雷 腾, 张义民, 马一哲, 丁学专, 吴滢跃, 王世勇*
(1.中国科学院 上海技术物理研究所,上海 200083;2.中国科学院大学,北京 100049;3.中国科学院 红外探测与成像技术实验室,上海 200083)
鬼成像,又称为关联成像,是一种不同于传统成像方式的新型成像方式,是近年计算光学成像领域的热点之一。鬼成像最早可追溯到著名的HBT 强度干涉实验。此后,1995 年Pittman、Abouraddy 等[1-2]利用参量下转换产生的动量纠缠光源,通过双光子计数分别实现了“鬼衍射”和“鬼成像”。2002 年,Bennink[3]等用具有互关联的经典光源在相同的双臂光路架构中实现了鬼成像。2006 年,Scarcelli[4]等将激光照射在旋转的毛玻璃上产生赝热光源完成了鬼成像实验。2008 年,Shapiro[5]提出了仅包含物体光路的单光路鬼成像,利用空间光调制器极大地简化了实验系统,并将它命名为计算鬼成像。这类主动式鬼成像通常是利用数字微镜器件(Digital Micromirror Device, DMD)、空间光调制器(Spatial Light Modulator, SLM)等光场调制器件对光源进行调制,通过增加时域上在不同编码光场下的采样数来增加系统的时间自由度数,将场景回波信号与赝热光场进行关联,在时间维上仅通过桶探测器接收目标的回波信号,从而获得目标的图像信息。为了进一步提高鬼成像的实用价值,需要发展被动式鬼成像,与主动式鬼成像不同,自然光和物体自发辐射等被动光源的相干时间在飞秒量级,而测量光场的时空涨落需要探测器响应时间小于光场的相干时间,并且对自然光这类被动光源的光场时空涨落进行实时控制非常困难。2015 年,韩申生[6]提出了一种被动式鬼成像系统,即基于稀疏约束的鬼成像(Ghost Imaging via Sparsity Constraints, GISC)光谱相机。该相机利用空间随机相位调制器实现了光场的相位调制及色散,同时利用随机相位调制器的极近场衍射,将真热光转换成赝热光,解决了真热光相干时间短的测量难题。另外,GISC 光谱相机通过将主动式鬼成像中测量成像视场中各像素所对应的光场在时域上的随机涨落转换为空域上的随机涨落,并进行预先测量,从而无需分束器分光就能实时探测光场随时间的无规涨落。
鬼成像相机通过对场景图像进行压缩编码,随后利用重建算法解译编码光场的信息,这一成像方式突破了传统被动式光电系统采样的限制,提高了光学成像系统的信道容量,实现了超分辨率成像[6]。为了推进鬼成像的实用化进程,必须实现欠采样条件下的高质量被动式鬼成像。重建算法是鬼成像技术中最重要的环节之一,目前常用的鬼成像算法都是基于压缩感知的图像重构算法。压缩感知是一类通过求解欠定逆问题实现信号恢复的方法,鬼成像通常是求解以下两类问题[7]:(1)求解(P1)的最小l1范数约束优化问题,常使用贪婪迭代优化算法,如OMP 算法[8]、ROMP 算法[9]。贪婪迭代类算法的计算速度较快,但是需要较多的采样次数,对小尺度信号的重建效果较好,但对大尺度信号的重建效果并不理想[7-8]。为了解决这一问题,BP 算法[10]、FIST 算法[11]等凸优化算法被提出,用于对大尺度稀疏信号的有效重建,这些算法对噪声有较高的稳定性。(2)求解(P2)的最小化TV 或TC 问题,l1-Magic[12-13],TwIST[11,14],NESTA[15],GAP[16]以 及ADMM[17]经 常 被 使用。人们还提出 了TVAL3 算法[18],该算法利用图像局部平滑的先验信息,图像重构过程中在保护图像边缘结构信息的同时抑制噪声,但TVAL3 忽略了因像素间差异导致的图像梯度差异问题,抗噪性能减弱,并且容易在图像平滑区域产生阶梯效应。为了进一步改进TVAL3算法,2021 年Wang 等[19]提出了GISCNL 重建算法,该算法在TV 约束的基础上考虑了图像的非局域自相似性,并将它作为约束项加入到重建算法中。经过数值仿真论证,GISCNL 相比于TVAL3算法有更强的稳定性。为方便论述,本文将求解(P1)问题的鬼成像称为基于稀疏基约束的鬼成像(Ghost Imaging based on Sparse Basis Constraints, GI-SBC)[20-22],将求解(P2) 问题的鬼成像称为基于全变分约束的鬼成像(Ghost Imaging based on Total Variation Constraints, GITVC)[23-25]。
近年来,为了进一步提高鬼成像算法的重建 性 能,2018 年Huang 等[26]提 出 了 一 种 基 于Landweber 正则化与引导滤波联合迭代的压缩鬼成像算法,该算法有效降低了欠采样噪声,提高了分辨率。这表明通过分解预重构步骤和去 噪 步 骤 来 重 建 原 始 目 标。2019 年,Wu 等[27]在鬼成像模型中引入了低秩约束,实验与仿真均表明:对于拥有较强低秩特性的图像,低秩约束下的鬼成像比稀疏约束下的鬼成像有明显的图像质量改善,特别是在欠采样情况下。基于以上两种算法的特点,本文搭建了鬼成像相机实验平台,提出了一种基于低秩聚类的鬼成像算法,并应用于被动式鬼成像系统中,提高了欠采样条件下被动式鬼成像系统的图像重构质量。该算法将图像重构分解为预重构与低秩聚类降噪两部分。在预重构步骤中,利用共轭梯度法求解最小二乘问题以提取更多细节,对图像进行快速重构;在低秩聚类降噪步骤中,将非局域相似的图像块拉成一维向量,并聚合为二维矩阵,利用广义软阈值算法对该矩阵进行低秩矩阵近似,达到抑制重构噪声的目的。在图像重构过程中,算法交替执行预重构步骤与低秩聚类降噪步骤。仿真与实验结果表明,本文提出的算法能够在有限次的联合迭代步骤中提取出散斑场中的场景信息,实现高质量的鬼成像。
本文搭建的鬼成像相机原理示意图如图1(a)所示。自然光源照明目标,前置成像镜头将目标的反射光成像至第一成像面上。将第一成像面划分为N个小面元,不同位置的小面元出射的宽带热光在自由空间中传播,随后由空间随机相位调制器进行相位调制,并在其后表面附近进行强度叠加形成散斑干涉场。最后,由显微成像镜头将该散斑干涉场成像至像元数为M(M≪N)的CCD 上[28]。在该鬼成像相机中,选择散射片作为空间随机相位调制器。这一成像过程可以用如下矩阵描述[28]:
图1 鬼成像相机原理Fig.1 Principle for ghost imaging camera
将式(1)简写为矢量形式,得到:
其中:Y=(y1,y2,…,yM)T,代表由像元数为M的探测器采集到的场景的散斑场的图像矢量;X=(x1,x2, …,xN)T,代 表 与 原 始 场 景 共 轭 的第一成像面的图像矢量;Φ为鬼成像相机的测量 矩 阵,第i列 元 素Φi=(Φ1,Φ2,…,ΦM)T,代表第一成像面上第i个面元产生的散斑场的图像矢量。
由式(1)可知,在实际成像之前,需要对空间随机相位调制器进行预先标定以获得测量矩阵Φ。标定方式如图1(b)所示:将第一成像面划分为N个面元,第一成像面处的针孔光阑按划分面元的顺序依次移动,由像元数为M(M≪N)的探测器采集不同面元辐射的散斑场图像,最后将散斑场图像拉成一个列向量,并作为测量阵Φ的某一列。
为了对比不同算法在图1(a)所示的被动式鬼成像系统中的成像效果,需要对系统中的光场调制模块进行数学建模,从而便于鬼成像重建算法的数值仿真。
鬼成像相机的光场调制原理如图2 所示。第一成像面上一点出射的热光场经过z1距离的自由传播到达空间随机相位调制器(本文使用散射片作为空间随机相位调制器),经过光场调制后,再与空间随机相位调制器后表面相距z2的平面形成散斑场。
图2 光场调制原理Fig.2 Schematic diagram of light field modulation
由于第一成像面上各点光源近似为空间不相干,因此第一成像面上任意两点S1(ξ1,η1)以及S2(ξ2,η2)之间的互强度可表示为:
其中δ(·)表示狄拉克函数。第一成像面上点S1处的热光场在自由空间中传播z1后到达空间随机相位调制器的前表面,成为空间部分相干光。此时,空间随机相位调制器前表面上任意两点P1(x1,y1),P2(x2,y2)的互强度为:
其中:为热光场的中心波长,为中心波长对应的波矢,K(θ1),K(θ2)为倾斜因子。在傍轴近似条件下有:
将式(5)~式(7)代入式(4),并利用狄拉克 函数的性质进行积分,化简得:
其中:J(P1,P2)表示ξ-η平面上任意两点传播到x-y平面上得到的互强度分布。假设在第一成像面上的(ξ0,η0)处放置一个透光直径为d的针孔光阑来构造小面元,令:
其中:circ(·)为圆域函数。将式(9)代入式(8),并计算积分得:
其中J1(·)为一阶第一类贝塞尔函数。那么散斑场 上 任 意 两 点Q1(s1,t1) 和Q2(s2,t2) 的 互 强度为:
其中ϕ(P1),ϕ(P2)分别表示空间随机相位调制器对点P1,P2处的光场调制作用,K(θ3),K(θ4)为倾斜因子。在傍轴近似条件下有:
将式(12)~(14)代入式(11)得:
令Q1=Q2,并将式(10)代入式(15)得到点Q1处的光场强度为:
设第一成像面上有两个面元分别位于(ξ0,η0),(ξ0+Δξ,η0+Δη)处,对应 的散斑场 的光场强度分别为I(s,t),I(s+Δs,t+Δt)。由式(16)可知,满足:
此 时有I(s,t)=I(s+Δs,t+Δt)。这说明在空间随机相位调制器后表面附近形成的散斑干涉场存在空间相干性。因此,已知第一成像面上某点(ξ,η)对应的散斑场的光强分布,可以通过平移得到其近邻点的散斑场的光强分布。
通过测量第一成像面上某一面元对应的散斑场,而后通过平移构造一个矩阵,将这个矩阵作为测量矩阵Φ,即可进行成像数值模拟。根据散斑场的空间相干性,可以大大减少空间随机相位板标定的工作量。在标定过程中等间隔地采集第一成像面处面元产生的散斑场,其近邻面元对应的散斑场由已知的散斑场通过平移得到。
欠采样条件下的鬼成像实质上是一个不适定问题。为了得到合理的图像估计,需要充分合理利用稀疏/可压缩信号的几何结构。为此本文提出了联合迭代的图像重构算法,代替传统的压缩感知方法来解决最小化问题。在实际应用中,由于采样次数有限,欠采样噪声一直存在,不能忽略。为了提高成像的稳定性,减小欠采样噪声的影响,提高重构图像的信噪比,算法首先利用共轭梯度法来解决不适定问题,得到关联成像的预重构图像,然后基于图像的非局域自相似性,利用低秩聚类降噪算法来抑制图像的预重构噪声,提高成像质量。经过图像预重构和低秩聚类降噪的多次联合迭代,充分利用空间调制光场中所包含的有效物体信息,即可在较低采样率下得到成像效果较佳的重构图像。该算法流程如图3所示。
图3 联合迭代的重构算法流程Fig.3 Flow chart of reconstruction algorithm with joint iteration
图像预重构是求解一个最小二乘问题。预重构问题描述为:给定测量值Y∈RM以及测量矩阵ΦN×M,确定系数̂使得:
等价于求解如下函数的极值:
式(20)属于无约束二次规划问题,可以利用共轭梯度法进行快速迭代,使得函数F(̂)取得极小值的̂,以达到快速恢复图像细节的目的[29]。共轭梯度法在最速下降法的基础上结合共轭梯度信息来获得目标函数的最优解,不仅克服了最速下降法收敛速度慢的不足,相比于牛顿法它没有计算Hessen 矩阵和求逆过程,也避免了存储空间的占用,是解决大型非线性优化问题非常有效的算法。
图像预重构解决的是无约束的最小二乘问题,不可避免地会产生预重构噪声。基于图像的非局域自相似性,通过对含噪的预重构图像进行低秩建模,可以将目标信息从背景噪声中提取出来,并抑制重构噪声。
对于噪声图像中某个参考块l,在搜索窗口中选择一组与该含噪图像块l相似度较高的图像块,相似度由欧几里得范数定义。不妨设有Nl个与l相似度较高的图像块(包含l),将这些相似的块向量堆叠起来,构成一个矩阵:
由于自然图像的非局域自相似性,由非局域相似块构成的矩阵为低秩矩阵,因此,式(21)中由含噪图像的相似块堆叠而成的矩阵通过低秩建模为:
其中:Sl为无噪图像的块矩阵,Γl为包含噪声的块矩阵。Sl可以通过低秩矩阵近似方法获得。低秩矩阵近似的一个解决方法是核范数最小化(Nuclear Norm Minimization, NNM)[30],即:
其中:λ为 常 数,||Sl||*为 矩 阵Sl的 核 范 数,定 义为Sl奇异值的和,即表 示Sl的第i个奇异值。NNM 的目标是通过Sl近似Xl,同时最小化Sl的核范数。对于式(23)所描述的问题,Cai[31]等证明通过对观测矩阵奇异值进行软阈值运算可以很容易地解决基于NNM的低秩矩阵逼近问题,其中保真项由F范数描述。因此,式(25)可由奇异值软阈值方法解得:
其中:Xl=UΣVT为Xl的奇异值分解,Sλ(Σ)为带参数λ的对角矩阵Σ的软阈值函数。对于Σ中每个对角线上的元素Σii,有:
尽管NNM 已广泛用于低秩矩阵逼近,但它仍然存在一些问题。为了追求凸性,标准核范数平等地对待每个奇异值,因此,式(24)中的软阈值算子以相同的量λ收缩每个奇异值。然而,这忽略了通常对矩阵奇异值的先验知识。例如,矩阵中的列(或行)向量通常位于低维子空间中;较大的奇异值通常与主要的投影方向相关,因此期望较大奇异值能够收缩得少一点,以保留主要的数据分量。显然,NNM 及其相应的软阈值算子未能利用这种先验知识。尽管式(23)中的模型是凸的,但它不够灵活,无法处理许多实际问题。为了提高核范数的灵活性,本文采用加权Schatten-p范数进行低秩矩阵近似。矩阵Sl的加权Schatten-p范数定义为[32]:
其中:σi(Sl)为Sl的奇异值,p为作用于矩阵奇异值σi(Sl)的幂。对于自然图像,Sl中的较大奇异值比较小奇异值更重要,这是因为它们代表Sl主要分量的能量。在降噪过程中,奇异值越大,它们应当收缩得越小。因此,分配给σi(Sl)的权重应与σi(Sl)成反比,即:
其中:c为常数,n为含噪图像Xl的相似块数量,ε为一个避免除零的较小常数。在初始时刻,假设噪声能量在各个特征上分布是均匀的,因此初始化σi(Sl)为:
其中:σi(Xl)为Xl的第i个奇异值,σ2n为Xl的噪声方差。
将式(26)所示的加权Schatten-p范数应用于式(23),使用噪声方差σ2n来归一化F范数数据保真项,得到如下目标函数:
其中p=0.7。对所有含噪图像块执行低秩聚类降噪操作,并将去噪后的图像块聚合得到一幅降噪后的重建图像,随后将降噪后的图像重新返回到3.1 进行共轭梯度下降操作。
本文在被动压缩鬼成像问题中引入低秩聚类降噪的方法,得到了一种成像效果较好的被动式鬼成像算法,称该算法为低秩聚类被动压缩鬼成像算法(Passive Compressed Ghost Imaging with Low Rank Clustering, PCGI-LRC)。该算法运行中,最小二乘问题和低秩矩阵近似问题交替求解。当迭代达到一定次数时,停止迭代,得到最终的重构图像。基于低秩聚类联合迭代关联成像方法流程如下:
算法1:低秩聚类被动压缩鬼成像算法输入: 测量值Y,测量矩阵Φ,最大迭代次数K,迭代终止阈值ε 1:初始化:X0=0 2:令i=1:K 3:采用共轭梯度法求解最小二乘问题,获得预重构图像X̂(k+1):X̂(k+1)=arg min X̂(k) 1/2X̂(k)TΦTΦX̂(k)-X̂(k)TΦT y 4:对图像X̂(k+1)进行分块得到局部块x̂(k+1)l 5:寻找局部块x̂(k+1)l 的相似块矩阵组X̂ (k+1)l 6:对每个有噪声的数据矩阵X̂ (k+1)l 进行奇异值分解:(U(k+1)l ,Σ(k+1)l ,V(k+1)l )=SVD(X̂ (k+1)l )7:利用广义软阈值算法进行低秩矩阵近似8:图像更新,对所有块进行加权平均,得到噪声抑制后的图像q(k+1)9:若(q(k+1)-X̂(k))/X̂(k)<ε,则停止循环,设置X=q(k+1);否则设置X̂(k)=q(k+1),联合迭代继续10:若迭代次数i >K,则停止循环输出:重构图像X
为了测试PCGI-LRC 的成像效果,首先进行数值仿真,将它与GI-TVC、离散余弦域下的GISBC 两类算法进行对比。为了客观地评价该方法的性能,用峰值信噪比(Peak Signal-to-Noise Ratio, PSNR)和 结 构 相 似 性 系 数(Structural Similarity Index, SSIM)来定量地衡量图像重建质量。这里选取OMP 算法[8]和FISTA 算法[11]作为GI-SBC 的 重 建 算 法,选 取TVAL3[18]和GISCNL[19]作为GI-TVC 的重建算法。
本文选择灰度图像“house”(图像尺寸为128×128)作为仿真中需要重建的目标场景。基于式(18)和式(19)的结论,将第一成像面划分为128×128 块面元,随后等间隔地选取第一成像面上各面元对应的散斑场,其余面元对应的散斑场通过平移获得,最后将所有面元的散斑场拉成一维向量并聚合成二维矩阵作为被动式鬼成像系统的测量矩阵。
在非局域相似块低秩近似的过程中,图像块的尺寸会影响成像性能。若图像块尺寸过大,成像结果会更平滑;如果图像块尺寸过小,则无法达到抑制重构噪声的目的。在鬼成像过程中,需要在保持图像细节和抑制重构噪声之间权衡。在4,5,6 之间选取图像块的尺寸,并根据仿真或实验得到的最佳成像结果调整图像块的尺寸。从图像的左上角选择第一个参考块,并按照先列后行的顺序从一个参考块切换到下一个。数值仿真是在Intel(R) Core(TM) CPU i7-11800H处理器(2.3 GHz),16 G 内存电脑上的MATLAB R2021a 版本上运行的。
不同采样率下,GI-SBC,GI-TVC 和PCGILRC(图4(b)中蓝色曲线)对“house”图像的重构结果如图4(a)所示,对应的数值仿真结果计算的PSNR 曲线如图4(b)所示(彩图见期刊电子版)。对比结果可知:利用不同算法在不同采样率条件下进行鬼成像,本文算法的PSNR 值均优于GISBC 和GI-TVC,且目测结果与原始图像更接近,重建伪影更少。特别当采样率为0.5 时,GISBC,GI-TVC 和PCGI-LRC 的PSNR 值分别为22.744 0,22.913 0 和28.307 4 dB。从这些重构图像和评价曲线上可以看出,PCGI-LRC 在主观和客观上都优于其他方法。
图4 灰度图像仿真结果Fig.4 Simulation results of gray images
如上所述,PCGI-LRC 是一个最小二乘问题和非局域相似块低秩近似问题的联合迭代求解过程。为了验证该方法每一步骤的有效性,在采样率为0.25 的情况下,“house”图像在不同迭代次数i下的均方误差(Mean Squared Error,MSE)的曲线如图5 所示。由图5 可知,随着迭代次数的增加,MSE 曲线呈单调递减趋势,最终趋于平稳,表明本文方法具有较好的稳定性。还可以从中观察到,约10 次迭代即可得到最佳的重构图像。当MSE 基本稳定或迭代次数i达到最大迭代次数K时,停止迭代,得到最终的重构图像。
图5 采样率为0.25 的条件下本文算法在不同迭代次数下的MSE 变化曲线Fig.5 MSE variation curve of PCGI-LRC under different iterations at sampling rate of 0.25
为验证算法的实际性能,本文搭建了被动式压缩鬼成像实验平台,在采样率分别为0.062 5,0.125,0.25 以及0.5 的情况下进行鬼成像实验,实 验 光 路 如 图6 所 示。 采 用LED 灯(KM-2FL400400, 400 mm×400 mm)作为照明光源,场景“GI”辐射出来的光经过准直镜头(Collimating Lens, LBMT-2,f=400 mm)准直后经由分束镜(Beam Splitter, BS1455-A, 50:50)进行分光:其中一束光由监视相机(Monitor, TRI050SMC,3 μm×3 μm)进行采集,监视相机将采集到的原始场景图像作为实验中的对比图像,另一束光由被动压缩鬼成像系统(Passive Compressed Ghost Imaging)采集(图中虚线框所标注)。在被动式鬼成像系统中,前置成像镜头(LBMT-1,f=200 mm)将光场聚焦在第一成像面处,空间随机相位板(GCL-201123, 1500)将光场信息随机编码至干涉场中,最后由显微物镜(KP-10A035X,β=22)将 干 涉 场 成 像 至 CCD(TRI050S-MC, 3 μm×3 μm)中。其中,散射片与第一成像面相距12.70 mm,散斑场与散射片后表面相距1.5 mm。
图6 被动式压缩鬼成像实验光路Fig.6 Experimental optical path of passive compressed ghost imaging
在实际成像前需要对空间随机相位调制器进行预先标定,标定过程如图1(b)所示。在第一成像面处放置针孔光阑作为标定过程中的点光源,针孔光阑固定在电位移台上,可以通过计算机调整针孔光阑的位置。空间随机相位调制器对透过针孔光阑的光进行相位调制,并在CCD的探测面上形成具有强度起伏的光强分布,即散斑场。标定过程中,将第一成像面划分为100×100 个面元,第一成像面处的针孔光阑按照面元的划分顺序依次进行移动。为提高相位板的标定效率,针孔光阑在第一成像面上每移动3 个面元的距离,计算机则控制CCD 采集一次散斑场,并作为鬼成像系统中参考臂的赝热光场。其余面元对应的散斑场则由已知的散斑场通过双线性插值法计算得到。标定完成后,移除针孔光阑与电位移台便可直接对场景进行成像。实际成像中,在图6 所示的准直镜头的焦平面处放置靶标,用于模拟无穷远处的场景。鬼成像相机收集靶标的散斑场信息并送入上位机(Intel Core i7-11800H RAM 16GB),利用鬼成像算法进行图像重构。原始场景的图像尺寸为100×100,如图7所示。首先,按不同采样率对CCD 采集到的散斑场图像进行空间随机采样。例如,对于0.062 5 的空间采样率,需要随机选取散斑场图像中0.062 5×100×100=625 个像素点作为式(4)中的列向量Y。随后基于鬼成像原理,利用重构算法对散斑场进行反演,最终得到场景的高分辨率图像。
图7 目标图像及其散斑场Fig.7 Target image and its scattering field
最后,将PCGI-LRC 与GI-SBC,GI-TVC 两类成像算法进行对比,成像目标为刻有字母“SITP”的靶标。不同鬼成像算法对场景的成像效果以及客观评价指标分别如图8 和表1 所示。
表1 不同鬼成像算法的重建效果对比Tab.1 Comparison of reconstruction effects of different ghost imaging algorithms
图8 不同算法的成像效果对比Fig.8 Comparison of imaging effects of different algorithms
结合图8 的成像效果与表1 所示的数据可以看出,GI-SBC 类算法能够较好地恢复目标的细节信息,但重构噪声较大;GI-TVC 类算法虽然相比于GI-SBC 类算法拥有更低的重构噪声,但对于图像细节的重构能力不足;本文提出的算法能够较好地恢复出目标的细节,同时有效地抑制重构噪声。显然,本文提出的鬼成像算法在PSNR,SSIM 以及MSE 3 项指标上均优于另外两类成像算法。
为了在低采样率条件下减小图像重构噪声的影响,提高图像的重构精度,本文提出了一种被动式压缩鬼成像方案,该方法对最小二乘问题和非邻域相似块低秩近似问题进行联合迭代求解。在联合迭代过程中,首先采用共轭梯度法求解最小二乘问题来获得预重构图像,随后利用图像非局域自相似性的特性以滑动窗口的方式处理预重构图像,其中滑动窗口尺寸固定。将这些相似块的阵列堆叠成低秩矩阵,通过广义软阈值算法收缩衰减预重构噪声。仿真和实验结果均表明,被动式鬼成像体制下,本文算法在PSNR、SSIM、视觉观测和数值计算等方面均优于GI-SBC 以及GITVC 算法,未来有望应用于目标检测、遥感等领域。