李 雪,段晓勇,印 萍,高 飞,曹 珂,田 元,李梅娜,刘晓凤,吕胜华
象山湾大气中CH4和CO2时空分布及其同位素组成特征
李 雪1,2,3,段晓勇1,3*,印 萍1,3,高 飞1,3,曹 珂1,3,田 元1,3,李梅娜1,3,刘晓凤4,吕胜华1,3
(1.中国地质调查局青岛海洋地质研究所,山东 青岛 266237;2.中国地质大学(武汉),湖北 武汉 430074;3.中国地质调查局,舟山海洋地质灾害野外科学观测研究站,山东 青岛 266237;4.青岛国实科技集团有限公司,山东 青岛 266237)
海湾区域的温室气体排放对于全球变暖具有重要影响,因此本研究选取中国东部典型海湾-象山湾作为研究对象,通过对CH4和CO2的浓度与同位素的时空变化特征分析来揭示海岸带对全球气候变化的影响.象山湾海域低层大气中CH4浓度变化范围为 (1.72~2.17)×10-6,平均浓度为1.82×10-6;δ13CCH4的变化范围为-60.69‰~-41.10‰,平均值为-50.261‰;CO2浓度变化范围为(410.3~640.3)×10-6,平均浓度为433.294×10-6;δ13CCO2的变化范围为-16.79‰~-2.33‰,平均值为-6.83‰.CH4含量整体上呈湾内大于湾外、从陆地向海方向逐渐减少的趋势,表明近浅海区域是大气甲烷的源;而CO2含量变化湾内整体呈现偏低的趋势,证明是CO2的汇.CH4和CO2的浓度变化受人为因素影响较大,建筑用地和林地、耕地区域温室气体明显偏高;相反,光滩和水产养殖区域温室气体的浓度较低.同时CH4和CO2的浓度昼夜变化基本一致,均呈现夜间大于白天的趋势,且同位素组成与其浓度呈负相关.CH4和 CO2的浓度昼夜变化受温度、潮汐作用、大气源汇强度等影响显著.
象山湾;甲烷;二氧化碳;浓度;同位素
温室气体(GHG)的释放是导致全球变暖的重要原因之一,二氧化碳(CO2)和甲烷(CH4)已经被证实是最重要的两种GHG,而且CH4在百年尺度上的全球增温潜势是CO2的28倍[1],CO2的自然源主要包括海洋释放,人为源包括化石燃料的燃烧、工业生产以及土地利用等;汇主要包括光合作用、海洋吸收以及沉积的有机碳和无机碳[2].CH4的自然源主要包括湿地和海洋[3];人为源包括资源开采、能源利用以及废弃物处置等[4];汇主要是与OH自由基的反应.根据NOAA-ESRL全球监测实验室数据显示CO2对温室气体的贡献达到60%,每年仍在以1.9×10-6的速率增长;CH4对全球温室效应贡献20%~39%[5].
海洋及近岸区域每年向大气排放CH4约5~25Tg,占所有自然排放的1~13%[6].在人为活动和自然环境变化的双重影响下,沿海地区温室气体排放有显著增长趋势.受强烈排放源影响,大气中温室气体含量呈现显著的时空差异.例如长江口区域崇明东滩在昼夜尺度下CO2和 CH4在夜间排放量大于白天排放量,温室气体排放通量自岸向海有明显的降低趋势[7].因此,通过高时空分辨率大气中温室气体含量变化监测,能够有效揭示不同排放源对温室气体排放的贡献差异.目前国内外对大气温室气体的研究大多局限于大气本底站的长期定点监测[31-33],而利用移动平台对近地面大气CO2和CH4浓度的移动监测研究较少,仅有的研究也都主要集中于城市区域[8-9].
为充分揭示海岸带地区自然和人为要素影响下温室气体排放的时空差异.本文以浙江东部象山湾为主要研究区域,通过在陆地车载测量和海湾内船载走航以及定点监测的方式,对该区域的近地表/海表大气CO2和CH4含量和同位素时空变化进行高频率的实时监测分析,试图揭示不同区域温室气体含量和同位素组成与环境要素的相关性.以期为沿海地区GHG排放监测和管控提供参考.
象山港(29°24′-29°48′N、121°25′-122°03′E)位于浙江省东部沿海,是一个NE-SW走向的狭长型半封闭港湾.总面积为2696.7km2,其中滩涂面积占1.71km2,湾内水产养殖面积可达112km2,平均水深10~20m,最大水深可达55m[10],平均潮差2.7~3.3m,最大流速1.61m/s,年平均水温19.45℃,平均盐度23‰[11].沉积物主要为粉沙质粘土和粘土质粉沙. TOC、TN和C/N平均含量分别为0.86%、0.14%和6.07[12-14],活性磷酸盐平均浓度0.0227mg/L,无机氮平均浓度0.5mg/L[15].湾内人为活动影响明显,沉积物中有机质含量较高[16],具备较好的温室气体形成和排放条件.
图1 象山湾走航及定点监测路线
本研究基于Picarro G2201-i CO2/CH4含量和同位素组成分析仪对大气中CH4和CO2的浓度和碳同位素组成进行连续走航和定点监测.分析仪连接内径0.5cm的特氟龙管作为采气管,进气口安装过滤器以防颗粒物质进入,走航过程中迎风采集距离地面/海面2m处大气,并采用外置GPS模块同步记录位置信息;定点监测以同样的方式进行.为了查明研究区大气温室气体在空间上的分布和变化,走航测量和定点监测共8d,陆地上车载走航选取周内和周日每天09:00~17:00的数据对比分析不同时间段内人类活动对大气温室气体浓度的影响;定点监测选取24h数据对比和多天连续数据对比,分别分析3个不同监测点在同一时间段内气体浓度的昼夜变化情况以及每个监测点多天连续监测数据的整体变化趋势.走航路线及监测点位见图1.
设备稳定性每天使用标准气体样品进行校核,测试误差均小于5%.移动监测克服了定点监测数据空间局限性的缺点.并采用高频采样的方式对城市道路和沿海进行走航测量,以探究人类活动和不同的土地类型对空间尺度的影响.
土地利用类型分析采用监督分类的方法选取landst8的遥感影像(2020年12月,30m分辨率),选取样本时参考野外采样过程定点拍摄的37张照片,结合对应点的谷歌地球历史遥感影像,选取训练样本,再用ENVI软件选择合适的分类器(支持向量机)对美国NASA的陆地卫星Landsat3-5、Landsat7、Landsat8的影像数据进行遥感解译,并将已经分类的土地类型与现场照片进行比对,计算结果显示最大似然法kappa系数最高,精度达到87.52%,符合分类要求.
象山湾及周边区域CH4浓度变化范围为(1.72~2.17)×10-6,平均浓度为1.82×10-6;d13CCH4的变化范围为-60.69‰~-41.10‰,平均值为-50.261‰; CO2浓度变化范围为(410.3~640.3)×10-6,平均浓度为433.294×10-6;δ13CCO2的变化范围为-16.79‰~ -2.33‰,平均值为-6.83‰(图2).其中CH4浓度、δ13CCH4以及CO2浓度均低于全国典型的各低值区城市(广西2.04×10-6、吉林-50.28‰、内蒙古451.93×10-6),而δ13CCO2却高于典型高值区城市(黑龙江-9.64‰)[7,9,17-18].从整体上看,CH4含量湾内大于湾外,靠近岸边含量偏高,并向海方向逐渐减少;而CO2含量变化不大,仅在湾顶含量偏高.值得注意的是,在甲烷含量的两个高值区存在两个发电厂,排放的气体中碳含量和烷烃类衍生物不断增加的过程,可能也是导致甲烷含量不断升高的原因之一.而且据文献资料显示,我国煤炭消费中有一半以上是用来发电,燃煤发电行业年碳排放量约占全国总排放量的40%,因此燃煤发电行业是我国最主要的固定碳排放源[19].
结合土地利用类型来看,CH4含量的高值区土地类型主要为耕地和建筑用地.浙江耕地以水稻田为主,农田等淡水湿地是已知的最大温室气体自然排放源[20],大量有机质在细菌活动下产生CH4并排放到大气中[21-22].同时人类活动的增加会提高化石燃料的利用,能源相关行业及家庭使用中会导致大量甲烷释放到大气中,正与土地利用类型中的建筑用地相对应.相反,CH4含量的低值区土地类型以光滩和水产养殖为主,光滩无植被覆盖,新鲜有机质输入能力差,同时潮滩生物扰动强烈;而水产养殖会改变生境中的产甲烷古菌群落结构和多样性[23],降低沉积物中微生物合作程度,从而降低产CH4能力[24],导致该类型的土地释放的CH4含量偏低(图3).
d13CCH4的变化范围为-60.69‰~-41.10‰,出现了较大的空间差异,平均值为-50.261‰,低于大气甲烷碳同位素平均值(-49‰)[25].已有研究显示C3植物的d13CCH4值为-51.8‰~-68.4‰,平均值为-58.2‰,和湿地和稻田的值相当;C4植物d13CCH4值为-46.9‰~-53.1‰,平均值为-49.5‰[4].从监测数据d13CCH4的范围来看大致为自然源.其中高值区主要位于湾内的光滩和水域环境,在湾内最高值达到-41.1‰,指示滨海生态系统对低层大气中甲烷贡献较为明显[26-27].而低值区则多为城市道路,最低值达到-60.69‰,低于伦敦城市平均值(-45.7‰),几乎接近于垃圾填埋场的d13CCH4值(-58‰)(图2-甲烷同位素),人为排放源影响较明显.
CO2的高值区土地利用类型以建筑为主,说明人类活动增加了CO2的含量.海域表层海水富营养化程度呈现高值证实了水体富营养化的程度和初级生产力增加的同时会增加温室气体的排放[28];而低值区有少量水产养殖,以林地和耕地为主,耕地和林地的植被覆盖度较高,导致光合作用大于呼吸作用,从而降低CO2含量,而水产养殖虽然会在一定程度上增加CO2的含量[29-30],但是因区域较小,所以影响并不是很明显(图3).
图2 象山湾低层大气中甲烷和二氧化碳含量及同位素组成
红框表示高值区;黑框表示低值区
a1: CH4高值区;a2:CH4低值区;b1:δ13CCH4高值区;b2:δ13CCH4低值区;c1:CO2高值区;c2:CO2低值区;d1:δ13CCO2高值区;d2:δ13CCO2低值区
δ13CCO2的变化范围为-16.79‰~-2.33‰,平均值为-6.83‰,高于瓦里关大气本底站平均值(-8.43‰)[31].根据已有研究显示,固体化石燃料(煤)的δ13CCO2值为-23.6‰~-29‰,平均为-25.6‰;液体化石(汽油)的δ13CCO2值为-21.7‰~-24.5‰,平均为-23.4‰.C3植物的δ13CCO2值为-23‰~-30‰;C4植物的δ13CCO2值为-9‰~-16‰[32].从监测数据值范围对比来看可以认为是自然源的C4植物.分布的高值区主要位于建设用地较少的区域、且远离交通密集区域.而低值区主要位于城市间道路以及建筑用地,最低值(-16.79‰)低于大气本底值,说明受到了同位素值范围较低的人为源因素影响,而且进入城市同位素值逐渐降低(图2-二氧化碳同位素),δ13CCO2能够较好的指示不同区域人为活动排放对大气二氧化碳的影响.
根据监测数据显示甲烷平均浓度为1.819×10-6,二氧化碳平均浓度为433.294×10-6;均低于所测量的甲烷和二氧化碳浓度各值典型低值区城市(广西2.04×10-6、内蒙古451.93×10-6)[9].其中甲烷浓度在中国大气平均浓度(2018年(1.779~1.928)×10-6)范围内,低于中国大气本底站中的北京上甸子站(1.98× 10-6)、台湾鹿林站(1.846×10-6)、青海瓦里关站(1.873×10-6)以及全球本底站中的美国夏威夷莫纳罗亚站(1.825×10-6)浓度[33].根据d13CCH4和δ13CCO2的监测值范围可以将研究区分为自然源,虽然不是绝对的值,但是基本可以反应大致趋势.从整体上来看,从陆地向海洋方向CH4含量逐渐降低,表明近浅海区域是大气CH4的源;而CO2含量则变化不大,湾内整体呈现偏低的趋势,证明是CO2的汇.从空间分布来看甲烷和二氧化碳浓度受人类活动、耕地类型、水产养殖以及植被类型的影响较明显.
从定点观测数据显示,CH4和CO2含量均呈现夜间高于白天的趋势,三个观测点的浓度在同一时间内显示相同的规律(图4).CH4浓度从20:00~24:00逐渐升高,变化范围在(1.78~2.3)×10-6之间,并在22:00左右基本达到高值(图4a);与我国五个大气本底站的临安站、龙凤山站、上甸子站以及香格里拉站以及杭州近地面的浓度趋势一致,而与瓦里关站却相反[34-35].CO2浓度从17:00~24:00逐渐升高,变化范围在 (408~600)×10-6,在18:00、22:30和24:00均呈现高值(图4b);这与中国黄海和东海、闽江河口[36-37]、厦门近郊[38]、温带森林[39]、高寒湿地[40]、典型草原[41]、长江三角洲[18]等生态系统的浓度变化趋势比较一致.
CO2浓度变化显示高值范围出现在夜间,由于白天表层海水光照时间长,浮游植物光合作用强度大于生物呼吸及有机质氧化分解强度,导致海水中出现CO2的净消耗[42],海水pH值逐渐上升,因此白天CO2浓度偏低,晚间光合作用停止,但是呼吸作用和有机质降解作用仍在继续,产生的CO2逐渐累积并排放到大气中,从而导致CH4和 CO2含量在夜间高于白天(图4a、4b).而且在夜间温度降低,水体可溶性有机碳与植物生长速率都会发生改变,在影响浮游植物碳同位素组成的同时CO2的溶解度也会变大,这也是导致夜间大气中碳含量增加的原因之一.
同时风速和潮位也会影响大气中碳含量[43],风会通过切应力来增加水和大气的接触面积,进而促进温室气体排放,而且风会增加水体中氧气含量,从而促使CH4氧化.根据监测点当时的潮位变化显示其趋势与CO2和CH4的含量变化基本一致,大约19:00(水位在149~217m)涨潮前CH4排放波动较小,没有明显的排放峰值,之后涨落潮期间CH4排放随着水位的变化出现多个峰值,落潮后因整个波动过程增加了水中的溶解氧,释放甲烷的同时也会有部分CH4被氧化.同时风速会促使水流变快,使潮汐带来的水分降低水体的盐度,从而促进植物生长并吸收CO2,在中午达到吸收的峰值,随后排放CO2增多,基本在19:00之后转为碳源.
另外,大气CH4浓度的变化不仅与源、汇强度有关,水-气界面的气压差以及温度和湿度也是控制CO2、CH4传递方向的重要因素,气压越低空气中水蒸气含量越大,导致水蒸气比空气重.同时夏季白天温度较高,上升气流的存在会导致白天大气分压小于水中气体分压,导致CH4和 CO2向上扩散,而夜间下降气流导致大气分压大于水中气体分压,大量CH4和CO2聚集下来[44-45].而且监测点白天平均温度31.89℃,夜间平均温度26.6℃,在温度较低以及大气结构稳定的夜间CH4在垂向上很难扩散,同时也会抑制CH4和CO2与OH的光化学反应,从而导致大气中CH4浓度较高[46-47].通过对定点的连续监测对比发现,三个监测点CH4和 CO2浓度均在夜间温度低湿度高的环境下呈现高值,而且CH4和 CO2浓度的变化趋势基本一致,CH4浓度的峰值也通常是CO2浓度的峰值(图5).
3.1 从空间分布来看,象山湾海域CH4浓度变化范围在(1.72~2.17)×10-6之间,平均浓度为1.826×10-6; CO2浓度变化范围在(410.32~640.34)×10-6之间,平均浓度为423.932×10-6;整体上呈CH4含量湾内大于湾外,靠近岸边含量偏高,并向海方向逐渐减少,表明近浅海区域是大气甲烷的源;而CO2含量变化不大,仅在湾顶含量偏高,湾内整体呈现偏低的趋势,证明是CO2的汇.
3.2 从时间分布来看,根据定点观测数据显示CH4和CO2含量均呈现夜间高于白天的趋势,CH4变化范围为(1.78~2.3)×10-6,CO2变化范围为(408~600)× 10-6.碳同位素组成与CO2浓度呈负相关,这是源汇强度的变化以及下垫面高度和大气稳定度等气象因素的共同作用.
3.3 结合土地利用类型来看,CH4和CO2含量的高值区土地类型主要为耕地和建筑,CH4含量的低值区土地类型以光滩和水产养殖为主,CO2的低值区有少量水产养殖,以林地和耕地为主,说明人为因素以及植物光合作用对CH4和CO2的浓度的影响较大.由于白天光合作用大于呼吸作用,逐渐消耗CO2,风速会加速CH4的氧化;潮汐作用会增大水中的溶解氧,导致温室气体浓度夜间大于白天;而夜晚温度较低以及大气稳定性较好,会增加大气CH4和CO2浓度;湿度通过影响大气中OH自由基的浓度来控制气体的光化学反应;同时大气源、汇强度以及水-气界面的气压差也是控制CO2、CH4浓度变化的重要因素.
[1] IPCC.IPCC AR6 [R]. 2021(August).
[2] 高兴艾,朱凌云,闫世明,等.典型高碳排放城市临汾温室气体时空分布特征及影响因素[J]. 干旱气象, 2022,40(2):256-265. Gao Xingai, Zhu Lingyun, Yan Shiming, et al. Spatio-temporal distribution characteristics of greenhouse gases and their influence factors in Linfen with typical high-carbon emission [J]. Journal of Arid Meteorology, 2022,40(2):256-265.
[3] Delsontro T, Beaulieu J Downing J A. Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change. Limnology and Oceanography Letters, 2018,3(64-75).
[4] Keppler F, Hamilton J T G, Brabm, et al. 2006. Methane emissions from terrestrial plants under aerobic conditions [J]. Nature, 439:187- 191.
[5] Shen Yongping. Updating assessment results of global cryospheric change from spm of IPCC wgi fifth assessment report [J]. Journal of Glaciology and Geocryology, 2013,35(5):1065-1067.
[6] Weber T, Wiseman N A, Kock A. Global ocean methane emissions dominated by shallow coastal waters. [J]. Nat. Commun., 2019,10: 4584.
[7] 汪 青,刘 敏,侯立军,等.崇明东滩湿地CO2、CH4和N2O排放的时空差异[J]. 地理研究, 2010,29(5):935-946. Wang Qing, Liu Min, Hou Lijun, et al. Characteristics and influencing factors of CO2, CH4and N2O emissions from Chongming eastern tidal flat wetland [J]. Geographical Research, 2010,29(5): 935-946.
[8] 李燕丽,邢振雨,穆 超,等.移动监测法测量厦门春秋季近地面CO2的时空分布[J]. 环境科学, 2014,35(55):1671-1679. Li Yanli, Xing Zhenyu, Mu Chao, et al. Spatial and Temporal Variations of Near Surface Atmospheric CO2with Mobile Measurements in Fall and Spring in Xiamen, China [J]. Environmental Science, 2014,35(55):1671-1679.
[9] 杨舒然.中国区域尺度大气CO2与CH4及其碳同位素空间变化研究[D]. 昆明:云南大学, 2021. Yang Shuran. Spatial variations of atmospheric CO2and CH4concentrations and their carbon isotopes in China [D]. Kunming: Yunnan University, 2021.
[10] 陈立红,朱根海,丰卫华,等.象山港春季浮游植物与重金属分布特征及评价[C]//中国环境科学学会学术年会, 2014. Chen Lihong, Zhu Genhai, Feng Weihua. Distribution characteristics and evaluation of phytoplankton and heavy metals in Xiangshan Harbor in spring [C]//Annual Conference of China Environmental Science, 2014.
[11] 骆 鑫,曾江宁,徐晓群,等.象山港浮游动物的分布特征及其中长期变化[J]. 海洋通报, 2018,37(1):74-87. Luo Xin, Zeng Jiangning, Xu Xiaoqun, et al. Distribution of zooplankton in the Xiangshan Bay and its changes during longer period [J]. Marine Science Bulletin, 2018,37(1):74-87.
[12] 徐 皓,冯佰香,李加林,等.象山港潮滩沉积物有机质分布特征及物源影响分析[J]. 海洋与湖沼, 2021,52(1):97-105. Xu Hao, Feng BaiXiang, Li Jialin, et al. Source and distribution of organic matters in tidal flat of Xiangshan Bay. [J]. Oceanologia Et Limnologia Sinica, 2021,52(1):97-105.
[13] 冯辉强,周晓燕.象山港海域环境超标因子研究探讨[J]. 海洋开发与管理, 2008,(7):84-87. Feng Huiqiang, Zhou Xiaoyan. Research and discussion on environmental over standard factors in Xiangshan Port sea area [J]. Ocean Development and Management, 2008,(7):84-87.
[14] 张丽旭,赵 敏,蔡燕红.象山港海域N、P和COD(Mn)的变化趋势及其与富营养化的关系[J]. 海洋环境科学, 2011,30(1):81-85. Zhang Lixu, Zhao Min, Cai Yanhong. Variation trends of N, P and COD(Mn) in Xiangshan Harbor and the relationship between them with eutrophication [J]. Marine Environmental Science, 2011,30(1): 81-85.
[15] 黄秀清,齐 平,秦渭华,等.象山港海洋生态环境评价方法研究[J]. 海洋学报, 2015,37(8):63-75. Huang Xiuqing, Qi Ping, Qin Weihua,et al. Research on the evaluation method of marine ecological environment in Xiangshan Bay [J]. Haiyang Xuebao, 2015,37(8):63-75.
[16] 叶林安,费岳军,王 琼,等.象山港周边主要入海污染物特征研究[J]. 海洋通报, 2022,41(2):215-223. Ye Linan, Fei Yuejun, Wang Qiong, et al. Research on characteristics of main pollutants entering the sea around Xiangshan Bay [J]. Marine Science Bulletin, 2022,41(2):215-223.
[17] 谭红建,蔡榕硕,颜秀花.基于CMIP5预估21世纪中国近海海洋环境变化[J]. 应用海洋学学报, 2018,37(2):151-160. Tan Hongjian, Cai Rongshuo, Yan Xiuhua. Projecting changes of marine environment in coastal China Seas over 21st century based on CMIP5Models [J]. Journal of Applied Oceanography, 2018,37(2): 151-160.
[18] 李燕丽,穆 超,邓君俊.厦门秋季近郊近地面CO2浓度变化特征研究 [J]. 环境科学, 2013,34(5). Li Yanli, Mu Chao, Deng Junjun, et al. Near Surface Atmospheric CO2Variations in Autumn at Suburban Xiamen, China [J]. Environmental Science, 2013,34(5).
[19] Wang X, Du L. Carbon emission performance of China’s power industry: regional disparity and spatial analysis [J]. Journal of Industrial Ecology, 2016,21(5):21.
[20] 周旭东.城市淡水湿地二氧化碳和甲烷排放规律及影响因素探究[D]. 南京:南京信息工程大学, 2022. Zhou Xudong. Study on carbon dioxide and methane emission rules and influencing factors in urban freshwater wetlands [D]. Nanjing: Nanjing University of Information Science and Technology, 2022.
[21] Lay J-J, Miyahara T, Noike T. Methane release rate and methanogenic bacterial populations in lake sediments [J]. Water Research, 2014, 30(4):901-908.
[22] 朱 玫,田洪海,李金龙,等.大气甲烷的源和汇[J]. 环境保护科学, 1996,(2):5-9,26,78. Zhu Mei, Tian Honghai, Li Jinlong, et al. Sources and sinks of atmospheric methane [J]. Environmental protection science, 1996,(2): 5-9,26,78.
[23] Schrier-Uijl A P, Veraart A J, Leffelaar P A et, al. Release of CO2and CH4from lakes and drainage ditches in temperate wetlands [J]. Biogeochemistry, 2011,102(1):265–279.
[24] Yang Ping, Tang Kam W, Tong Chuan. Changes in sediment methanogenic archaea community structure and methane production potential following conversion of coastal marsh to aquaculture ponds [J]. Environmental Pollution, 2022,305:119276.
[25] Craig H, Chou C C, Welhan J A, et al. The isotopic composition of methane in Polar ice cores [J]. Science, 1988,242(4885):1535-1539.
[26] 杨 洋,董晓波,麦 榕,等.河北省中南部对流层CH4时空分布特征的飞机探测研究[J]. 中国环境科学, 2019,39(11):4604-4610. Yang Yang, Dong Xiaobo, Mai Rong, et al. Temporal and spatial distribution of tropospheric CH4based on aircraft observation in central and southern Hebei Province [J]. China Environmental Science, 2019,39(11):4604-4610.
[27] 李晨鸣.基于移动监测数据的空气质量道路环境影响因素分析[D]. 武汉:武汉大学, 2017. Li Chenming. Analysis of factors affecting environmental air quality around road based on mobile monitoring data [D]. Wuhan: Wuhan University, 2017.
[28] 何新星,王跃思,刘广仁,等.北京大气CH4、CO2、TOC日变化规律及垂直分布的自动连续观测[J]. 中国环境监测, 2005,21(3)62-66. He Xinxing, Wang Yuesi, Liu Renguang, et al. Auto measurement of the diurnal variation and uprightness distributing of atmospheric CH4, CO2, TOC in Beijing [J]. Environmental Monitoring in China, 2005, 21(3)62-66.
[29] Holgerson M A, Raymond P A. Large contribution to inland water CO2and CH4emissions from very small ponds [J]. Nature Geoscience, 2016,9(3),222–226.
[30] 廖红芳,郑忠明,REGAN Nicholaus,等.象山港大黄鱼Pseudosciaena crocea网箱养殖区沉积物-水界面营养盐通量研究[J]. 海洋学研究, 2016,34(1):84-92. Liao Hongfang, Zheng Zhongming, Regan Nicholaus, et al. Study on nutrient fluxes of sediment-water interface in cage culture zone of large yellow croaker Pseudosciaena crocea in Xiangshan Bay [J]. Journal of Marine Sciences, 2016,34(1):84-92.
[31] Fang S X, Zhou L X Tans P P, et al. In situ measurement of atmospheric CO2at the four WMO/GAW stations in China [J]. Atmospheric Chemistry and Physics, 2014,14(5):2541-2554.
[32] Dai S, Bi X, Chan L Y, et al. Chemical and stable carbon isotopic composition of PM2.5from on-road vehicle emissions in the PRD region and implications for vehicle emission control policy. Atmospheric Chemistry and Physics [J], 2015,15:3097-3108.
[33] 张世勍.基于地面监测和卫星遥感的中国大气甲烷浓度时空分布及其对人为排放的响应[D]. 上海:华东师范大学, 2022. Zhang Shiqing. A study of atmospheric CH4concentration spatio- temporal variation and its response to anthropogenic emissions in China based on the ground-based and satellite observations [D]. Shanghai: East China Normal University, 2022.
[34] 杨 倩,官 莉,陶 法,等.中国5个大气本底站观测的CH4浓度变化规律[J]. 环境科学与技术, 2018,41(6):1-7. Yang Qian, Guan Li, Tao Fa,et al. Changes of CH4concentrations obtained by ground-based observations at five atmospheric background stations in China [J]. Environmental Science & Technology, 2018,41(6):1-7.
[35] 李若男,王 君,刘远泽,等.基于车载CO2/CH4移动观测的城市站点空间代表性和热点识别研究[J/OL]. 中国环境科学:1-15[2023- 02-17]. Li Ruonan, Wang Jun, Liu Yuanze, et al. Spatial representativeness of urban observation sites and hotspot identification based on CO2/CH4vehicle-carried mobile observations [J]. China Environmental Science, 2023,43(5):2106-2118.
[36] 程寅瑞.闽江河口短叶茳芏与互花米草潮汐沼泽甲烷排放日变化的模拟研究[D]. 福州:福建师范大学, 2019. Cheng Yanrui. Modelling the diurnal variations of methane emissions from the Cyperus malaccensis and Spartina alterniflora tidal marshes in the Minjiang River Estuary [D]. Fujian: Fujian Normal University, 2019.
[37] 张林海,等.河口湿地近地面大气CO2浓度日变化和季节变化[J]. 2014,35(3). Zhang Linhai, Tong Chuan, Zeng Congsheng. Diurnal and Seasonal Variations of Surface Atmospheric CO2Concentration in the River Estuarine Marsh [J]. Environmental Science, 2014,35(3).
[38] 王英舜,史激光.典型草原区生长季大气CO2浓度特征分析 [J]. 中国农学通报, 2010,26(13):363-365. Wang Yingshun, Shi Jiguang. The Character of Carbon Dioxide Concentration in Typical Steppe Region of the Growing Season [J]. Chinese Agricultural Science Bulletin, 2010,26(13):363-365.
[39] 李英年,徐世晓,赵 亮,等.青海海北高寒湿地近地层大气CO2浓度的变化特征 [J]. 干旱区资源与环境, 2007,21(6):108-113. Li Yingnian X U, Shixiao, ZHAO Liang, et al. Changes of Surface Atmospheric CO2Concentration in Alpine Swamp of Northern Qinghai [J]. Journal of Arid Land Resources and Environment, 2007,21(6):108-113.
[40] 焦 振,王传宽,王兴昌.温带落叶阔叶林冠层CO2浓度的时空变异 [J]. 植物生态学报, 2011,35(5):512-522. Jiao Zhen, Wang Chuankuan, Wang Xingchang. Spatio-temporal variations of CO2concentration within the canopy in a temperate deciduous forest, Northeast China [J]. Chinese Journal of Plant Ecology, 2011,35(5):512-522.
[41] 浦静姣,徐宏辉,顾骏强,等.长江三角洲背景地区CO2浓度变化特征研究 [J]. 中国环境科学, 2012,32(6):973-979. Pu Jingjiao, Xu Honghui, Gu Junqiang,et al. Study on the concentration variation of CO2in the background area of Yangtze River Delta. [J]. China Environmental Science, 2012,32(6):973-979.
[42] West W E, Coloso J J, Jones S E. Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment [J]. Freshwater Biology, 2012, 57(5):949-955.
[43] Gatland J R, Santos I R, Maher D T, et al. Carbon dioxide and methane emissions from an artificially drained coastal wetland during a flood: Implications for wetland global warming potential [J]. Journal of Geophysical Research Biogeosciences, 2015,119(8):1698-1716.
[44] 欧向军,薛丽芳.瓦里关大气CH4浓度变化及其潜在源区分析[J]. 科技导报, 2000,18(8):27-30. Zhang Fang, Zhou Lingxi, Xu Lin. Temporal variation of atmospheric CH4and the potential source regions at Waliguan, China. Science China: Earth Sciences, 2013,56:727–736.
[45] 张 芳.大气CO2、CH4和CO浓度资料再分析及源汇研究[D]. 北京:中国气象科学研究院, 2011. Zhang Fang. Re-ananlysis and evaluation of atmospheric carbon dioxide, methane and carbon monoxide at Mount Waliguan, China [D]. Beijing: school of the Chinese academy of Science, 2011.
[46] Zhong Yong, Jin Jun Li, Yan Peng, et al. Long-term variations of major atmospheric com positions observed at the background stations in three key areas of China [J]. Advances in Climate Change Research, 2020,11:370-380.
[47] 赵竹君,陆忠奇,何 清,等.阿克达拉大气本底站甲烷浓度特征及影响因素[J]. 中国环境科学, 2022,42(2):519-527. Zhao Zujun, Lu Zhongqi, He Qing, et al. Study on the concentration variation and impact factors of CH4in Akedala atmospheric background station. [J]. China Environmental Science, 2022,42(2): 519-527.
Spatial and temporal variation and isotopic composition of CH4and CO2in Xiangshan Bay.
LI Xue1,2,3, DUAN Xiao-yong1,3*, YIN Ping1,3, GAO Fei1,3, CAO Ke1,3, TIAN Yuan1,3, LI Mei-na1,3, LIU Xiao-feng4, Lü Sheng-hua1,3
(1.Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266237, China;2.China University of Geosciences(Wuhan),Wuhan 430074,China;3.Zhoushan Marine Geological Disaster Field Scientific Observation and Research Station, China Geological Survey,Qingdao 266237, China;4.Qingdao Guoshi Technology Group Limited Company, Qingdao 266237, China)., 2023,43(10):5062~5069
Understanding the greenhouse gas emissions in the global Gulf region is of great significance for coping with global warming. Therefore, the Xiangshan Bay, a typical gulf, was selected to reveal the impact of coastal zone on global climate change, through analyzing the concentration changes of CH4and CO2and their relationship with meteorological elements in the bay. The data showed that the CH4concentrations in Xiangshan Bay area ranged from 1.72×10-6to 2.17×10-6, with an average concentration of 1.82×10-6. The δ13CCH4valuesrange from -60.69‰ to -41.10‰, with an average value of -50.261‰. The concentrations of CO2range from 410.3×10-6to 640.883×10-6, with an average concentration of 433.294×10-6. The δ13CCO2values range from -16.79‰ to -2.33‰, with an average value of -6.83‰. On the whole, the content of CH4in the bay was greater than that outside the bay, and gradually decreased from land to sea, indicating that the near shallow sea area was the source of atmospheric methane. The overall trend of CO2content variation in the bay was low, which indicates that it is the sink of CO2. Combined with land use types, the changes of CH4and CO2concentrations were greatly affected by anthropic factors, and greenhouse gases were significantly higher in building land, forest land and cultivated land. In contrast, the concentrations of greenhouse gases were lower in the plain and aquaculture areas. At the same time, the diurnal variation of CH4and CO2concentrations was basically the same, showing a tendency of greater during daytime than that of at night, and the isotopic composition was negatively correlated with their concentrations. In terms of time distribution, the concentration of CH4and CO2is significantly affected by temperature, humidity, wind speed, tidal action, the strength of large air source and sink, and the pressure difference at the water-air interface.
Xiangshan Bay;methane;carbon dioxide;concentration;isotope
X51
A
1000-6923(2023)10-5062-08
2023-03-07
国家重点科技发展计划(2022YFE0209300);国家自然科学基金资助项目(42176091);国家地质调查项目(DD20221775)
* 责任作者, 副研究员, dxiaoyong@mail.cgs.gov.cn
李 雪(1996-),黑龙江牡丹江人,中国地质大学(武汉)博士研究生,主要研究方向海洋地质学.342099072@qq.com.
李 雪,段晓勇,印 萍,等.象山湾大气中CH4和CO2时空分布及其同位素组成特征 [J]. 中国环境科学, 2023,43(10):5062-5069.
Li X, Duan X Y, Yin P, et al. Spatial and temporal variation and isotopic composition of CH4and CO2in Xiangshan Bay [J]. China Environmental Science, 2023,43(10):5062-5069.