近日,我国载人月球车设计进入新阶段。同时,国内外不断曝光一些新颖别致的载人月球车方案。那么,载人月球车需要应对月球环境的哪些挑战?未来借助新技术,它有可能怎样设计,以便完成复杂多样的任务?
月球车是能够在月球表面行驶并完成探测、考察、收集和分析样品等复杂任务的专用车辆,学名叫做“月面巡视器”。特别是载人月球车,能够大大拓展航天员在月球上的活动范围,减少体力消耗,还便于存放航天员采集的月球样本,哪怕貌似简陋,仍要克服诸多挑战。
第一,必须适应独特的重力环境。众所周知,月球表面重力只有地球的1/6,更大更重的载人月球车会遭遇更大幅度的“减重”,进而面临削弱抓地力的风险。如果车辆采用常见的橡胶轮胎,那么轮胎很可能出现压力下降、形状异常等情况,无法正常工作,显著影响行驶效率和安全性。
第二,路况复杂不容忽视。月球表面覆盖着厚厚的月壤,主要是由天体碎片经过长期磨碎、混合而成的。月球上没有大气层和水循环,所以没有风雨侵蚀、平整月球表面,导致月面崎岖不平,地形变化比地球表面更加无规律,加上月壤非常细小、锋利、黏稠,很可能刺穿、划伤、堵塞车轮等驱动机构。载人月球车必须克服重重路障,确保前进、后退、转弯、爬坡“样样在行”,选用的材料、结构和测试过程必须经得起剧烈“折腾”,还要考虑驾驶符合人机工效学原理。
第三,强辐射环境难以回避。地月空间、月球表面辐射的类型、能量、强度都与地球附近大不一样。比如,月球没有保护层来阻挡太阳辐射,嫦娥四号探测器曾发现,月背着陆区的粒子辐射剂量是地表的300 倍。所以,载人月球车的机械部件以及对辐射异常敏感的高集成度微电子元器件都必须采取严格的抗辐射、耐腐蚀和耐老化措施。与无人月球车相比,航天员是载人月球车防辐射的“薄弱环节”和照顾重点。
美国“ 阿波罗16 号”乘组驾驶载人月球车训练
第四,剧烈温差有待克服。缺乏空气和水,加上月壤热导率极低,导致月球表面温度变化剧烈,同一地点的昼夜温差超过300 摄氏度并不罕见。橡胶等材料很容易老化、变硬、开裂、脱落,因此基本上不会被载人月球车选用。在“阿波罗”任务中,载人月球车是“简易敞篷车架”,航天员为避免遭受极端温度和辐射伤害,大部分“登月时间”其实是躲在舱内的。新一代载人月球车选用材料必须具有很好的耐热性和耐寒性,不会因温度变化而失去弹性和强度,还要自备“空调”,随时持续调节温度,使航天员登月时间更加“名副其实”。
此外,载人月球车必须适应航天发射的特殊力学环境和空间环境的考验。例如,在火箭升空和月面着陆过程中,载人月球车都要克服冲击、振动、过载和噪声考验。
日本大型密闭式载人月球车想象图
在可预见的时期内,载人月球车将是航天员在月面开展科考和驻留活动的唯一交通工具。围绕着人的需求出发,载人月球车要满足航天员在月球上的“衣”“食”“住”“行”。
“衣”——月球车需要“铠甲”。航天员登陆月球后,连同载人月球车一起完全暴露在强烈宇宙射线下,保障健康不能完全指望航天服,而电子遥控系统很难保证万无一失,又对通信系统的多项指标提出了相当高的要求。另外,月面相对平整区域的月壤厚度可达5 ~ 6 米,载人月球车行驶时更易带起大量细微颗粒,覆盖仪器设备,影响工作效率与数据分析准确性,甚至威胁人员安全。因此,“铠甲”既要防护强度好,又要“无微不至”。
“食”——月球車离不开稳定、充沛的能量。当前,无人月球车多采用太阳能电池结合同位素热源的能源供给方案。载人月球车能耗更大,对供能持续性、稳定性的要求也更高。
每个月夜相当于地球上的14 天,这成为国外一些载人月球车和月面居住舱设计方案的供能持续时间指标。那么在近半个月的时间里,载人月球车无法指望太阳能供电,必须创新“开源节流”的技术设计模式。
“住”——航天员如果频繁进入太空舱内,躲避辐射和极端温度,势必影响工作效率,还会加速消耗载人月球车的能源。所以,载人月球车发展为“月球房车”,很可能是大势所趋。
这不仅对载人月球车的“铠甲”和能源提出了更高的要求,还使其温控系统面临挑战:必须灵敏地测量温度变化,迅速转移热量,保持内部温度均衡。显然,载人月球车不同部位的材料选择必须精心筹划。
“行”——载人月球车在月面行驶,不仅要靠特殊车轮克服恶劣地形。一方面,地球团队指令传输会有时延,载人月球车需要及时处理路况信息,更强调自主性,既要求驾驶员注意路况,又少不了人工智能支持。
另一方面,想在月面认路,载人月球车的探测设备功不可没,如果再得到空中遥感支持,必将事半功倍。
载人月球车想要在月面安全地开展活动,最基本的准备是“穿好衣”。
针对辐射威胁,除了采用传统的电磁防护材料外,有科研人员提出了新思路:在恰当时机巧妙部署一系列磁铁,在载人月球車周围产生稳定磁场,相当于为它“穿上隐形电磁防护铠甲”。这样不仅有望屏蔽和抵消电磁辐射的不良影响,还可以吸附月尘微粒,解决载人月球车的“难言之隐”。
寒冷月夜,太阳能电池暂停使用,怎么办?不少载人月球车方案选用同位素热源。这种“核电池”利用同位素衰变原理释放能量,有的型号重量仅有160 克,体积仅有18 立方毫米,如果换用提供同样功率的化学电池,则重量几乎与成人体重一样。显然,同位素热源促使供能装置小型化、轻量化,帮助载人月球车储备足够的“口粮”。
当然,如果对体积、重量的要求不那么严苛,又进一步解决了月球资源原位利用难题,燃料电池或许也有机会为载人月球车所用。
此外,高效热管、相变储能、可变发射率热控器件等先进热控技术也有望助力载人月球车保暖:白天,足够的热量被收集、储存在相变材料中;夜晚,通过相变将热量释放出来,经过高效流体热管环路,创造舒适环境。
采用“钢琴线”保持弹力的网眼式轮胎逐渐成为外星球漫游车的选择,载人月球车也不例外。针对月球的复杂地貌,独立驱动的多轮摇臂式行走系统颇有优势,每个车轮都可以自行调整高度,就像人体各个关节一样互助协作,使月球车必要时成为“爬行高手”。再考虑到月面重力和月壤的特殊性,载人月球车也许可以尝试火箭动力跳跃和类似雪橇的滑行前进,前提是充分掌握月面地形信息。
想要了解月面地形,载人月球车需要配备自主导航和智能驾驶系统,实施自主避障和路径规划,或者向驾驶员提供专家辅助模式。比如,360 度旋转导航相机可以提前观察地貌,系统自动编辑地图,规划行进路线。当前方遇到大于30 度的斜坡、高于25 厘米的石头、直径2 米以上的月面撞击坑时,载人月球车可以及时收到预警,紧急绕行,减少人工干预,帮助航天员集中精力,更加科学高效地完成任务。
我国清华大学牵头设计的“ 望舒之辇”载人月球车概念图
(摘编自《中国航天报·飞天科普周刊》)