蔺江韵,尹本酥,王星舒,刘晨瑞,孙庆,解星星,程玲玲,孙理维,石美,王朝辉,2
长期施氮条件下小麦铁锰累积及其与土壤养分的关系
蔺江韵1,尹本酥1,王星舒1,刘晨瑞1,孙庆1,解星星1,程玲玲1,孙理维1,石美1,王朝辉1,2
1西北农林科技大学资源环境学院/农业农村部西北植物营养与农业环境重点实验室,陕西杨凌 712100;2西北农林科技大学/旱区作物逆境生物学国家重点实验室,陕西杨凌 712100
【目的】研究长期施用氮肥条件下小麦铁锰吸收累积规律及其与土壤养分之间的关系,进一步探讨基于产量及小麦铁锰营养的氮肥调控策略,为合理优化氮肥施用和改善小麦营养品质提供科学依据。【方法】基于旱地冬小麦的氮肥长期定位试验,设置5个施氮水平0、80、160、240、320 kg·hm-2,研究不同氮水平条件下小麦籽粒铁锰含量及其与产量、铁锰吸收分配规律、土壤养分及各形态铁锰的关系。【结果】施氮显著提高了冬小麦产量、地上部铁含量、籽粒铁含量,降低了地上部和籽粒的锰含量。与对照相比,氮肥供应超过160 kg·hm-2时,小麦产量及籽粒铁含量不再继续增加,分别保持在5 857—6 598 kg·hm-2和40.2—42.2 mg·kg-1,而籽粒锰含量保持较低水平,为30.4—35.3 mg·kg-1。氮肥施用显著降低了土壤pH,提高了土壤中铁、锰元素的松结有机态及铁元素的锰氧化物结合态比例,增加了土壤中铁、锰的生物有效性。相关分析结果表明,小麦籽粒铁含量与产量、生物量、收获指数、穗数、穗粒数、铁收获指数显著正相关,与籽粒锰含量显著负相关;与土壤锰氧化物结合态铁显著正相关;与残渣态铁显著负相关。小麦籽粒锰含量与产量、生物量、收获指数、穗数、穗粒数、籽粒吸铁量、铁收获指数显著负相关,与地上部吸锰量显著正相关;与土壤各种形态锰不相关。【结论】西北旱区石灰性土壤中长期施氮可提高土壤铁的有效性、促进小麦对铁的吸收及铁向籽粒的分配,进而提高籽粒铁含量;施氮虽然提高了土壤锰的有效性,但显著抑制了小麦对锰的吸收,最终导致小麦籽粒锰含量降低。此外,当供磷水平一致时,土壤长期缺乏氮素供应可能导致小麦籽粒铁含量较低,而锰含量过高。综合考虑产量、籽粒铁锰元素营养品质及环境经济效益,西北旱区石灰性土壤小麦氮肥施用量建议控制在160 kg·hm-2,过量施用氮肥无助于继续提高产量及品质。
氮肥;冬小麦;铁;锰;西北旱地;石灰性土壤
【研究意义】近年来,微量元素缺乏引起的“隐性饥饿”问题已引起全球的广泛关注[1]。其中,铁元素作为人体血红蛋白的主要组成成分,缺铁容易引发人体贫血甚至导致血液运氧能力丧失[2]。据报道,全球超过1/3的儿童死亡与缺铁有关[3],大约2亿人的身体健康受到缺铁威胁[4]。锰元素与铁元素具有相似物理化学特性,虽然植物对其需求量相对较少[5],但人体却有时面临锰摄入量过多的风险,如神经系统毒性、儿童注意力以及智力下降等[6]。小麦作为人类主要粮食作物之一[7],调控其籽粒中的铁锰含量对于通过膳食改善人体健康具有重要意义。【前人研究进展】作物微量养分含量高低受制于土壤营养元素有效性[8]。根据TESSIER[9]顺序浸提法,土壤中的微量元素可以人为分为交换态(包括水溶态)、碳酸钙盐结合态、锰氧化物结合态、有机结合态、残渣态5种。其中交换态、有机结合态是土壤有效铁、有效锰的主要和直接来源[10],可被植物吸收利用。西北旱区作为我国小麦生产的重要产区,对农业健康绿色发展具有重要作用。然而,该区土壤由于较高的pH、CaCO3含量[11],微量元素养分有效性低、供应能力差,阻碍作物生长发育[12]。氮肥作为农业生产必不可少的化肥品种,对于粮食产量、籽粒微量元素含量及土壤中养分供应能力具有重要影响,特别是对于旱区禾本科粮食作物,如小麦[13]、玉米[14]等贡献较大。施用尿素能够提高小麦产量并改善籽粒铁含量[15];土壤施氮量对籽粒锰含量的影响存在争议,当施氮量为200 kg N·hm-2时,小麦籽粒中锰含量可提高12.7%[16],但也有学者提出施氮对小麦籽粒锰含量无显著影响[17]。氮肥对小麦籽粒微量元素含量影响的主要机制是影响土壤中养分的有效性、作物对养分的吸收及转移。研究表明,增施氮肥能够活化土壤锌,促进小麦根系锌吸收,锌从根系向地上部转运,地上部锌含量增加[18];关于施氮对不同品种小麦铁吸收[19]、铜吸收[20]也表现出类似结果。可见,氮肥对于作物微量元素品质有着重要影响。小麦籽粒中单一微量元素的含量除受肥料施用的影响外,还受其他微量元素吸收累积的影响[21],如施用钾肥促进小麦对钾元素吸收的同时其籽粒中锌含量也增加[22]。另外,通过对我国不同地点小麦锌铁营养关系研究发现,两营养元素在小麦体内呈现相似的吸收累积规律[23]。当小麦吸收过多磷元素时,小麦籽粒中锰含量增加[24],锌则表现出相反趋势[25]。【本研究切入点】现有关于氮素对小麦籽粒微量元素含量的研究,多集中在锌[26]、硒[27]、铁[28]等,而对锰元素的关注较少;目前的研究较多关注作物本身对微量元素的累积,特别是单一元素的含量及分配[29],而从土壤因子、有效养分的生物有效性等方面研究铁、锰两种元素的相互关系还比较薄弱;另外,对中性及酸性土壤的研究较多[10, 30],而对于长期施肥的碱性石灰性土壤的研究较少。【拟解决的关键问题】本研究基于西北旱区典型石灰性土壤上的小麦长期定位试验,通过分析不同氮水平条件下小麦籽粒铁锰含量及其与产量、小麦铁锰吸收分配规律、土壤养分及各形态铁锰的关系,明晰长期施用氮肥对旱地冬小麦籽粒铁、锰含量的影响及机制,以期为合理优化施用氮肥、调控小麦微量元素营养提供理论依据。
试验于2004年10月开始,设置在西北农林科技大学农作一站(34°17′59″N,108°4′12″E),地处渭河三级阶地,试验区地势平坦,海拔525 m,年平均降水量约562 mm,平均气温12.9 ℃,潜在蒸发量1 400 mm,属暖温带季风气候。该站点属于旱作雨养农业区,农作物生长依赖于自然降水,无灌溉。供试作物为当地主栽冬小麦品种小偃22,供试土壤为石灰性土垫旱耕人为土。试验始于2004年,最初0—20 cm土层的基本性质如表1所示。
表1 长期氮用量试验2004年0—20 cm土层基本理化性状
选取施氮0、80、160、240、320 kg N·hm-2共5个处理(分别用N0、N80、N160、N240、N320表示),均配施磷100 kgP2O5·hm-2,完全随机设计,重复4次。以尿素(N含量 46%)为氮源,重过磷酸钙(P2O5含量 46%)为磷源,无其他肥料施入,所有肥料均于小麦播前一次性撒施、旋耕与耕层土壤混匀。耕作制度为冬小麦-夏休闲,小麦生育期内无灌溉,田间管理与当地农户一致。于2019、2020年10进行小麦播种,播量分别为135、125 kg·hm-2,行距15 cm,播深5 cm。2020、2021年6月初进行小麦收获期取样。
1.3.1 植株样品采集 小麦成熟时,在每个小区向北1/2区域内,均匀选取4个1 m2样方,留存地上部,样品自然风干,机械脱粒,用于小麦产量及生物量测定,且均以干重表示;每个小区向南1/2区域内,随机选取100穗,用于化学分析。
1.3.2 土壤样品采集 小麦收获后,采用五点取样法采集耕层土壤样品,样品剔除根系等杂物后混匀取500 g,作为一个分析样品,多余土壤回填各取样点,并压实。采回的新鲜土样捏碎、混匀,自然风干后研磨,过1 mm尼龙筛。
1.3.3 样品测定 烘干的植物样品用球磨仪(RetschMM400,德国)粉碎,浓HNO3-H2O2微波消解,电感耦合等离子质谱仪(ICP-MS,美国)测定铁、锰含量。过筛后的土壤样品pH 用pH 计测定(水土比为2.5﹕1);用1 mol·L-1KCl溶液浸提土壤硝、铵态氮;用DTPA-CaCl2-TEA 溶液浸提,土水比1﹕2,原子吸收分光光度计测定浸提液中铁、锰含量[31];用魏孝荣等[32]的方法测定土壤铁、锰形态,包括交换态(Ex-)、松结有机态(WbO-)、碳酸钙盐结合态(Carb-)、锰氧化物结合态(OxMn-)、紧结有机态(SbO-)及残渣态(Res-)共6种,其中将有机结合态营养元素按有效性强弱细分为松结、紧结有机态两种。
小麦各器官养分吸收量(g·hm-2)=各器官养分含量(mg·kg-1)×生物量(kg·hm-2)/1000[33];
养分收获指数(%)=籽粒养分吸收量(g·hm-2)/地上部养分吸收量(g·hm-2)×100;
地上部养分吸收量(g·hm-2)=[籽粒养分含量(mg·kg-1)×籽粒产量(kg·hm-2)+茎叶养分含量(mg·kg-1)×茎叶产量(kg·hm-2)+颖壳养分含量(mg·kg-1)×颖壳产量(kg·hm-2)]/1000。
数据用Excel 2019计算,SPSS 25.0进行方差分析。多重比较采用LSD最小显著差异法,差异显著性水平为5%(<0.05)。用Origin 2021绘图。
与不施氮肥的对照(N0)相比,旱地石灰性土壤长期施氮显著提高了小麦产量、籽粒铁含量,而显著降低了籽粒锰含量(图1)。N160处理小麦产量达到最大值,为6 598 kg·hm-2,与对照相比增加了98%,随着施氮量的进一步增加,N240、N320与N160处理的小麦产量无显著差异。不同氮水平处理下小麦籽粒铁锰的含量分析表明(图1),与N0处理相比,随着氮水平的提高,小麦籽粒中铁含量分别增加了11.7%、22.6%、28.8%、27.2%,且在N240处理下达到最高值42.2 mg·kg-1。与铁元素不同,施氮显著降低了小麦籽粒锰含量,且当施氮量小于160 kg N·hm-2时,小麦籽粒锰含量随施氮量的增加而显著降低,高氮处理(N160、N240、N320)间无显著差异。
N0:不施氮Without N application;N80:80 kg N·hm-2;N160:160 kg N·hm-2;N240:240 kg N·hm-2;N320:320 kg N·hm-2。下同 The same as below
在旱地石灰性土壤上,长期施氮显著提高了小麦产量、养分铁收获指数。在茎叶中养分铁、养分锰含量随施氮量降低,籽粒中铁、锰含量成不同的增降趋势(表2)。在产量构成因子中,各处理的千粒重无显著差异,但施氮肥显著提高了籽粒的公顷穗数及穗粒数,说明氮肥主要通过影响公顷穗数和穗粒数提高产量。综上所述,施氮在促进小麦增产的同时,会进一步影响其对于微量元素养分铁和锰的吸收。
小麦茎叶是承载养分向籽粒运输的重要部位。分析表明,施加氮肥显著降低了小麦茎叶中铁、锰的含量(表2);整体来说,小麦茎叶锰含量介于32.1— 56.5 mg·kg-1,与籽粒中锰含量(30.4—57.6 mg·kg-1)接近,而铁在茎叶中的含量(248.1—334.5 mg·kg-1)远超于籽粒(32.8—42.2 mg·kg-1)。施加氮肥处理的养分铁收获指数显著高于不施氮的对照,但不同施氮量之间均无显著差异;而施氮处理显著提高了养分锰收获指数(图2)。
相关分析表明(图3),长期施氮条件下,小麦籽粒铁含量与产量、生物量、收获指数成正相关关系,相关系数分别为0.77、0.69、0.67,与产量构成因子(公顷穗数、穗粒数)成正相关关系,相关系数分别为0.69、0.72,与铁收获指数成正相关关系,相关系数分别为0.87、0.77;小麦籽粒锰含量与产量、生物量、收获指数成负相关关系,相关系数分别为-0.63、-0.55、-0.51,与产量构成因子(穗粒数、公顷穗数)成负相关关系,相关系数分别为-0.73、-0.47,与地上部锰吸收成正相关关系,相关系数分别为0.55、0.65;籽粒铁含量与籽粒锰含量成显著负相关关系,相关系数为-0.77。
长期施氮能够降低土壤pH并提高土壤中有效态铁锰(DTPA-Fe、DTPA-Mn)含量(图4)。与不施氮相比,氮肥施用量大于160 kg N·hm-2时,土壤pH显著降低。施氮量为80、320 kg N·hm-2时,土壤有效态铁(DTPA-Fe)含量均显著提高;当施氮量为320 kg·hm-2时,土壤中DTPA-Fe显著增加了15.4%,含量为5.0 mg·kg-1。当施氮量≤160 kg·hm-2时,各处理土壤中DTPA-Mn无显著差异;与不施氮相比,当施氮量为320 kg·hm-2时,DTPA-Mn显著增加了20.5%,为8.3 mg·kg-1。
表2 施氮对小麦铁锰含量、产量和产量构成的影响
数据后不同小写字母表示处理间差异显著<0.05,=4。下同
Values followed by diverse lowercase letters indicate significant difference among diverse N treatments (<0.05),=4. GrFeC, GrMnC: grain Fe and Mn concentration; ShFeC, ShMnC: shoot Fe and Mn concentration. The same as below
土壤中铁、锰形态分级中,交换态(Ex-)、碳酸钙盐结合态(Carb-)、松结有机态(WbO-)属于速效态养分;锰氧化物结合态(OxMn-)及紧结有机态(SbO-)为植物难利用形态,而土壤中最多的残渣态(Res-)为无效态。土壤中铁形态主要以松结有机态(WbO-)、残渣态(Res-)为主,土壤锰的主要存在形态为碳酸钙盐结合态(Carb-)、锰氧化物结合态(OxMn-)、紧结有机态(SbO-)及残渣态(Res-);而植物较易吸收利用的交换态(Ex-)均以较少比例存在(图5)。难利用的残渣态铁(Res-Fe)含量为31—35 g·kg-1,多于土壤中残渣态锰(Res-Mn)高达100倍。其次,与对照相比,施氮处理土壤中铁元素的松结有机态(WbO-)、锰氧化物结合态(OxMn-)含量显著增加,而紧结有机态铁(SbO-Fe)含量略有降低;与铁元素略有不同,锰元素的松结有机态(WbO-Mn)含量显著增加,紧结有机态(SbO-Mn)及锰氧化物结合态含量(OxMn- Mn)均略有降低。施氮处理促进了土壤中铁锰的生物有效性由低向高的转变。
相关分析结果表明(图6),小麦籽粒铁含量与残渣态铁(Res-Fe)显著负相关,与锰氧化物结合态铁(OxMn-Fe)正相关,相关系数分别为:-0.56、0.53。土壤有效态铁(DTPA-Fe)与硝态氮(NO3--N)、锰氧化物结合态铁(OxMn-Fe)正相关,相关系数分别为:0.45、0.46;碳酸钙盐结合态铁(Carb-Fe)与锰氧化物结合态(OxMn-Fe)呈正相关关系,相关系数为0.53。小麦籽粒锰含量与各种形态锰并无显著相关关系(图6-b),而土壤有效态锰(DTPA-Mn)和松结有机态锰(WbO-Mn)显著正相关,相关系数为0.77。在各土壤锰形态中,残渣态锰(Res-Mn)与氧化物结合态锰(OxMn-Mn)成负相关,相关系数为-0.47;碳酸钙盐结合态锰(Carb-Mn)与锰氧化物结合态(OxMn- Mn),相关系数为-0.65。pH与硝态氮(NO3--N)为负相关,相关系数为-0.47。
图2 氮肥施用对小麦地上部铁、锰吸收量及养分铁、锰收获指数的影响
图中相关分析使用数据为原始数据。红色代表正相关,蓝色代表负相关,其中颜色越深、圆形越大代表相关性系数越大;*:<0.05,**:<0.01,***:<0.001
The data used for correlation analysis and linear regression analysis in the figure are original data. Red represents positive correlation, while blue represents negative correlation. The darker the color and the larger the circle, the larger the correlation coefficient. *:<0.05 , **:<0.01, ***:<0.001
GrY: Yield, Bm: Biomass, HI: Harvest index, SpN: Number of panicles (×104), GrN: Grain number per panicle, TGW: 1000-grain weight, ShFeU, ShMnU: Shoot Fe and Mn uptake, GrFeU, GrMnU: Grain Fe and Mn uptake, FeHI, MnHI: Fe and Mn harvest index, GrFeC, GrMnC: Grain Fe and Mn concentration
图3 小麦籽粒铁锰含量与产量及其构成要素相关性分析
Fig. 3 Correlation analysis of wheat grain Fe and Mn concentrations with yield and its components
图4 施用氮肥对土壤pH,土壤有效态铁、锰含量的影响
Ex-:交换态;WbO-:松结有机态;Carb-:碳酸钙盐结合态;OxMn-:锰氧化物结合态;SbO-:紧结有机态;Res-:残渣态;Res-Fe,Res-Mn图中Ex、WbO、Carb、OxMn、SbO形态下Fe、Mn的含量单位为mg·kg-1;Res-Fe含量单位为×103 mg·kg-1、Res-Mn含量单位为×10mg·kg-1
本研究表明,长期施氮促进了土壤铁、锰元素从紧结有机态向松结有机态的转化,提高了生物有效性,土壤中DTPA-Fe、DTPA-Mn分别平均增加了11%、15%(图4)。土壤中铁锰形态复杂,形态间的转化受多种因素影响。本研究及课题组前期工作表明,长期施用氮肥显著降低了土壤pH[34]。pH作为影响土壤养分有效性的关键因子[35],降低pH可提高土壤中微量元素有效性[36]。相关分析结果表明,土壤中NO3--N与pH显著负相关,与土壤DTPA-Fe显著正相关,与DTPA-Mn的相关关系并不显著(图6)。长期施用尿素会导致土壤pH降低,其可能机理是由于发生硝化作用,植物根系产生大量H+,导致土壤pH降低[37]。pH下降0.1个单位所引起的土壤酸化,会进一步影响土壤中铁锰元素的溶解性,活化土壤中氧化铁。与此同时,土壤中难溶性锰向易溶态转化,增加土壤中Mn2+,从而提高了土壤铁锰元素有效性[30]。
图中相关性分析使用数据为原始数据。红色代表正相关,蓝色代表负相关,其中颜色越深、椭圆形越窄代表相关性系数越大;*:P<0.05,**:P<0.01,***:P<0.001
施氮显著提高了小麦产量、小麦籽粒铁含量(表2,图1)。进一步分析表明,小麦籽粒铁含量并未显示出产量稀释效应,且与产量、穗数、穗粒数、籽粒吸铁量显著正相关(图1,3)。说明,长期施用氮肥可以提高产量的同时,还能提高土壤有效态铁的含量(图4),进而显著促进小麦对铁的吸收。其主要机制可能是,施氮降低根际和质外体pH,同时提高位于植物根系细胞壁的具有亚铁底物亲和能力的亚铁氧化酶LPR2基因的表达,进而使铁在韧皮部的移动性增强[38],促进根系对土壤中有效铁的吸收[39]。已有研究结果表明,当氮肥用量介于0—360 kg·hm-2时,氮肥能够有效促进小麦对土壤中铁元素的吸收[40],而其主要机理是通过促进植物根系释放麦根酸,进一步增加作物根系对铁的吸收[41]。
小麦籽粒铁含量与铁收获指数也呈现出显著的正相关关系(图3),氮肥施用除了可以促进小麦对铁的吸收外,还能显著提高铁收获指数,说明氮肥施加可以有效促进铁从茎叶向籽粒的转移和分配。其原因可能是施氮提高了小麦灌浆速率,进而促进了衰老器官中的营养物质不断向籽粒中累积[42-43],尤其在微量元素缺乏地区,如西北旱区。综上,氮肥施加能够提高土壤铁的生物有效性、促进小麦对铁的吸收及铁向籽粒的分配,最终提高小麦籽粒铁的含量。
研究发现,与铁不同,施氮虽然提高了土壤有效锰含量(图4)、小麦产量(图1),但显著降低了小麦茎叶锰含量、籽粒锰含量(表2)。小麦籽粒中的微量元素含量主要受到土壤养分的供应能力(即生物有效性)、作物对养分的吸收能力、养分向籽粒的转移等因素共同决定。本研究中,施氮条件下土壤锰的供应能力、锰元素向小麦籽粒的转移分配能力均显著提高,但小麦籽粒锰含量仍然显著降低,说明其主要是由于小麦锰吸收能力的下降导致的。进一步分析表明,小麦籽粒锰含量与籽粒吸铁量、铁收获指数显著负相关,与地上部吸锰量显著正相关(图3),与各形态锰不相关(图6-b)。说明施氮导致锰吸收能力的降低,可能与小麦对铁的吸收有关。已有研究表明,在作物吸收过程中铁锰存在拮抗关系[44]。铁、锰在化学性质上相似,在作物体内有共同的转运蛋白[45],如天然抗性相关巨噬蛋白(NRAMP)、液泡转运体(VIT)、金属耐受蛋白(MTP)、锌铁调节转运蛋白(ZIP)、铁转运蛋白(IRT)等家族[46]。因此,当土壤中铁锰有效性均提高的前提下,施氮肥提高了作物根系对铁的吸收,可能在一定程度上抑制了其对锰的吸收,最终导致籽粒锰含量显著降低,铁锰含量比提高。
长期以来,实现农作物优产优质生产一直是国内外科研工作者致力追求的目标,而微量营养元素在提高作物生产以及改善其品质方面具有重要作用,尤其是元素铁、锰[47]。因此,在保证作物产量的同时,达到改善其微量营养元素品质具有重要意义。在我国,有学者提出为解决人体铁缺乏问题,小麦籽粒中铁含量应达到47 mg·kg-1[10];而对于锰元素,其在小麦籽粒中含量达到32 mg·kg-1就可满足人体营养需求,且籽粒锰含量建议控制在44.0 mg·kg-1以下时,可避免因锰摄入过多时导致的健康风险[24]。本研究结果表明,长期施用磷肥而不施氮的对照处理中,小麦籽粒铁含量仅为32.2 mg·kg-1,显著低于推荐值47 mg·kg-1,而锰含量高达57.6 mg·kg-1,显著高于人体健康推荐的安全阈值44.0 mg·kg-1。与对照相比,当施氮量超过160 kg·hm-2时,可显著增加小麦籽粒中铁含量至36.6—42.2 mg·kg-1,而小麦籽粒锰含量降低至30.4—35.8 mg·kg-1(图1),施用氮肥有助于提高小麦籽粒中铁、锰含量比。同时,小麦也在施氮量160 kg N·hm-2时达到最高产量(6 598 kg·hm-2),此后增施氮肥处理间均无显著差异。因此,综合考虑产量、小麦微量元素营养品质及环境经济效益,西北旱区小麦氮肥施用量建议控制在160 kg N·hm-2,此时小麦铁锰微量元素的营养水平能满足人体健康需求,过量施用氮肥将无助于继续提高小麦的产量及品质。
在我国西北旱区石灰性土壤上,长期施用氮肥能显著提高冬小麦产量和改善籽粒中铁营养,同时降低籽粒中锰含量,可避免人体锰摄入过多的危害。与不施氮相比,施氮可显著降低土壤pH,提高了土壤中铁、锰元素的松结有机态比例,降低了紧结有机态的比例,增加了土壤中铁、锰的生物有效性,促进小麦铁的吸收及向籽粒的分配,进而提高籽粒铁含量。但小麦籽粒锰含量降低,可能与小麦吸收过程中铁锰存在拮抗关系有关。相较于不施氮处理,长期施氮能够显著提高小麦产量,且在施氮量为160 kg·hm-2时小麦产量达到高,籽粒铁含量增加22.6%,籽粒锰含量降低40.1%。因此,基于小麦产量及人体健康营养需求,西北旱区石灰性土壤小麦氮肥用量建议控制在160 kgN·hm-2,过量施用氮肥无助于继续提高产量及品质。此外,当供磷水平一致时,土壤长期缺乏氮素供应可能导致小麦籽粒铁含量较低,而锰含量过高。
[1] BIESALSKI H K. First international conference on hidden hunger. Food Security, 2013, 5(3): 457-473.
[2] GUO Z L, BRUSSEAU M L. The impact of well-field configuration on contaminant mass removal and plume persistence for homogeneous versus layered systems. Hydrological Processes, 2017, 31(26): 4748-4756.
[3] GUO Z H, WU H, JIANG J L, ZHANG C. Pepsin in saliva as a diagnostic marker for gastroesophageal reflux disease: A meta-analysis. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2018, 24: 9509-9516.
[4] HENNESSY M G, VITALE A, MATAR O K, CABRAL J T. Monomer diffusion into static and evolving polymer networks during frontal photopolymerisation. Soft Matter, 2017, 13(48): 9199-9210.
[5] HILGER C, KUEHN A, RAULF M, JAKOB T. Cockroach, tick, storage mite and other arthropod allergies: Where do we stand with molecular allergy diagnostics?: part 15 of the Series Molecular Allergology. Allergo Journal International, 2014, 23(6): 172-178.
[6] MASON, J W, MOON T, HAHN E, HARTZ V, & BUMP T. Determinants of predicted efficacy of antiarrhythmic drugs in the electrophysiologic study versus electrocardiographic monitoring trial. The ESVEM Investigators. Circulation, 1993, 87(2): 323-329.
[7] BENOIST B D, FONTAINE O, LYNCH S, ALLEN L. Report of the World Health Organization technical consultation on prevention and control of iron deficiency in infants and young children in malaria-endemic areas. Food and Nutrition Bulletin, 2007, 28(4 suppl.): 489-631.
[8] KABATA-PENDIAS A. Soil-plant transfer of trace elements-An environmental issue. Geoderma, 2004, 122(2/3/4): 143-149.
[9] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 1979, 51(7): 844-851.
[10] 王书转. 长期施肥条件下土壤微量元素化学特性及有效性研究[D]. 北京: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2016.
WANG S Z. Availability and chemical characteristics of trace elements in soils under long-term fertilization[D]. Beijing: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2016. (in Chinese)
[11] FARHAT N, SASSI H, ZORRIG W, ABDELLY C, BARHOUMI Z, SMAOUI A, RABHI M. Is excessive Ca the main factor responsible for Mg deficiency inon calcareous soils? Journal of Soils and Sediments, 2015, 15(7): 1483-1490.
[12] SABIENE N, PAULAUSKAS V, CHEN S Y, LIN J G. Yield, growth and Fe uptake of cumin (L.) affected by Fe-nano, Fe-chelated and Fe-siderophore fertilization in the calcareous soils. Journal of Trace Elements in Medicine and Biology, 2018, 50(1): 54-60.
[13] ASSENG S, BAR-TAL A, BOWDEN J W, KEATING B A, HERWAARDEN A V, PALTA J A, HUTH N I, PROBERT M E. Simulation of grain protein content with APSIM-N wheat. European Journal of Agronomy, 2002, 16(1): 25-42.
[14] KOLBERG R L, KITCHEN N R, WESTFALL D G, PETERSON G A. Cropping intensity and nitrogen management impact of dryland no-till rotations in the semi-arid western great plains. Journal of Production Agriculture, 1996, 9(4): 517-521.
[15] WELCH R M, GRAHAM R D. Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany, 2004, 55(396): 353-364.
[16] STEPHAN U W. Intra- and intercellular iron trafficking and subcellular compartmentation within roots. Plant and Soil, 2002, 241: 19-25.
[17] SHI R, ZHANG Y, CHEN X, SUN Q, ZHANG F, ROEMHELD V, ZOU C. Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (L.). Journal of Cereal Science, 2010, 51(1): 165-170.
[18] XUE Y F, ZHANG W, LIU D Y, YUE S C, CUI Z L, CHEN X P, ZOU C Q. Effects of nitrogen management on root morphology and zinc translocation from root to shoot of winter wheat in the field. Field Crops Research, 2014, 161: 38-45.
[19] HOU N, LI B, TONG Y. Study on the effects of nitrogen deficiency on grain iron and zinc concentrations of landrace and bred wheat varieties in China. Journal of Plant Nutrition, 2011, 34(6): 830-838.
[20] BARUNAWATI N, GIEHL R F, BAUER B, VON WIRÉN N. The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat. Frontiers in Plant Science, 2013, 4: 320.
[21] HAMNÉR K, WEIH M, ERIKSSON J, KIRCHMANN H. Influence of nitrogen supply on macro- and micronutrient accumulation during growth of winter wheat. Field Crops Research, 2017, 213: 118-129.
[22] SRIVASTAVA P C, ANSARI U I, PACHAURI S P, TYAGI A K. Effect of zinc application methods on apparent utilization efficiency of zinc and potassium fertilizers under rice-wheat rotation. Journal of Plant Nutrition, 2016, 39(3): 348-364.
[23] LIU H, WANG Z H, LI F C, LI K Y, YANG N, YANG Y E, HUANG D L, LIANG D L, ZHAO H B, MAO H, LIU J S, QIU W H. Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China. Field Crops Research, 2014, 156: 151-160.
[24] SHI M, WANG X S, WANG H L, GUO Z K, WANG R Z, HUI X L, WANG S, KOPITTKE P M, WANG Z H. High phosphorus fertilization changes the speciation and distribution of manganese in wheat grains grown in a calcareous soil. Science of the Total Environment, 2021, 787: 147608.
[25] GUO Z K, ZHANG X M, WANG L, WANG X S, WANG R Z, HUI X L, WANG S, WANG Z H, SHI M. Selecting high zinc wheat cultivars increases grain zinc bioavailability. Journal of Agricultural and Food Chemistry, 2021, 69(38): 11196-11203.
[26] ZHAO A Q, TIAN X H, CAO Y X, LU X C, LIU T. Comparison of soil and foliar zinc application for enhancing grain zinc content of wheat when grown on potentially zinc‐deficient calcareous soils. Journal of the Science of Food & Agriculture, 2014, 94(10): 2016-2022.
[27] GERM M, PONGRAC P, REGVAR M, VOGEL-MIKUŠ K, STIBILJ V, JAĆIMOVIĆ R, KREFT I. Impact of double Zn and Se biofortification of wheat plants on the element concentrations in the grain. Plant, Soil and Environment, 2013, 59(7): 316-321.
[28] BEHERA S K, SINGH D. Fractions of iron in soil under a long-term experiment and their contribution to iron availability and uptake by maize-wheat cropping sequence. Communications in Soil Science and Plant Analysis, 2010, 41(13): 1538-1550.
[29] SVEJANCEK Z, JENEL M, BUJAN M. Trace element concentrations in the grain of wheat cultivars as affected by nitrogen fertilization. Agricultural and Food Science, 2013, 22(4): 445-451.
[30] 陈红娜. 长期定位施肥对棕壤铁、锰形态及有效性的影响[D]. 沈阳: 沈阳农业大学, 2016.
CHEN H N. Effects of long-term fertilization on speciation and availability in brown soil[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese)
[31] 黄婷苗, 王朝辉, 黄倩楠, 侯赛宾. 黄淮麦区小麦籽粒锌含量差异原因与调控. 土壤学报, 2021, 58(6): 1496-1506.
HUANG T M, WANG Z H, HUANG Q N, HOU S B. Causes and regulation of variation of zinc concentration in wheat grains produced in Huanghuai wheat production region of China. Acta Pedologica Sinica, 2021, 58(6): 1496-1506. (in Chinese)
[32] 魏孝荣, 郝明德, 张春霞. 黄土高原地区连续施锌条件下土壤锌的形态及有效性. 中国农业科学, 2005, 38(7): 1386-1393.
WEI X R, HAO M D, ZHANG C X. Zinc fractions and availability in the soil of the Loess Plateau after long-term continuous application of zinc fertilizer. Scientia Agricultura Sinica, 2005, 38(7): 1386-1393. (in Chinese)
[33] NOMEDA S, VALDAS P, CHEN S Y, LIN J G. Variations of metal distribution in sewage sludge composting. Waste Management, 2008, 28(9): 1637-1644.
[34] HUI X L, WANG X S, LUO L C, WANG S, GUO Z K, SHI M, WANG R Z, GRAHAM L, CHEN Y L, ISMAIL CAKMAK, WANG Z H. Wheat grain zinc concentration as affected by soil nitrogen and phosphorus availability and root mycorrhizal colonization. European Journal of Agronomy, 2022, 134: 126469.
[35] CAO X D, CHEN Y, WANG X R, DENG X H. Effects of redox potential and pH value on the release of rare earth elements from soil. Chemosphere, 2001, 44(4): 655-661.
[36] 刘娟花. 施锌方式对石灰性土壤中锌形态转化及小麦锌吸收的影响[D]. 杨凌: 西北农林科技大学, 2016.
LIU J H. Effects of zinc application methods on its transformation in calcareous soil and absorption in wheat[D]. Yangling: Northwest A & F University, 2016. (in Chinese)
[37] 丁婷婷. 土壤各形态锌对DTPA-Zn的贡献量及土壤供锌能力的影响[D]. 杨凌: 西北农林科技大学, 2016.
DING T T. Effects of various Zn forms on DTPA-Zn contribution and Zn supply capacity of soil. Yangling: Northwest A & F University, 2016. (in Chinese)
[38] LIU X X, ZHANG H H, ZHU Q Y, YE J Y, ZHU Y X, JING X T, DU W X, ZHOU M, LIN X Y, ZHENG S J, JIN C W. Phloem iron remodels root development in response to ammonium as the major nitrogen source. Nature Communications, 2022, 13: 561.
[39] 崔骁勇, 曹一平, 张福锁. 氮素形态及HCO3-对豌豆铁素营养的影响. 植物营养与肥料学报, 2000, 6(1): 84-90.
CUI X Y, CAO Y P, ZHANG F S. Effect of nitrogen forms and HCO3-on iron nutrition of pea. Plant Natrition and Fertilizen Science, 2000, 6(1): 84-90. (in Chinese)
[40] 常旭虹, 赵广才, 王德梅, 杨玉双, 马少康, 李振华, 李辉利, 贾二红, 陈枫. 生态环境与施氮量协同对小麦籽粒微量元素含量的影响. 植物营养与肥料学报, 2014, 20(4): 885-895.
CHANG X H, ZHAO G C, WANG D M, YANG Y S, MA S K, LI Z H, LI H L, JIA E H, CHEN F. Effects of ecological environment and nitrogen application rate on microelement contents of wheat grain. Journal of Plant Nutrition and Fertilizers, 2014, 20(4): 885-895. (in Chinese)
[41] RAHMAN M M, EL-SHEHAWI A M, ALAM M F, KABIR A H. Lead tolerance is related to its root exclusion through the regulation of Fe uptake genes (TaNAAT1 and TaDMAS1) in hexaploid wheat. Rhizosphere, 2022, 21: 100488.
[42] 闫佳. 氮素水平对冬小麦锌、铁吸收积累和产量的影响[D]. 洛阳: 河南科技大学, 2015.
YAN J. Effects of nitrogen rates on absorption and accumulation of Zn and Fe and yield in winter wheat[D]. Luoyang: Henan University of Science and Technology, 2015. (in Chinese)
[43] PARVEEN S, RANJAN R K, ANAND A, SINGH B. Combined deficiency of nitrogen and iron increases senescence induced remobilization of plant immobile iron in wheat. Acta Physiologiae Plantarum, 2018, 40(12): 1-12.
[44] MOOSAVI A A, RONAGHI A. Growth and iron-manganese relationships in dry bean as affected by foliar and soil applications of iron and manganese in a calcareous soil. Journal of Plant Nutrition, 2010, 33(9): 1353-1365.
[45] CHU H H, CAR S, SOCHA A L, HINDT M N, PUNSHON T, GUERINOT M L. TheMTP8 transporter determines the localization of manganese and iron in seeds. Scientific Reports, 2017, 7: 11024.
[46] 赵秋芳, 马海洋, 贾利强, 陈曙, 金辉. 植物锰转运蛋白研究进展. 热带作物学报, 2019, 40(6): 1245-1252.
ZHAO Q F, MA H Y, JIA L Q, CHEN S, JIN H. Research progress on manganese transporters in plants. Chinese Journal of Tropical Crops, 2019, 40(6): 1245-1252. (in Chinese)
[47] 周晓雨. 我国铁营养强化小麦的适宜强化水平研究[D]. 北京: 中国农业科学院, 2019.
ZHOU X Y. Study on the appropriate fortification level of iron-biofortificad wheat in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
The Accumulation of Iron and Manganese in Wheat and Its Relationship with Soil Nutrients Under Long-Term Application ofNitrogen Fertilizer
1College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi;2Northwest A & F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi
【Objective】The objective of the study was to explore the uptake and distribution of iron (Fe) and manganese (Mn) under long-term application of nitrogen fertilizer and its relationship with soil nutrients, to seek the nitrogen fertilizer regulation strategy based on yield and wheat Fe and Mn nutrition, and to provide a new perspective for the optimization of nitrogen fertilizer application and improvement of wheat quality. 【Method】Based on the long-term nitrogen fertilizer experiment of winter wheat in dryland, the concentration of Fe and Mn in wheat grains, and their relationship with wheat grain yield, the uptake and distribution of Fe and Mn in wheat and soil nutrients were analyzed under nitrogen application rates of 0, 80, 160, 240, and 320 kg·hm-2, respectively.【Result】Compared with the control, the application of nitrogen improved wheat grain yield, shoot Fe concentration, nutrient Fe and Fe concentration in grains, but decreased Mn concentration in wheat shoot and grains. When the nitrogen application was higher than 160 kg·hm-2, no differences among treatments were found in the grain yield (5 857-6 598 kg·hm-2) and grain Fe concentration (40.2-42.2 mg·kg-1), and the Mn concentration in grains remained at a lower level (30.4-35.3 mg·kg-1). N application significantly decreased soil pH and increased the proportion of weekly bound organic Fe and Mn and Mn oxide-bonded Fe in the soil, further enriching soil DTPA-Fe and DTPA-Mn content. Meanwhile, the correlation analysis showed that the concentration of Fe in grains had a significantly positive correlation with the yield, biomass, harvest index, spike number, grain number per panicle, grain Fe uptake and Fe harvest index, and soil Mn-oxide-bonded Fe, but it has a significantly negative correlation with the grain Mn concentration and soil residual Fe. However, the grain Mn concentration was significantly negatively correlated with grain yield, biomass, harvest index, spike number, grain number per panicle, grain Fe uptake and Fe harvest index, and was significantly positively correlated with the shoot Mn uptake, but there was no significant association found with various forms of Mn in soil.【Conclusion】In the northwest arid area, the long-term nitrogen application on calcareous soil could improve the availability of soil Fe, promote the absorption and localization of Fe in grains, and increase the Fe concentration in grains. Nitrogen application increased the soil Mn availability, but significantly inhibited the uptake of Mn by wheat, and resulted in a significant decrease of Mn concentration in grains. In addition, when the phosphorus supply level is consistent, a long-term lack of soil nitrogen supply may lead to low Fe concentration and high Mn concentration in wheat grains. Considering the yield, the bioavailability of Fe and Mn in grains and the environmentally-economic benefits, it was recommended that nitrogen application rate should be controlled at 160 kg N·hm-2on calcareous soil, since excessive nitrogen application fertilizer would not be conducive to further increase grain yield and improve its nutritional quality.
nitrogen fertilizer; winter wheat; Fe; Mn; dryland in Northwest China; calcareous soil
10.3864/j.issn.0578-1752.2023.17.011
2022-08-31;
2022-10-24
国家重点研发计划(2021YFD1900700、2022YFD1900702)、中国博士后科学基金(2019M663838)、国家现代农业产业技术体系建设专项(CARS-3)
蔺江韵,E-mail:lin-jy@nwafu.edu.cn。通信作者石美,E-mail:meishi@nwafu.edu.cn。通信作者王朝辉,E-mail:w-zhaohui@263.net
(责任编辑 李云霞)