川西新场须二段致密砂岩储层甜点类型及成因机制

2024-01-31 06:40赵俊威陈恭洋张玲杨映涛宋新新王恒
地质论评 2024年1期
关键词:新场层理甜点

赵俊威,陈恭洋,张玲,杨映涛,宋新新,王恒

1) 长江大学油气资源与勘探技术教育部重点实验室,武汉,430100;2) 长江大学录井技术与工程研究院,湖北荆州,434020;3) 中石化西南油气分公司勘探开发研究院,成都,610000;4) 中国石油集团长城钻探工程有限公司地质研究院,辽宁盘锦,124010

内容提要:川西新场地区上三叠统须家河组二段(须二段)天然气资源丰富,砂体大面积发育,储层孔渗较低,甜点成因复杂。为了阐明新场须二段甜点类型及成因,以岩芯观察、薄片分析、微米CT、阴极发光等多技术手段,在对储层岩石学、孔喉特征、有效裂缝特征等分析基础上,对甜点进行分类。新场须二段主要发育基质孔隙型、断缝型、层理缝型等3种甜点类型,不同类型甜点形成原因存在差异。强水动力条件下形成的高能分流河道、富石英砂岩是基质型甜点形成基础,在相对较弱的压实及胶结作用、较强的溶蚀作用下易形成基质型甜点;在靠近大型断层的基质孔渗较好部位易发育断缝型甜点;层理缝型甜点分布规模较小,不同类型层理界面处颗粒粒度、组分存在差异,发生差异成岩作用,形成力学薄弱面。新场须二段甜点发育受沉积、成岩及构造非均质性控制,对甜点类型的成因分析,有利于对甜点进行分类评价。

致密砂岩气是较重要的勘探开发领域之一,较常规天然气资源而言,致密砂岩储层物性较差,以低孔—低渗储层为主,储层非均质性强,横向连续性差,甜点在空间上分布复杂(赵晓东等,2021;曾凡成等,2021;吕文雅等,2021;孙零辉等,2022;孙靖等,2022)。关于甜点定义较多,其内涵可综合归纳为地质甜点、工程甜点及经济甜点,即能够实现经济效益且稳产的有利富集区(贾爱林等,2022)。川西坳陷新场上三叠统须家河组二段(须二段)天然气资源丰富,但整体动用率较低,储层局部埋深超5000 m,属于典型的特低孔—低渗储层,平均孔隙度小于4%,平均渗透率小于0.1×10-3μm2,砂体大面积发育,在整体致密背景下甜点局部发育,横向变化快,相邻两口井间产气特征差异明显,甜点成因复杂。前人对新场须二段进行了较多的研究,主要集中在物源分析(戴朝成等,2014;王志康等,2022)、砂体分布(何会,2015;王兴龙等,2021;商晓飞等,2022)、有利岩石相(徐樟有等,2008)、优质储层主控因素(赵艳等,2010;罗龙等,2017;王志康等,2020)、构造裂缝特征及预测(汪华,2004;苏锦义,2008;邓虎成等,2013;蒋有录等,2020)、甜点成因(邓少云等,2008;冯动军等,2014;印森林等,2016;黄丽飞,2018;刘振峰等,2021)等方面,认为水下分流河道微相物性较好,砂泥岩频繁互层容易形成甜点,甜点主要发育在构造裂缝发育区,但对甜点缺乏系统的分类,对不同类型甜点成因机制缺乏系统分析,制约了甜点的分类评价与开发。

本次研究采用岩芯观察、薄片分析、微米CT及阴极发光等多技术手段,对新场须二段储层特征、孔喉结构、裂缝及含气特征进行分析,划分须二段甜点类型,针对不同类型的甜点,从沉积差异、成岩差异、层理缝发育特征及成因等方面,探讨了其形成机制,对不同类型的甜点成因进行系统分析。

1 地质概况

新场构造带位于四川盆地川西坳陷,为晚三叠世以来陆相沉积的拗陷部分,川西拗陷依据龙门山展布可划分为川西坳陷南段、中段及北段,其中川西坳陷中段可划分为龙门山前构造带、新场构造带、知新场构造带、成都凹陷、梓潼凹陷、中江斜坡(刘殊等,2018;郑和荣等,2021)(图1a)。受多期构造运动影响,新场构造带整体发育北东东向的狭长型背斜,构造两翼表现为南陡北缓的特征。川西坳陷沉积了巨厚的晚三叠世—白垩纪地层,在中三叠统碳酸盐岩上部发育了上三叠统须家河组,须家河组由下至上发育须一段—须六段沉积(杨克明等,2004;杨克明,2006)(图1c)。新场构造带须二段发育砂泥沉积,储层埋藏深度约为4800~5200 m,物源主要来源于北部及北东方向,以辫状河三角洲前缘水下分流河道沉积为主,发育少量河口坝沉积,水下分流河道大面积发育(图1b),单期次水下分流河道厚度约1.5~10 m,不同期次的水下分流河道相互切割叠置,形成了复杂的砂体空间叠置关系,须二段致密砂岩累计厚度较大,砂体平均厚度可达几百米,在经过较强的构造与成岩作用后,甜点分布较为复杂。

图1 四川盆地川西坳陷构造位置图及地层综合柱状图Fig.1 Structural location map and comprehensive stratigraphic histogram in the Western Sichuan depression of Sichuan Basin(a)四川盆地川西坳陷构造分区及研究区位置;(b)川西新场须二段T3x21 砂组砂地比;(c)川西新场须家河组地层综合柱状图(a) The structural division and the location of the study area in the Western Sichuan Depression, Sichuan Basin; (b) the ratio of the sand and formation thickness in T3x21 sand group in the 2nd Member of Xujiahe Formation in Xinchang area of Western Sichuan; (c) comprehensive stratigraphic column map in the Xujiahe Formation in Xinchang area of Western Sichuan

2 甜点特征分析

2.1 岩石学特征

须二段储层以石英砂岩、岩屑砂岩为主,石英砂岩易形成甜点。岩性以中粗砂岩为主,石英、长石及岩屑含量变化范围为48%~92%、1%~21%、6%~42%,平均含量约为64.2%、9.6%、26.2%(图2)。岩石的成分成熟度较高,骨架颗粒呈次棱角状—次圆状,颗粒磨圆度中等,分选性中等—好,颗粒接触方式以凹凸接触、线接触为主。

图2 川西新场须二段典型样品微米CT孔喉特征图Fig.2 Pore throat characteristic micron CT map of typical samples from the 2nd Member of Xujiahe Formation in Xinchang area of Western Sichuan(a)典型样品中不同大小孔隙所占孔隙总面积百分比,样品a—e孔隙度大小分别为4.66%、5.18%、4.42%、5.03%、7.62%;(b)样品b、e中不同大小孔隙个数百分比;(c)样品e总孔隙模型,以不同颜色区分不连通的孔隙;(d)样品e球棍模型(a) The percentage of pores with different sizes in the total pore area of typical samples, the porosity of the sample “a” to sanple “e” is respectively 4.66%, 5.18%, 4.42%, 5.03% and 7.62%; (b) the percentage of pore numbers with different sizes in sample “b” and sample “e”; (c) the total pore model of sample “e”, different colors are used to distinguish the unconnected pores; (d) the sphere-stick model of sample “e”

2.2 物性及微观孔喉特征

新场须二段为特低孔低渗储层,储集空间包括原生孔隙、次生孔隙及微裂缝。储层孔隙度分布区间为1%~8%,平均孔隙度约3.7%,但整体致密背景下仍有超过20%左右的储层孔隙度大于5%。渗透率分布主区间为(0.039~1.44)×10-3μm2,平均基质渗透率约0.08×10-3μm2。微米CT实验表明,储层孔径以微米级大小为主,孔径分布呈现明显双峰特征,双峰发育1~7 μm小孔隙及大于20 μm大孔隙(图2a、c—d),不同大小孔隙对孔隙度的贡献存在差异,大孔隙个数占比小于1%,对总孔隙度贡献度为15%~30%,小孔隙个数占比大于95%,对总孔隙度贡献度约50%~60%(图2b)。

大孔隙主要为次生溶蚀孔隙,发育数量小,但对储层孔隙度贡献大,以粒间溶孔及粒内溶孔为主(图3a—d),成岩酸性流体溶解长石及可溶性岩屑颗粒边缘形成粒间溶孔,沿着长石解理缝溶解长石形成粒内溶孔,岩屑溶蚀现象较长石少(图3e)。原生孔隙以剩余粒间孔为主,颗粒在经过强压实压溶作用后,部分刚性颗粒支撑处保留较小的原生孔隙。

图3 川西新场须二段XC8井储集空间特征薄片图Fig.3 Reservoir space characteristics of the Well XC8 through thin section in the 2nd Member of Xujiahe Formation in Xinchang area of Western Sichuan(a)XC8井,4971.29 m,样本孔隙度为6.14%,渗透率为0.067×10-3μm2,长石被部分或完全溶蚀,形成溶蚀孔隙;(b)XC8井,4972 m,样本孔隙度为6.83%,渗透率为0.315×10-3μm2,发育溶蚀孔隙;(c)XC8井,5002 m,发育溶蚀大孔隙、粒间微裂缝及粒内微裂缝,溶蚀大孔隙与粒间微裂缝连通,粒内微裂缝局限发育在颗粒内部;(d)XC8井,5002.1 m,发育溶蚀大孔隙与粒内微裂缝;(e)XC8井,5000 m,岩屑被部分溶蚀形成粒内溶蚀孔隙;(f)XC8井,4969 m,发育粒间及粒内微裂缝(a) the Well XC8, 4971.29 m, the sample porosity is 6.14%, the permeability is 0.067×10-3μm2, feldspar is partially or completely dissolved, forming dissolution pores; (b) the Well XC8, 4972 m, the sample porosity is 6.83%, the permeability is 0.315×10-3μm2, forming dissolution pores; (c) the Well XC8, 5002 m, developing dissolution macropores, intergranular microfractures and intragranular microfractures. the dissolution macropores are connected with intergranular microfractures, and the intragranular microfractures are confined to the interior of the particles; (d) the Well XC8, 5002.1 m, developing dissolution macropores and intragranular microfractures; (e) the Well XC8, 5000 m, the debris is partially dissolved to form intragranular dissolution pores; (f) the Well XC8, 4969 m, developing intergranular and intragranular microfractures

须二段储层内发育大量粒内与粒间微裂缝(图3c、 d),微观裂缝是指通过肉眼不可见,须在镜下观察的裂缝(王瑞飞和孙卫,2009),笔者等将开度小于0.1 mm的裂缝定义为微裂缝。粒内微裂缝发育在石英或长石颗粒内部,延伸长度小,局限于颗粒内部,一般终止于矿物颗粒边缘,规模较小但裂缝发育密度较大,裂缝间连通程度差,对甜点储层渗透性贡献小。粒间微裂缝贯穿多个颗粒(图5f),延伸长度不受颗粒限制,延伸较长,粒间微裂缝可有效沟通不同位置的孔隙,增加了甜点储层的渗透性。受微裂缝影响,储层孔隙度与渗透率相关性差,微裂缝可有效改善储层孔渗性。

2.3 有效裂缝特征

新场须二段裂缝较发育,裂缝在平面及纵向上分布不均,平面上不同井、垂向上不同深度的构造裂缝线密度差异较大,裂缝发育程度存在非均质性。宏观裂缝类型以构造缝、层理缝为主。构造裂缝角度以中低角度为主(图4a),低角度裂缝(0~30°)占比50.94%,中等角度裂缝(30°~60°)占比39.75%,高角度裂缝主要为张性裂缝,高角度缝(60°~90°)占比9.31%,发育相对较少(图4c),层理缝以近水平缝为主(图4b)。裂缝充填状态以未充填裂缝为主(图4d),部分裂缝被矿物充填,以方解石、沥青及碳质充填为主。未充填的近水平缝、中低角度裂缝及高角度裂缝同时发育在地层中,构成立体的网状裂缝系统。有效裂缝的发育程度影响气井产气能力,与甜点产能存在较强关系,中高角度缝对初期产量影响较大,裂缝线密度越大,气井初期产量越高,但高角度缝的发育易连通底部水层,影响气井连续稳产。

图4 川西新场须二段致密砂岩储层裂缝特征Fig.4 Characteristics of fractures in tight sandstone reservoirs in the 2nd Member of Xujiahe Formation in Xinchang area of Western Sichuan(a)X201井,4889.0~4889.3 m,块状层理中砂岩,发育中低角度构造裂缝;(b)X201井,4915.9~4916.6 m,中砂岩,水平层理缝较发育;(c)不同倾角裂缝发育频率分布;(d)充填缝、半充填缝及张开缝发育条数百分比(a) the Well X201, 4889.0~4889.3 m, massive bedding medium sandstone, developing medium to low angle structural fractures; (b) the Well X201, 4915.9~4916.6 m, medium sandstone, near horizontal bedding fractures are developed; (c) the distribution of fracture development frequency with different dip angles; (d) the percentage of fracture number of filled fractures, semi-fillied fractures and open fractures

2.4 含气性

新场须二段气藏含气分布较为复杂,但总体上受构造控制,天然气充注发生在储层完全致密之前,天然气在浮力作用下于构造高部位成藏,整体表现出大型的构造—岩性气藏特征。处于构造高部位的井产气较多,如X2、X301井;处于构造低部位的部分井产水或气水同层,如X10井。须二段气层在垂向上也表现出此特征,其中在须二段上部含气性较好,须二段下部以含水为主。喜山期构造运动使致密气藏发生调整,沉积与成岩作用的差异控制了局部含气差异,部分处于构造低部位的井产气,处于构造高部位的井产水。致密砂岩储层含气性差异与砂泥配置关系、砂地比大小、砂岩侧向连续性等有关,砂泥频繁互层的区域可发育较好的垂向遮挡形成甜点,宏观上表现为砂地比数值为中等大小,砂岩侧向尖灭易遮挡形成甜点。

3 甜点的分类

关于致密砂岩气甜点的定义较多,美国地质调查局把甜点定义为可以持续提供30年产量的致密砂岩气区块(蒋平等,2015;于兴河等,2015;魏国齐等,2016);杨升宇等认为致密砂岩气甜点是在整体致密背景下的局部高孔渗区,能够提供较高及较持久产量的致密砂岩气发育区(杨升宇等,2013);邹才能等将甜点区定义为非常规油气分布中相对富集高产的有利区带,包含了“地质甜点、工程甜点、经济甜点”三重内涵(邹才能等,2013)。本次研究以前人分类为基础,认为致密砂岩气甜点是整体低孔渗背景下的局部高孔渗带,能够实现经济效益且能持续稳产的有利富集区。根据新场须二段生产测试结果,将研究区甜点划分为以下3种类型:基质孔隙型、断缝型、层理缝型。此分类考虑了甜点地质成因,涵盖了地质与经济双重因素,有利于对不同类型甜点的分类评价。物性较好的基质储层是上述3类甜点形成的基础,也是各类甜点形成的关键因素之一,基质储层物性受多种因素影响,在裂缝较发育的条件下形成断缝型及层理缝型甜点,在裂缝欠发育的条件下形成基质孔隙型甜点。

3.1 基质孔隙型

新场须二段储层非常致密,平均孔渗分别为3.7%、0.08×10-3μm2,但仍有一定比例的储层样品基质储层孔渗较大,储层物性相对较好,孔隙度与渗透率呈较典型的正相关关系。在整体特低孔、特低渗背景下,仍然发育相对基质孔渗相对较高的储层,在有利的含气条件下,在裂缝欠发育区可形成基质孔隙型甜点。如X3井发育典型的基质孔隙型甜点,在试气部分层段孔渗较好,孔隙度分布区间为6%~12%,渗透率分布区间为(0.1~3)×10-3μm2,石英平均含量约74%,岩性以粗砂岩、中砂岩为主,沉积水动力强,泥质含量低,顶底发育2~5 m的泥岩,具有较有利形成甜点的条件,此类甜点试气产能较好,且具有较好的稳产能力。

3.2 断缝型

断缝型甜点主要发育在构造缝发育区,紧邻断层发育带,此类甜点是研究区已发现的主要甜点类型。孔隙度与渗透率相关性复杂,平均孔隙度大于3%,不同尺度的构造裂缝提高了储层渗透性,初期产能及稳产能力较好。如CH127井发育典型断缝型甜点,位于构造高部位,距离主干断层约500 m,裂缝较发育,平均孔隙度约3.9%,裂缝发育处平均渗透率大于1×10-3μm2,试气层段平均裂缝线密度为2.1条/m,石英平均含量约64%,试气无阻流量为19.245×104m3/d,试气层段砂泥频繁互层,为甜点发育创造了有利条件。

3.3 层理缝型

层理缝型甜点主要发育在层理缝发育区,以平行层理缝为主,此类甜点储层岩性较粗、石英含量较高,近水平状的层理缝密集发育,裂缝发育的间距0.5~1 cm,由于层理缝的发育,使甜点储层孔渗较好,渗透率变化较大。如X5井发育典型的层理缝型甜点,在层理缝发育段平均孔隙度约4.8%,平均渗透率大于0.3×10-3μm2,近水平缝非常发育,水平缝线密度可达9条/m,试气产量较好,试气层段也表现为砂泥频繁互层。

4 甜点成因分析

4.1 基质孔隙型

4.1.1沉积作用

沉积作用是影响储层物性的内因,沉积过程中沉积物颗粒粒度、组分、分选性及泥质含量存在差异,此差异性决定了成岩作用的物质基础。新场地区须二段发育辫状河三角洲前缘沉积,主要发育水下分流河道微相,河口坝少量发育,以中砂岩为主,其次为细砂岩、粗砂岩。水下分流河道大面积发育且频繁发生侧向上的迁移,不同期次的水下分流河道相互切割叠置,形成了厚层砂体。而厚层砂体内部单期次河道砂厚变化较大,厚度分布范围在1.5~10 m,单期次河道砂体厚度代表了河道沉积时的水体深度,根据河道宽深比经验关系,分流河道的规模会存在较大差异。单期次河道厚度较大的砂体,沉积时期河道规模较大,可能为分流主河道沉积,沉积水动力较强,沉积颗粒粒度较粗,可在局部发育粗砂岩,细粒沉积物不易保存,有利于原生及次生孔隙的发育而形成甜点;而单期次河道厚度较小的砂体,河道规模较小,沉积水动力变弱,为次级分流河道或末端分支河道,岩性较细,细粒沉积物含量高,受到强压实作用下原生孔隙不易保存,不容易形成甜点(图5)。同时,在不同物源条件下,分流河道塑性矿物含量存在差异,形成了富石英、富岩屑的储层,两类储层抗压实强度存在差异,富石英储层抗压实能力强,可保留少部分原生孔隙,为后期溶蚀流体提供了通道,易发育甜点。

4.1.2压实作用

新场须二段储层经历了较强的压实作用,颗粒间呈线接触、凹凸接触关系,塑性颗粒发生弯曲变形,可见压溶形成的石英加大边现象。利用Beard提出的碎屑岩初始孔隙度计算模型及薄片资料,定量统计了压实作用对孔隙减小的影响,其中压实减孔绝对大小约为25%~38%、胶结减孔绝对大小约为1%~13%(图6)。不同岩性、不同塑性组分含量影响了压实程度,岩屑塑性组分含量影响了压实程度,颗粒粒径与压实率也存在关系。岩石的颗粒粒径越大,其抗压能力越强,细砂岩颗粒较细,抗压实能力弱,统计可知中砂岩压实损失孔隙体积约为30%~36%,细砂岩为28%~38%,粗砂岩为28%~33%,部分中砂岩及细砂岩易形成强压实作用(图6),压实作用是须二段致密砂岩减孔的重要原因,富石英砂岩、粗砂岩及部分中砂岩抗压实能力较强,容易形成甜点。

图6 不同岩相压实及胶结作用对减孔过程的影响Fig.6 Impact of compaction and cementation of different lithofacies on pore reduction process

4.1.3胶结作用

胶结物在须二段较发育,胶结物平均含量1%~22%,平均含量为3.77%,胶结物类型以碳酸盐、硅质及黏土矿物为主,各类胶结物平均含量分别为2.33%、1.67%、0.75%。胶结作用是影响储层质量及甜点发育的重要因素,对储层物性存在一定影响。

碳酸盐胶结物在阴极发光下主要发育亮黄色、红色等2种颜色,不同颜色代表了不同期次形成的胶结物,亮黄色胶结物表现为基底式胶结特征,以方解石为主,红色胶结物可发育交代现象(图7a, b),2类碳酸盐胶结形成期次存在差异,亮黄色指示成岩早期形成的胶结物,红色指示成岩中晚期形成的胶结物。碳酸盐胶结的强弱受砂泥岩配置关系影响。在砂泥接触界面附近,富含碳酸盐矿物的酸性流体进入砂岩储层,进入砂岩后如运移通道不顺畅,碳酸盐矿物容易沉淀形成胶结物,不同期次的碳酸盐胶结物造成了须二段储层孔隙的减小。

图7 川西新场须二段碳酸盐胶结物阴极发光及薄片特征Fig.7 Cathodoluminescence and thin section characteristics of carbonate cement in the 2nd Member of Xujiahe Formation in Xinchang area of Western Sichuan(a)X501井,5250.3 m,细砂岩,石英主要发蓝紫色光,长石主要发浅蓝色光、黄绿色光,方解石发橙红色光、橙黄色光,白云石主要发红色光;(b)X501井,5250.3 m,阴极发光图对应的岩石薄片图(a) the Well X501, 5250.3 m, fine sandstone, quartz mainly emits blue purple light, feldspar mainly emits baby blue light and yellow green light, calcite emits orange red and orange yellow light, while dolomite mainly emits red light; (b) the Well X501, 5250.3 m, the rock thin section corresponding to the cathodoluminescence picture

黏土胶结也影响储层物性,黏土胶结以伊利石及绿泥石胶结为主,储层绿泥石胶结主要以孔隙衬边及孔隙填充形式存在。关于绿泥石对储层物性的影响,前人认为绿泥石衬边胶结可抑制后期胶结物形成,通过阻止流体在石英颗粒表面成核,抑制后期胶结物形成,有利于孔隙的保存(孙全力等,2012)。绿泥石虽在储层中发育,但总平均含量较小,对孔隙保存的影响是有限的,孔隙充填型绿泥石也会阻塞孔隙与吼道。从绿泥石含量与孔隙度相关图上可知,两者的确存在一定的正相关关系。自生绿泥石主要形成在粒度粗、塑性成分含量较低的砂岩中,细粒塑性组分含量高的储层容易受强压实作用,导致粒间孔隙减小,早期方解石大量胶结,使绿泥石失去发育空间,导致绿泥石不发育,而抗压实能力强的砂岩给自生绿泥石留下发育空间。因此,绿泥石与孔隙度存在一定正相关关系(图8a),但绿泥石不是影响甜点发育的直接原因,根本原因是岩石组分及颗粒粒度的影响,但绿泥石的发育可起到指示作用,伊利石与孔隙度呈负相关关系(图8b)。

图8 绿泥石、伊利石绝对含量与孔隙度关系图:(a) 绿泥石绝对含量与孔隙度关系;(b) 伊利石绝对含量与孔隙度关系Fig.8 Relationship between absolute content of chlorite, illite and porosity: (a) the relationship between the absolute content of chlorite and porosity; (b) the relationship between the absolute content of illite and porosity

4.1.4溶蚀作用

研究区溶蚀作用较常见,溶蚀孔隙为甜点储层的主要储集空间。溶蚀作用的强弱与储层长石及可溶性岩屑含量、砂泥配置及溶蚀流体通道相关,当储层中长石及可溶性岩屑含量较高,酸性流体沿着较好的砂层、裂缝通道溶蚀长石矿物,对长石颗粒边缘或中心发生溶蚀作用,形成粒间溶孔、粒内溶孔及铸模孔。砂泥配置关系较大影响了须二段甜点的发育,有利溶蚀相的厚度与相邻泥页岩厚度存在一定关系(图9),当分流河道砂体垂向上与分流间湾泥或前三角洲泥叠置时,储层内少量原生孔隙的发育为酸性流体的溶蚀提供溶蚀通道,在溶蚀之后仍能携带溶蚀物质继续运移,避免了碳酸盐等矿物的原地沉淀,可形成较好的甜点。

图9 强溶蚀相砂岩厚度与相邻泥页岩厚度关系图Fig.9 Relationship between the thickness of strong corrosion sandstone and adjacent mudstone and shale thickness

4.2 断缝型

断缝型甜点是须二段致密砂岩主要甜点类型(图10),此类甜点构造裂缝较发育,裂缝起到了改善储层渗流能力、提供储集空间的作用,但基质孔隙对甜点的发育仍起到较大的贡献。断缝型甜点所发育裂缝可分为宏观裂缝与微观裂缝,不同尺度的裂缝连通了不同部位的基质孔隙,提高了甜点渗流能力。

图10 川西新场须二段甜点发育模式图Fig.10 Sweet spot development pattern in the 2nd Member of Xujiahe Formation in Xinchang area of Western Sichuan(a)川西新场须二段水下分流河道沉积差异影响的基质型甜点分布模式;(b)裂缝发育差异影响的断缝型甜点分布剖面模式;(c)层理缝型甜点发育模式(a) The distribution pattern of matrix sweet spot type affected by the sedimentary difference of underwater distributary channel in the 2nd Member of Xujiahe Formation in Xinchang area of Western Sichuan; (b) fracture sweet spot type distribution profile model affected by fracture development difference; (c) bedding fracture sweet spot type development model

宏观构造裂缝的发育与构造运动密切相关,受印支期—燕山期—喜山期等多期构造运动影响,新场须二段发育多期次裂缝,裂缝发育方向以SN、EW向为主。构造应力是形成构造裂缝的决定因素,对须二段构造缝统计可知,距离大型断层越近,构造裂缝越发育,如X11井距离大型断层约2600 m,此井平均裂缝线密度为0.21条/m;而X501井距离大型断层约400 m,此井平均裂缝线密度为1.83条/m。新场气田较好的产气井一般都位于主干断层附近或构造高部位的轴部,此部位易发育与褶皱或断层相关的裂缝。因此,断缝型甜点一般分布于构造高部位或大型断层附近,裂缝连通了不同部位的优质储层,提高了气井的产能。此外,裂缝的发育还受地层内因的影响,包括岩石力学层厚度、岩石粒度、岩矿组分、泥质含量及钙质胶结物含量等,前人已讨论较多,在此不作讨论。微裂缝的发育与构造应力、岩石脆性相关,微裂缝发育总条数与岩石脆性指数相关,脆性指数越大,微裂缝条数越多。不同倾角的宏观构造缝与微观缝构成了立体渗流网络系统,在基质储层较好的部位易形成断缝型甜点。

4.3 层理缝型

新场须二段发育少量层理缝型甜点,此类甜点形成与层理分布有关(图10)。层理缝沿着层理面形成,以平行层理缝及交错层理缝为主,平行层理缝近水平分布,为分流河道在水浅流急条件下形成,在水动力控制下形成岩石组分与粒度分异界面,在成岩期间形成力学薄弱面,在受构造应力作用下发育具剥离线理的平行层理缝,平行层理缝的裂缝线密度较大,裂缝间距为0.5~1 cm,在较薄的层段内密集发育,垂向分布范围小,垂向规模约为0.25~0.5 m,横向分布规模约为5~15 m。此外,新场须二段还发育交错层理缝,此类层理缝以交错层理为主,交错层理在形成过程中,由于水动力及重力分异形成暗色矿物富集面,在暗色矿物富集界面形成力学薄弱面,在有利应力作用下形成层理缝,交错层理缝间距较大,约为1~15 cm,纵向规模约为3~7 m,横向分布规模约为3~8 m。层理缝的形成受成岩作用影响,沉积物在成岩过程中,受到上覆地层压力的持续增加,不同类型的层理界面处的由于颗粒粒度、组分差异发生差异成岩作用,如交错层理形成的暗色矿物与浅色矿物界面,由于两类矿物压实压溶强度不一致,在成岩过程中形成了顺层理面分布的层理缝。

总体而言,由于层理缝发育规模较小,横向展布范围有限,导致层理缝型甜点规模较小,对储层的改造作用有限,在较少情况下可形成较好产能。但层理缝可沟通平面上不同部位的储层,与构造缝形成水平及垂向上的渗流网络,提高甜点产能。

5 甜点分布特征及模式

断缝型、层理缝型及基质型甜点构成了新场须二段甜点类型,以断缝型及基质型甜点为主。断缝型甜点分布在大型断裂所伴生的各级次裂缝系统中,各级次裂缝系统构成的宏观—微观裂缝有效改善了储层的储渗能力,处于构造较高部位的断裂系统周缘200 m范围内是有利的断缝型甜点发育区。基质型甜点分布在远离断层的弱构造变形区或强构造变形区的断裂不发育层位,新场须二段不同规模的分流河道形成水动力存在差异,造成不同规模的分流河道间沉积物粒度差异明显,在强水动力条件下,颗粒粒度粗、刚性组分含量高的分流河道容易形成基质型甜点发育区。层理缝型甜点规模较小,层理缝发育规模及横向展布范围小,较难形成较大产能,而层理缝与中低角度裂缝有效沟通,可与断缝型甜点伴生发育。

6 结论

(1)致密砂岩气甜点是能够实现经济效益且稳产的有利富集区,根据生产测试、储层基质孔渗及裂缝特征,将研究区甜点划分基质孔隙型、断缝型、层理缝型等3种类型。基质孔隙型为整体致密背景下基质孔渗相对较高的含气储层,裂缝欠发育;断缝型发育在构造裂缝发育区的构造高部位,为目前主要的甜点类型;层理缝型主要发育在层理缝发育区,以平行层理缝及交错层理缝为主,分布相较为局限。

(2)不同类型的甜点形成原因存在差异。基质孔隙型受沉积与成岩作用控制,不同规模的分流河道形成水动力存在区别,河道规模较大,沉积水动力较强的富石英砂岩抗压实能力强,胶结作用较弱,可保留少部分原生孔隙,为后期溶蚀流体提供通道,在有利的砂泥配置关系下易发育基质型甜点;断缝型受构造裂缝分布控制,宏观构造缝与微观缝构成了立体渗流网络系统,在基质储层较好的构造高部位及有利含气区,易形成断缝型甜点;层理缝型受层理分布影响,以平行层理缝及交错层理缝为主,其形成受沉积与成岩作用影响,不同类型的层理界面处由于颗粒粒度、组分差异发生差异成岩作用,形成力学薄弱面而发育层理缝。

(3)总体而言,甜点发育受沉积、成岩及构造综合控制,在裂缝较发育区断缝型甜点较多,在裂缝欠发育区可发育基质孔隙型甜点,对甜点类型的划分,有利于在生产过程中对甜点进行分类评价。

猜你喜欢
新场层理甜点
熊妈妈的甜点
原煤受载破坏形式的层理效应研究
层状千枚岩的断裂特性
搞怪的甜点
美丽的新场古镇
储层非均质性和各向异性对水力压裂裂纹扩展的影响
爱情永恒(组诗)
大灰狼的甜点屋
大战将军山
甜点师 美丽不止多一分