温度明显超过珊瑚适宜生长温度的时期, 其中2016 年中有三个月(6~8月)出现了较长时间的海表面温度持续较高的情况,可能一定程度上导致了珊瑚礁退化现象。在2018~2021 年间海表温度变化幅度相对较小, 2019~2021 年每年海表面温度超过30°C 的时间比较短暂, 此时间段内珊瑚生长的温度压力较小, 珊瑚礁可能存在一定程度的恢复。此外, 2017 年底, 为开展珊瑚礁保护和生态修复工作, 三亚西岛珊瑚培育实验中心建成并投入使用。近几年来, 三亚珊瑚礁保护区利用西岛珊瑚礁培育实验中心对珊瑚种苗进行培育, 在西岛及周围海域(鹿回头和小东海海域)投放珊瑚种苗近万余株。较小的温度压力和人工种植珊瑚可能是2018年以来珊瑚礁有所恢复的原因。
图8 2000 年1 月1 日至2021 年7 月31 日西岛地区日平均海表面温度Fig.8 Daily SST around Xidao Island from 1 January 2000 to 31 July 2021
黄建中等(2020)的研究表明2018 年西岛东侧和南侧珊瑚礁处于严重退化状态, 东侧部分海域珊瑚覆盖率从2011 年的近40%降至2018 年的不足4%。而西侧珊瑚礁则处于健康或轻微退化状态。该研究显示的2018 年珊瑚分布情况与本文在同时期的识别结果较为一致。西岛珊瑚礁出现明显的退化, 且东西两侧退化程度不同, 西侧珊瑚礁几乎未受影响。为进一步分析西岛东西两侧珊瑚礁分布差异原因, 本文利用实测水质数据结合营养状态综合指数(E)给出西岛附近海水的富营养化状况。
其中, COD 表示化学需氧量浓度, DIN 表示无机氮浓度, DIP 表示无机磷浓度, 单位均为mg/L, 当1≤E≤3时水体为轻度富营养化, 3<E≤9 时为中度富营养化,E>9 时为重度富营养化。
根据本研究现场调查数据, 西岛西侧某些站位海水轻度富营养化(1<E<2), 海水未发现富营养化(E=0.6)。西岛西侧水体浊度大约是1.95~2.74 NTU,比东侧(6.54~9.84 NTU)更加清澈。因此, 西岛东侧水体浊度较高, 西侧水体轻度富营养化。西岛北侧和东侧是游客潜水活动及水上娱乐项目的主要活动场所,这可能是造成该区域珊瑚覆盖率低的原因; 西侧网箱养殖业可能是西侧水体轻微富营养化的原因, 这也可能限制珊瑚覆盖率的增加(Bell, 1992; Fabricius,2011; Dupreyetal, 2016; Halletal, 2018)。长期持续的珊瑚礁旅游活动,以及西岛附近网箱养殖活动, 可能都直接或间接地影响或破坏了该海域珊瑚礁生态系统健康, 引起了西岛东侧和北侧珊瑚礁退化加剧。根据董栋等(2015)、黄建中等(2020)对西岛的现场调查同样表明西岛东侧受人类活动影响比西侧更大。但本研究2021 年末监测结果表明该退化有恢复趋势。
本文使用Sentinel-2 遥感数据将西岛珊瑚礁区域的底质分类为4 个类别, 无论在类别数量和精度上都与前人在其他地区的分类情况有差距。这是因为珊瑚礁遥感识别分类的精度会受到许多因素的影响, 比如水体浊度和遥感影像地面分辨率。Hochberg 等(2003b)的辐射传输模拟结果表明浑浊水体(chla1 μg/L, 碳酸盐沉积物浓度3 mg/L)下棕色造礁珊瑚的光学探测深度约为5 m。西岛附近珊瑚主要分布在3~10 m 水深(chla0.1~0.4 mg/L, 浊度1.95~9.84 NTU)的区域,浑浊水体中超过5 m 水深的珊瑚可能无法在本研究中被全部识别。
本研究利用空间分辨率为10 m的Sentinel-2 影像,将西岛近岸底质分为4 类, 准确率为83.3%。本研究中提取的4 种底质的典型遥感光谱如图9 所示。珊瑚礁在B波段的低反射率使其容易与其他底质区分, 但有少量稀疏珊瑚礁难以被10 m 地面分辨率的卫星识别。海藻与海草相对较低的分类准确率来自于岩石和砂砾的错分。根据现场调查, 海藻与岩石颜色相近,且许多海藻生长在岩石附近, 导致错分情况较多; 生长在岩石附近的某些海藻或海草由于面积较小, 在10 m 空间分辨率的遥感图像中容易被识别为岩石,降低了分类精度。采用更高分辨率的遥感影像可以减少混合底质像素, 从而提高小面积底质的分类精度(Brodieetal, 2018; Kovacsetal, 2018)。
图9 Sentinel-2 卫星大气校正后影像获得的4 种底质的典型可见光波段光谱反射率Fig.9 Typical reflectance spectra in the visible band of the 4 substrates from atmospheric corrected Sentinel-2 data around Xidao Island
需要指出的是, 本研究中目前未考虑珊瑚覆盖度的季节性差异。研究选择的原始遥感影像采集时间集中于冬季, 主要考虑到冬季时西岛地区海表面温度较低, 不会给珊瑚带来白化压力, 珊瑚礁处于稳定状态, 且该季节相较于其他时段可利用的晴空遥感数据较多, 有助于解析西岛底质分布信息。吴钟解等(2012)的研究未提及实地调查季节, 黄建中等(2020)在2018 年4 月对西岛地区展开现场调查。因此, 在和文献研究比较时可能受到季节差异影响, 本研究主要进行年际变化差别分析, 未来有待于利用更多数据进行更小时间尺度上的变化分析。
本文以中国南海海南岛南侧附近的西岛作为研究区域, 利用10 m 空间分辨率的Sentinel-2 影像提取2018 年初和2021 年末两个时期的西岛珊瑚礁分布信息, 采用面向对象的分割及分类方式, 确定适合西岛的分割尺度及波段权重, 基于阈值分类方式提取西岛珊瑚礁区域, 完成了以下工作:
(1) 本研究利用10 m地面分辨率的Sentinel-2遥感影像采用面向对象的阈值分类方法对研究区域的珊瑚礁、沙地、岩石和沙砾、海藻和海草等4 种海底底质信息成功进行识别提取, 分类精度可达到83.3%。
(2) 分析得到2018 年初和2021 年末两个时期的西岛珊瑚礁覆盖面积分别为0.249 km2和0.306 km2,这个时间段珊瑚礁覆盖面积增加了3.3%。西岛沿岸海域珊瑚礁覆盖面积空间变化不同, 其西侧珊瑚礁面积变化不大, 2018 年初为0.189 km2, 2021 年末为0.196 km2, 期间增加0.4%; 东侧珊瑚礁有恢复趋势,2018 年初为0.060 km2, 2021 年末为0.110 km2, 期间增加2.9%。
研究结果表明本文利用OBIA 方法和Sentinel-2数据可以在研究区域实现较好底质信息识别, 可帮助管理人员了解西岛海域珊瑚礁的分布及变化, 并为西岛海域珊瑚礁保护及修复提供依据, 对于海南岛近岸水质类似的区域, 如东锣岛、西鼓岛等区域的珊瑚礁底质识别和监测有参考价值。