李 诗,张俊辉,胡钧铭**,周凤珏,李婷婷,徐美花,马洁萍,陆展彩
等氮替代施入生物炭对南方免耕早稻田温室气体排放的影响*
李 诗1,2,张俊辉1,胡钧铭1**,周凤珏2,李婷婷1,徐美花1,2,马洁萍1,2,陆展彩1,2
(1.广西农业科学院农业资源与环境研究所/广西耕地保育重点实验室,南宁 530007;2.广西大学农学院,南宁 530004)
生物炭是新型外源有机底物,其稳定性好,吸附性强,富含碳营养物,常作为固碳减排的重要有机资源。中国南方早籼稻产量高,雨热同期且种植制度独特,2021−2022 年试验在典型籼稻区南宁开展,共设置3种处理分别为,对照处理(CK):不施肥;无机氮投入(T1,化肥)处理:化肥施用量为常规施肥水平,复合肥800kg·hm−2,尿素260.87kg·hm−2,钾肥193.55kg·hm−2;无机氮配施有机氮(T2,生物炭+化肥)处理:生物炭4000kg·hm−2,复合肥738.67kg·hm−2,尿素146.09kg·hm−2,钾肥34.19kg·hm−2。本研究在水稻插秧5d后,采用分离式静态箱−气相色谱法,定期监测水稻生育期内稻田土壤温室气体排放,解析其温室气体累计排放量、排放当量及水稻产量性状,探讨等氮替代施入生物炭对南方早稻田温室气体排放、水稻产量的影响,为优化集约化早籼稻低碳种植和减肥增效提供依据。结果表明:(1)生物炭能降低稻田土壤CH4、CO2排放,通过减缓CH4排放而减小综合排放当量。化肥配施生物炭可减缓单施化肥引起的温室气体碳源增排效应,其减缓CO2排放的延后效应较明显,生物炭处理(T2)中,与化肥处理(T1)相比,2021年CH4最大排放通量降低41.38%,累计排放量降低31.25%,2022年最大排放通量降低50.50%,累计排放量显著降低50%,2a的综合排放当量显著低于T1处理;2021年CO2最大排放通量、累计排放量分别比T1处理减小57.38%和 37.68%,2022年比T1处理分别相应减小16.06%和35.52%。(2)生物炭可抑制N2O排放,显著降低累计排放量,减小氮源排放当量。与T1处理对比,T2处理2021年N2O最大排放通量减小5.43%,而累计排放量显著降低33.53%;2022最大排放通量减小73.75%,累计排放量显著降低54.33%。(3)生物炭利于集约化早籼稻种植结构优化,提升早籼稻生产力。生物炭投入稻田2a后,增产效果明显,T2处理的理论产量为T1处理的1.02~1.33倍,实际产量则是T1处理的1.06~1.32倍。化肥配施生物炭减少了早籼稻田温室气体排放,增加了水稻产量,可作为南方集约化早籼稻低碳生产优化模式。
温室气体;生物炭;低碳优化;集约化稻田;早籼稻
应对气候变化已摆在国家治理更加突出的位置。联合国政府间气候变化专门委员会(IPCC)第六次评估报告(AR6)显示,与工业化前相比,全球范围内地表温度增幅为1.09℃[1]。气候环境复杂多变,资源和环境承受较大压力,秦大河等[2]呼吁在气候变化与环境保护方面采取新措施和手段进行减排行动。中国提出“二氧化碳(CO2)排放力争于2030年前达到峰值,努力争取 2060 年前实现碳中和”的战略目标[3]。农业生产中二氧化碳(CO2)、甲烷(CH4)与氧化亚氮(N2O)是影响温室效应的重要因素[4]。以化肥投入的现代集约化稻田生产为保障国家粮食安全提供了重要保障[5],但化肥长期过量投入严重超过土壤的自身承载力,不仅影响水稻生长与产量和品质提升[6],而且由此造成的土壤酸化板结、水体污染、温室气体排放等环境问题不容忽视[7−9]。随着国家双碳目标和化肥减量的持续推进,集约化稻作实现可持续低碳绿色生产有待突破。
农业温室气体减排蕴藏着巨大潜力[10−11]。1980−2020 年中国农业系统温室气体排放量呈波动增长趋势,增长了近46%[12−13]。CH4在农业生态系统温室气体排放中贡献最大,占总排放量的47.33%[14],其中农业生产资料投入产生和消费的温室气体排放是潜在温室气体排放总量的73.9%~89.5%[15]。2013−2020年中国种植业碳排放总量累计达到19.72 亿t[16]。生物炭是由农业废弃物在高温缺氧条件下热裂解成难分解的富碳物质[17],在培肥土壤和作物增产、提高土壤固碳能力、抗病性等方面具有良好效果[18]。研究表明,生物炭能降低反硝化酶活性,显著降低土壤N2O的年累计排放量,能提高土壤含碳量和阳离子交换容量,培肥地力[19],甚至单施生物炭处理的N2O累计排放量均为负值[20]。也有研究表明,生物炭的老化可加速硝化作用生成N2O,同时减缓N2O的还原,在一定程度影响土壤排放N2O[21]。Wang等[22]研究表明,生物炭促进土壤形成大团聚体,加强对有机质的吸附保护作用,抑制有机碳矿化,增加储碳量,减缓碳排放。周际海等[23]报道生物质炭在一定程度上抑制土壤CO2排放,显著减小温室气体增温潜势,屈忠义等[24]认为生物炭也会减少或抑制 CH4排放。生物炭可对水稻植株生长发育有促进作用[25],可提高作物产量[26],于衷浦等[27]研究表明,化肥减量 20%与生物炭基肥配施能减小温室气体累计排放量、综合增温潜势和气体排放强度,短期内可增加作物产量。
生物炭对农田温室气体排放的影响存在较多可能性。若全球农田均施用生物炭,一年至多可使N2O少排放96万t N2O-N,约等同于全球目前农田N2O排放的1/3[28]。生物炭的施用可直接增加土壤有机碳(SOC)含量,且在持续多年施用下对农作物稳产提质[29]。中国南方热带和亚热带区域是水稻主产区,在固碳减排中占有重要地位。研究表明长期植稻过程中,水稻土的有机质处于持续增加状态,增幅可达60%,年平均固碳速率为0.28t·hm−2,具有明显的固碳效应[30]。南方早籼稻产量高,雨热同期,种植制度独特,优化集约化早籼稻种植模式与减肥增效具有重要意义。生物炭是新型外源有机底物,具有稳定性持久、吸附性强等显著特征,可为稻田补充丰富的营养物并降低温室气体排放,生物炭与南方早籼稻种植制度相匹配的低碳生产模式研究亟待加强。本研究采用分离式静态箱−气相色谱法,连续2a定位监测水稻生育期内稻田土壤温室气体排放及稻作产量性状,研究生物炭配施化肥对温室气体排放规律及产量特征,系统评估生物炭投入下稻田温室效应及水稻生产力,以期为优化南方集约化早籼稻绿色低碳可持续生产提供参考。
试验在广西南宁开展,属亚热带季风性气候,气温均值为22.9℃,年降水量约1274.2mm[31]。试验在广西农业科学院农业资源与环境研究所科研基地(108.249664°E,22.841066°N)进行,水稻品种为常规早籼稻“桂野丰”。供试土壤为红壤水稻黏土,土壤pH值6.6,全氮、磷和钾总量分别为 1.80g·kg−1、0.918g·kg−1和7.43g·kg−1,速效磷和钾分别为37.9mg·kg−1和97.8mg·kg−1,碱解氮131mg·kg−1,有机质24.5g·kg−1。
试验选用的生物炭由玉米秸秆在高温缺氧条件下热裂解而成,其氮、磷和钾含量分别为1.55% 、0.23%和2.7% ,有机碳75%。化肥有尿素(46% N)、磷肥(15% P2O5)、钾肥(62.7%K2O)和复合肥(N、P2O5、K2O各含15%)。
试验于2021年和2022年实施,采用南方早稻田免耕的方式。试验设置3个处理,不施肥(CK,对照)、施化肥(T1)和施加生物炭+化肥(T2),每个处理三次重复。小区面积74m2,采用垄作栽培模式,垄宽0.60m,沟宽0.40m,垄深0.30m,水稻株行距为0.12m×0.24m,每穴三苗,每垄三列水稻。常规氮磷钾肥用量参考标准为240kg·hm−2N、120kg·hm−2P2O5、240kg·hm−2K2O,等氮条件下,T1处理(100%化肥)即投入800kg·hm−2复合肥,260.87kg·hm−2尿素,193.55kg·hm−2钾肥;T2处理(生物炭+化肥)则需4000kg·hm−2生物炭,738.67kg·hm−2复合肥,146.09kg·hm−2尿素,34.19kg·hm−2钾肥。各处理实际施肥用量见表1,底肥与返青肥各按施肥总量的一半先后施入稻田,具体施肥时间见表2,其他方面按常规大田高产栽培方法进行田间管理和水分管理。
1.3.1 气体采集与测定
利用分离式静态箱−气相色谱法监测田间温室气体(N2O、CH4和CO2)。该分离式静态箱由底座、箱体组成,在水稻移栽前将底座置于大田,底座内外围边长分别为 36cm、44cm,以2穴×2穴规格在底座内栽水稻,为减少人工破坏土层使土壤气体自然释放和便于采集气体,底座与大田过道间设有木桩。取样箱体由不锈钢制成,长×宽×高为40cm × 40cm × 50cm,外用铝箔纸隔热减小外界温度影响,上罩箱仅下端口敞开,下罩箱上、下端口均敞开(植株高度超过50cm时使用),在箱体侧面中心有1个直径22.5mm 的圆孔,用于抽取气体。本试验采气共10次,先后在水稻移栽后5、10、15、20、30、40、50、60、70和80d每日8:00 −11:00取样,为使取气整体装置不漏气需将稻田里底座的凹槽(高5cm)加水密封,将箱体直接放置底座上,于装置组成后的第0、10、20和30min先后用外接三通阀的30mL聚乙烯注射器采集气体,同时记录箱体内温度,CK、T1和T2三种处理均3次重复。其中水稻移栽后30~50d内晒田,移栽后50d复水,移栽后60d为齐穗期。
表1 各处理的实际用肥量(kg·74m−2)
注: 74m2是每个小区的面积。
Note: 74m2is the experimental district area.
表2 两试验年度早稻生长季主要耕作措施时间记录(月−日)
(1)排放通量计算
完成采气后48h内用气相色谱仪(Agilent7890A GC)检测,并计算N2O、CH4和CO2排放通量[32]。
式中,F为CO2、CH4(mgC·m−2·h−1)和N2O (mgN·m−2·h−1)的排放通量;ρ为标准状况下 N2O-N、CO2-C和CH4-C密度,分别取值1.25g·L−1、0.54g·L−1和0.54g·L−1;V为气箱体积(0.08m3);W为底座内土壤表面积(0.16m2),△C/△V为单位时间内气体浓度变化率;T为气箱内温度(℃)。
(2)累计排放量计算
式中,f为采气期N2O、CH4或 CO2的累计排放量(g·hm−2),Fi、Fi−1分别表示第 i 次、第i−1次气体样品排放通量;d 为前后两次气体测定相隔天数(d);n为气体监测总次数。
(3)综合CO2排放当量
综合CO2排放当量(Combined CO2equivalent emissions)即温室气体(N2O 、CH4和CO2)的排放当量,以CO2当量(kg)计算N2O和 CH4排放量,100a的影响尺度上1kg N2O排放当量为 1kg CO2的298倍,1kg CH4排放当量为1kg CO2的25 倍。计算公式分别为
E(CO2)= f(CO2) ×1 (3)
E(CH4)= f(CH4) ×25 (4)
E(N2O)= f(N2O) ×298×10−3(5)
CE=E(CO2)+E(CH4)+ E(N2O) (6)
式中,E(CO2)、E(CH4)和E(N2O)分别为CO2、CH4和N2O排放当量(CO2kg·hm−2),CE为N2O、CH4和CO2的综合CO2排放当量(CO2kg·hm−2),即N2O、CH4和CO2排放量的总CO2当量,单位均为CO2kg·hm−2。
1.3.2 水稻考种及产量测定
在水稻成熟期各处理选取3个1m2长势均匀的区域,进行实际产量测定;采用5点取样法于水稻成熟期各个小区取样并考查有效穗数、每穗总粒数、每穗实粒数、结实率和千粒质量,进行理论产量计算,晒干后测定稻谷质量和含水量,按标准含水量 13.5% 折算水稻产量。
利用SPSS19.0软件整理试验数据,以LSD法、Duncan法做多重比较和组间样本方差分析(统计显著水平P<0.05),用 WPS Excel 2016 制图。
2.1.1 对CH4排放的影响
由图1可见,两个试验年度水稻生长季CH4排放均集中发生在晒田期和齐穗期。不施肥处理(CK)中,早稻生长季CH4排放通量变化相对平稳,2021年最大排放通量为1.14mg·m−2·h−1,发生在移栽后30d(即晒田期),累计排放量为8.88kg·hm−2,显著低于其他处理;2022年CK处理最大排放通量为0.63mg·m−2·h−1,发生在移栽后80d,累计排放量为5.88kg·hm−2,显著低于T1和T2处理。化肥处理(T1)中,CH4排放通量变化基本呈现双峰型,分别在移栽后30d、60d(即复水后)出现排放峰值,2021年最大排放通量为6.38mg·m−2·h−1,累计排放量为39.27kg·hm−2,大于CK和T2处理;2022年最大排放通量为2.99mg·m−2·h−1,累计排放量为23.62kg·hm−2,显著大于CK和T2处理,说明单施化肥会显著增加CH4排放。生物炭处理(T2)中,2021年最大排放通量为3.74mg·m−2·h−1,发生在移栽后40d,比T1处理降低41.38%,累计排放量为27.00kg·hm−2,比T1处理降低31.25%;2022年最大排放通量为1.48mg·m−2·h−1,发生在移栽后30d,比T1处理降低50.50%,累计排放量为11.81kg·hm−2,比T1处理显著降低50%。试验期间,利用晒田控制无效分蘖,此时各施肥处理CH4排放基本下降,复水后出现小增幅,水稻收获前降低,生物炭处理比化肥处理后期增幅小,说明生物炭配施化肥可减缓CH4排放。
2.1.2 对CO2排放的影响
由图2可见,各处理在水稻植株生长前期土壤呼吸作用持续增强,晒田后 CO2排放达最大峰值,在齐穗期呈下降且平缓趋势。不施肥处理(CK)中,2021年CO2排放通量在移栽60d时达到最大峰值,为36.21mg·m−2·h−1,累计排放量为339.16kg·hm−2;2022年排放通量在移栽60d达到最大峰值,为42.99mg·m−2·h−1,累计排放量为594.94kg·hm−2。化肥处理(T1)中,2021年排放通量在移栽40d达到最大峰值,为171.83mg·m−2·h−1,累计排放量为1034.21kg·hm−2,与CK和T2处理存在显著差异;2022年排放通量在移栽60d时达到最大峰值,为121.47mg·m−2·h−1,累计排放量为1194.35kg·hm−2,均大于CK和T2处理,说明化肥影响CO2的排放。生物炭处理(T2)中,2021年在移栽40d达到最大峰值,为73.24mg·m−2·h−1,比T1处理减小57.38%,累计排放量为643.39kg·hm−2,比T1处理减小37.68%;2022年在移栽60d达到最大峰值,为101.96mg·m−2·h−1,比T1处理减小16.06%,累计排放量为770.13kg·hm−2,比T1处理减小35.52%。整体看来,2021年T2处理后期CO2排放有较小幅度上升,而2022 年各处理趋势基本一致,CO2排放通量逐渐上升,至移栽后60d达到峰值再下降,但末期有较大增幅,可能是由于气温升高影响。可见,生物炭能减缓CO2排放,其延缓排放效应较明显。
图1 两试验年度早稻田CH4 排放通量变化过程(a)及其生长季累计排放量比较(b)
注:短线表示标准误。小写字母表示处理间在0.05水平上的差异显著性。下同。
Note:The bar is standard error. Lowercase indicates the difference significance among treatments at 0.05 level. The same as below.
图2 早稻田CO2排放通量变化过程(a)及其生长季累计排放量比较(b)
由图3可见,整个早稻季生育期内,N2O排放通量呈现出化肥较高而生物炭配施化肥次之的趋势,2021年与2022年的N2O排放通量变化趋势基本一致,呈现双峰型。不施肥处理(CK)中,2021年N2O排放通量在移栽60d时达到最大峰值,为2.54mg·m−2·h−1,累计排放量为6.06g·hm−2;2022年在移栽70d达到最大峰值,为24.53mg·m−2·h−1,累计排放量为56.67g·hm−2。单施化肥处理(T1)中,2021年排放量在移栽30d达到最大峰值,为21.93mg·m−2·h−1,累计排放量为144.23g·hm−2,与CK和T2处理存在显著差异;2022年在移栽70d达到最大峰值,为84.65mg·m−2·h−1,累计排放量为293.58g·hm−2,均显著大于CK和T2处理,说明化肥影响N2O排放。生物炭处理(T2)中,2021年在移栽10d达到最大峰值,为20.74mg·m−2·h−1,比T1处理减小5.43%,累计排放量为95.87g·hm−2,比T1处理显著降低33.53%;2022年在移栽70d达到最大峰值为22.22mg·m−2·h−1,比T1处理减小73.75%,累计排放量为134.08g·hm−2,比T1处理显著降低54.33%,与CK处理无显著差异。从图3a总体看出,T1、T2处理的第一个峰值基本在水稻移栽30d内出现,尤以2022年早稻季生育后期由于排水落干,N2O排放出现一个小高峰随即迅速回落,T2处理为负值,表现为吸收状态。可见,生物炭对N2O 排放有显著影响。
图3 早稻田N2O排放通量变化过程(a)及其生长季累计排放量比较(b)
由表3得出,不施肥处理(CK)的温室气体排放当量较小。单施化肥处理(T1)的温室气体排放当量最大,其中2021年综合CO2排放当量为2058.88kgCO2·hm−2,N2O、CH4和CO2排放当量分别占综合CO2排放当量的2.09%、47.68%和50.23%,除CH4排放当量外,与CK和T2处理的其他排放当量均存在显著差异;2022年综合CO2排放当量最大,为1825.73kgCO2·hm−2,N2O、CH4和CO2排放当量分别占综合CO2排放当量的2.24%、32.34%和65.42%。生物炭配施化肥处理(T2)条件下,2021年综合CO2排放当量为1347.06kgCO2· hm−2,比T1处理显著减小34.57%,N2O、CH4和CO2排放当量分别占综合CO2排放当量的2.12%、50.12%和47.76%,2022年综合CO2排放当量为1092.70kgCO2·hm−2,比T1处理显著减小40.15%,与CK处理无显著差异,N2O、CH4和CO2排放当量分别占综合CO2排放当量的2.49%、27.03%和70.28%。从CH4排放当量角度看,2021年T2处理与CK、T1处理无显著差异,2022年与CK处理仍无显著差异但显著低于T1处理,从综合CO2排放当量看,2021年T2处理显著大于CK处理,而2022年与CK处理无显著差异。可见,生物炭配施化肥对CH4排放影响较大,通过减缓CH4排放进而降低综合CO2排放当量。
由表4可知,不施肥处理(CK)由于缺乏水稻植株生长必需营养导致产量较小。在 2021年,与化肥处理(T1)相比,生物炭配施化肥处理(T2)的成穗率和有效穗数分别提高1.94%和9.59%,T2处理的理论产量为6178.65kg·hm−2,实际产量为5658.6kg·hm−2,分别是T1处理的1.02、1.06倍,高于T1处理实际产量5.76%。在2022年,与T1处理相比,T2处理的成穗率、有效穗数和每穗总粒数差异不明显,千粒重和结实率分别显著增加45.43%和22%,T2处理的理论产量和实际产量显著大于T1处理,分别为6808.65kg·hm−2和6133.65kg·hm−2,分别是 T1处理的1.33、1.32倍。可见,生物炭对水稻增产有一定积极作用。
表3 处理间稻田温室气体(N2O、CO2和CH4)综合CO2排放当量比较(kgCO2·hm−2)
3.1.1 生物炭对集约化稻田碳源温室气体排放的影响
生物炭降低了稻田土壤CH4和CO2排放,与化肥配施可减缓单施化肥引起的温室气体增排效应。稻田产甲烷菌、甲烷氧化菌等微生物影响CH4排放[33],本研究发现,水稻移栽5d内根系处于伸根、定根状态,生长较慢,导致CH4排放量较小;移栽20d内CH4排放变化范围为0~2mg·m−2·h−1,土壤有机质的分解为微生物提供反应底物,且发达的早籼稻根系分泌了与产甲烷菌有关的底物,CH4排放增加;随后进入晒田控制水稻分蘖,CH4主要排放量在分蘖后期和齐穗期,随后CH4排放迅速回落,变化明显,可能是由于生物炭能增大土壤透气性和土壤pH值,且含少量呋喃和酚类化合物等有毒物质,可抑制产甲烷菌活性和促进大部分最适pH值为6.8~7.2的甲烷氧化菌活性[34],利于提升土壤氧化还原电位和氧化CH4能力[35],土壤碳源减少,连续2a的水稻生育期内生物炭处理的CH4累计排放量、排放当量均低于单施化肥处理,与王紫君等[36]研究结果相似。土壤活性有机碳含量和微生物群落丰度是影响CO2排放的主要因素[37],本研究中CO2排放集中在晒田−齐穗期即在晒田期后达到峰值后逐渐回落,生物炭处理排放通量、累计排放量整体低于单施化肥处理,与廖添怀等[38]研究结果基本一致,主要可能是生物炭给微生物生长提供了所需的碳源,其易分解态碳素被微生物优先利用,促进微生物的共代谢和有机碳矿化,后期逐渐转成负向激发效应,同时利于土壤团聚体形成,减缓土壤原始有机碳矿化,提高土壤有机碳的含量与稳定性,促进土壤有机无机结合体的形成,从而保护减少土壤有机碳与微生物、细胞外酶和氧气的接触面,潜在降低碳排放[39−40]。连续2a生物炭处理的水稻在移栽70d后CO2排放有增幅,且2022年增幅较大,可能是土壤CO2排放通量受土壤温度和水分的影响[41],本研究中水稻生长后期土壤物理环境变化较大导致土壤有机碳矿化分解速率增加。因此,适宜的生物炭配施化肥还通过增大土壤碳氮比调控土壤微生物活性,增加了土壤微生物碳含量,促进土壤固碳[42],抑制矿化作用[43],进而减小稻田排放CH4和CO2,降低排放当量。而从2a的CH4、CO2排放当量及综合排放当量角度看,生物炭配施化肥与单施化肥的差异不稳定,仍需后续进行监测以探究生物炭对土壤碳源排放的长期效应。
3.1.2 生物炭对集约化稻田氮源温室气体排放的影响
本研究表明,与单施化肥相比,生物炭可抑制N2O排放,显著降低累计排放量,减小排放当量,与前人研究结果相似[44]。土壤N2O是土壤氮素硝化和反硝化过程的产物。南方稻区多为红壤酸性土壤,不利于硝化菌(适宜pH值为6.6~8.0)繁殖,生物炭可能提高土壤pH值,增加了硝化菌和亚硝态氮氧化菌丰度,促进土壤硝化[45−46]。本研究由于水稻生长初期的需氮量低,造成过量的氮转成气态氮,N2O排放集中在移栽40d内,随着肥效时长逐渐下降,在晒田时有峰值,随后迅速回落,生物炭与化肥配施后N2O排放通量整体水平比化肥处理低,一方面可能是生物炭碳氮比较高,使土壤有机质的分解速度减小,对N2O的产生起到抑制作用[47];另一方面,生物炭为硝化、反硝化微生物活动提供P、K、Mg等营养物质和反应底物刺激微生物活性,提高土壤反硝化细菌与N2O转成N2过程中氧化亚氮还原酶的活性,且抑制土壤氮循环酶(如脲酶、蛋白酶)的活性,降低了微生物反硝化速率,从而减少N2O排放[48]。此外生物炭可能利于土壤胶体形成,可吸附更多导致N2O增排的NH+4-N、NO−3-N。本研究与2021年早稻季移栽后70d相比,2022 年收获前N2O排放出现小高峰,可能是稻田落干,生物炭可改良土壤透气性和土壤水分状况,在好氧条件下提高硝化作用速率,导致N2O排放相对增加[49]。
3.1.3 生物炭对集约化稻作产量的影响
本研究发现生物炭配施化肥比单施化肥增产效果好,这与杨彩迪等[50]的研究结果相似。稻田生物炭投入2a后,增产效果明显,与化肥处理(T1)相比,2021年生物炭配施化肥处理(T2)的理论产量、实际产量分别为T1处理的1.02、1.06倍,未见显著差异;2022年T2的理论产量、实际产量显著提高,分别是T1的1.33、1.32倍。一方面,作物种植时间越长,农田土壤碳源被利用消耗[51],南方早籼稻区实行冬季休耕(或冬种绿肥)制度,利于降低田间病虫草害基数,熟化土壤,配施生物炭后能有效优化土壤环境[52],可能刺激土壤微生物活性并加快土壤养分循环[53],一定程度上利于培肥土壤及地力恢复。稻田免耕保护性耕作在南方稻区已得到较为广泛应用,本研究2a的大田试验在课题组前期免耕稻田基础上开展,根据土壤情况和耕作面积选择适宜的配施化肥比例还田,将生物炭做基肥一次性充分混施以减少气体污染和保证肥效,促进实现“改土、保水、保肥、壮根”的良好效果。南方早籼稻区易遭受低温阴雨引发烂秧现象导致减产,垄作提高了耕作面,研究表明配施生物炭(中等用量)可增加土壤通气性,提高了田间持水率和净光合速率[54],利于根系生长与土壤保水控水,促进干物质积累。另一方面,农田配施生物炭能吸附一定的矿质营养元素,可促进养分利用效率,在土壤环境作用下生物炭含有的作物生长必需元素得到持续释放而被植株吸收利用[55],实现水稻增产和提高氮肥利用率[56]。可见,生物炭促进调控集约化稻田增产,利于构建与南方早籼稻种植制度匹配的集约化绿色低碳稻作技术。
生物炭配施化肥通过改变土壤微环境及自身吸附作用,对稻田N2O、CH4和CO2排放具有一定的减缓作用,能调控CO2和N2O的累计排放量,显著降低 CH4排放当量,提升早籼稻生产力,利于优化集约化早稻低碳可持续种植结构。
[1] IPCC.Climate change 2021:the physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change [R].2021.
[2] 秦大河,周波涛.气候变化与环境保护[J].科学与社会,2014,4(2):19-26.
Qin D H,Zhou B T.Climate change and environmental protection[J].Science and Society,2014,4(2):19-26.(in Chinese)
[3] 唐博文.从国际经验看中国农业温室气体减排路径[J].世界农业,2022(3):18-24.
Tang B W.China's agricultural greenhouse gas emission reduction path from international experience[J].World Agriculture,2022(3):18-24.(in Chinese)
[4] Knoblauch C,Maarifat A A,Pfeiffer E M,et al.Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils[J].Soil Biology & Biochemistry,2011,43(9):1768-1778.
[5] 周振.全球化肥形势出现新变化我国粮食安全有隐忧[J].中国经贸导刊,2021(16):53-55.
Zhou Z.New changes in the global fertilizer situation; China's food security is concerned[J].China Economic & Trade Herald,2021(16):53-55.(in Chinese)
[6] 张俊伶,张江周,申建波,等.土壤健康与农业绿色发展:机遇与对策[J].土壤学报,2020,57(4):783-796.
Zhang J L,Zhang J Z,Shen J B,et al.Soil health and agriculture green development:opportunities and challenges [J].Acta Pedologica Sinica,2020,57(4):783-796.(in Chinese)
[7] 谢邵文,杨芬,冯含笑,等.中国化肥农药施用总体特征及减施效果分析[J].环境污染与防治,2019,41(4):490-495.
Xie S W,Yang F,Feng H X,et al.General characteristics of the chemical fertilizers and pesticides use and the analysis of use reduction effect in China[J].Environmental Pollution and Control,2019,41(4):490-495.(in Chinese)
[8] Zhang X,Fang Q,Zhang T,et al.Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China:a meta-analysis[J].Global Change Biology,2019,26(2):888-900.
[9] 邱子健,申卫收,林先贵.化肥减量增效技术及其农学、生态环境效应[J].中国土壤与肥料,2022(4):237-248.
Qiu Z J,Shen W S,Lin X G.Chemical fertilizer reduction technology and its agronomic and ecological environment effects[J].Soils and Fertilizers Sciences in China,2022(4): 237-248.(in Chinese)
[10] 陈松文,刘天奇,曹凑贵,等.水稻生产碳中和现状及低碳稻作技术策略[J].华中农业大学学报,2021,40(3):3-12.
Chen S W,Liu T Q,Cao C G,et al.Situation of carbon neutrality in rice production and techniques for low-carbon rice farming[J].Journal of Huazhong Agricultural University, 2021,40(3):3-12.(in Chinese)
[11] Devakumar A S,Pardis R,Manjunath V.Carbon footprint of crop cultivation process under semiarid conditions[J].Agric Res,2018(7):167-175.
[12] Lugato E,Leip A,Jones A.Mitigation potential of soil carbon management overestimated by neglecting N2O emissions[J].Nat Clim Change,2018(8):219-223.
[13] 生态环境部应对气候变化司.中华人民共和国气候变化第三次国家信息通报.https://www.mee.gov.cn/ywgz/ydqhbh/ wsqtkz/201907/P020190701762678052438.pdf.
Ministry of Ecology and Environment of the People's Republic of China.The People’s Republic of China Third National Communication on Climate Change (mee.gov.cn). https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701762678052438.pdf.(in Chinese)
[14] 范紫月,宋春玉,齐晓波,等.中国农业系统近40年温室气体排放核算[J/OL].生态学报,2022,42(23):9470-9482.
Fan Z Y,Song C Y,Qi X B,et al.Greenhouse gas emission accounting of China's agricultural system in recent 40 years[J/OL].Acta Ecologica Sinica,2022,42(23):9470-9482. (in Chinese)
[15] 甄伟,庄鸿源,米松华.中国农业中间投入温室气体排放与减排潜力[J].浙江农业学报,2021,33(11):2185-2194.
Zhen W,Zhuang H Y,Mi S H.Analysis of agricultural intermediate input greenhouse gas emissions and emission reduction potential in China[J].Acta Agriculturae Zhejiangensis, 2021,33(11):2185-2194.(in Chinese)
[16] 谢永浩,刘争.中国省域种植业碳汇量、碳排放量的时空分异及公平性研究[J].世界农业,2022(2):100-109.
Xie Y H,Liu Z.Study on the temporal and spatial differentiation and equity of carbon sink and carbon emission of China's provincial planting industry[J].World Agriculture,2022(2):100-109.(in Chinese)
[17] 谢祖彬,刘琦.生物质炭的固碳减排与合理施用[J].农业环境科学学报,2020,39(4):901-907.
Xie Z B,Liu Q.Rational application of biochar to sequester carbon and mitigate soil GHGs emissions:a review[J]. Journal of Agro-Environment Science,2020,39(4):901-907. (in Chinese)
[18] 马珍,黄凯文,张珍明,等.添加生物炭对土壤磷素有效性影响研究进展[J].东北农业大学学报,2021,52(8):89-96.
Ma Z,Huang K W,Zhang Z M,et al.Effects of adding biochar on availability of soil phospho-rus:a review[J]. Journal of Northeast A gricultural University,2021,52(8): 89-96.(in Chinese)
[19] Li B,Huang W H,Elsgaard L,et al.Optimal biochar amendment rate reduced the yield-scaled N2O emissions from ultiso is in an intensive vegetable field in South China[J]. Science of the Total Environment,2020,723: 138161.
[20] 杨世梅,何腾兵,杨丽,等.秸秆与生物炭覆盖对土壤养分及温室气体排放的影响[J].湖南农业大学学报(自然科学版),2022,48(1):75-81.
Yang S M,He T B,Yang L,et al.Effects of straw and biochar mulching on the soil nutrients and greenhouse gas emissions[J].Journal of Hunan Agricultural University (Natural Sciences),2022,48(1):75-81.(in Chinese)
[21] Wu Z,Zhang Q Q,Zhang X,et al.Biochar-enriched soil mitigated N2O and NO emissions similarly as fresh biochar for wheat production[J].Science of the Total Environment, 2020,701:134943.
[22] Wang D,Fonte S J,Parikh S J,et al.Biochar additions can enhance soil structure and the physical stabilization of C in aggregates[J].Geoderma,2017,303:110-117.
[23] 周际海,陈晏敏,袁颖红,等.秸秆与生物质炭施用对土壤温室气体排放的影响差异[J].水土保持学报,2019,33 (4):248-254.
Zhou J H,Chen Y M,Yuan Y H,et al.Effects of biochar and wheat straw returning on soil greenhouse gases emission[J]. Journal of Soil and Water Conservation,2019,33(4):248- 254.(in Chinese)
[24] 屈忠义,高利华,李昌见,等.秸秆生物炭对玉米农田温室气体排放的影响[J].农业机械学报,2016,47(12):111-118.
Qu Z Y,Gao L H,Li C J,et al.Impacts of straw biochar on emission1 of greenhouse gas in maize field [J].Transactions of the Chinese Society for Agricultural Machinery,2016,47 (12):111-118.(in Chinese)
[25] 高悦,张爱平,杜章留,等.优化施氮条件下添加生物炭对宁夏灌区土壤条件和水稻生长的影响[J].中国农业气象, 2019,40(5):327-336.
Gao Y,Zhang A P,Du Z L,et al.Effects of biochar on soil conditions and rice growth in Ningxia irrigated area under optimized nitrogen application conditions[J].Chinese Journal of Agrometeorology,2019,40(5):327-336.(in Chinese)
[26] Hale S E,Nurida N L,Jubaedah,et al.The effect of biochar, lime and ash on maize yield in a long-term field trial in a Ultisol in the humid tropics[J].Science of the Total Environment, 2020,719.
[27] 于衷浦,杨浩鹏,纪利成,等.化肥减量配施生物炭基肥对玉米产量及土壤温室气体排放特征的影响[J].河南农业大学学报,2022,56(5):742-749.
Yu Z P,Yang H P,Ji L C,et al.Effects of biochar-based fertilizer addition on maize yield and greenhouse gas emission characteristics[J].Journal of Henan Agricultural University,2022,56(5):742-749.(in Chinese)
[28] Liu Q,Liu B,Zhang Y,et al.Biochar application as a tool to decrease soil nitrogen losses(NH3volatilization,N2O emissions,and N leaching) from croplands:options and mitigation strength in a global perspective[J].Global Change Biology,2019,25(6):2077-2093.
[29] 魏永霞,朱畑豫,刘慧.连年施加生物炭对黑土区土壤改良与玉米产量的影响[J].农业机械学报,2022,53(1):291-301.
Wei Y X,Zhu T Y,Liu H.Effects of successive application of biochar on soil improvement and maize yield of black soil region[J].Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):291-301.(in Chinese)
[30] 吴金水,李勇,童成立,等.亚热带水稻土碳循环的生物地球化学特点与长期固碳效应[J].农业现代化研究,2018, 39(6):895-906.
Wu J S,Li Y,Tong C L,et al.The key geo-biochemical processes of the long-term carbon sequestration and its mechanisms in the subtropical paddy soils[J].Research of Agricultural Modernization,2018,39(6):895-906.(in Chinese)
[31] 胡钧铭,黄忠华,罗维钢,等.蕉肥间作下微喷灌对蕉园土壤水氮动态及香蕉产量的影响[J].广西植物,2018,38(6): 710-718.
Hu J M,Huang Z H,Luo W G,et al.Effects of micro- sprinkler irrigation on soil water and nitrogen and yield under banana-mung bean intercropping[J].Guihaia,2018,38 (6):710-718.(in Chinese)
[32] 黄太庆,马煜春,熊正琴,等.不同种植制度对稻田旱作季节CH4和N2O排放的影响[J].生态与农村环境学报,2010, 26(6):519-523.
Huang T Q,Ma Y C,Xiong Z Q,et al.CH4and N2O emissions from paddy field during the upland crop growing season in relation to cropping pattern[J].Journal of Ecology and Rural Environment,2010,26(6):519-523.(in Chinese)
[33] 唐海明,肖小平,汤文光,等.长期施肥对双季稻田甲烷排放和关键功能微生物的影响[J].生态学报,2017,37(22): 7668-7678.
Tang H M,Xiao X P,Tang W G,et al.Effects of long-term fertilizer treatments on CH4fluxes and key functional microorganisms in a double-cropping paddy field[J].Acta Ecologica Sinica,2017,37(22):7668-7678.(in Chinese)
[34] 汪勇,吕茹洁,黎星,等.生物炭与氮肥施用对双季稻田温室气体排放的影响[J].中国稻米,2021,27(1):20-26.
Wang Y,Lv R J,Li X,et al.Effects of biochar and nitrogen incorporation on greenhouse gas emissions in double rice-cropping system[J].China Rice,2021,27(1):20-26.(in Chinese)
[35] 孟梦,吕成文,李玉娥,等.添加生物炭对华南早稻田CH4和N2O排放的影响[J].中国农业气象,2013,34(4):396-402.
Meng M,Lv C W,Li Y E,et al.Effect of biochar on CH4and N2O emissions from early rice field in south China[J]. Chinese Journal of Agrometeorology,2013,34(4): 396-402. (in Chinese)
[36] 王紫君,王鸿浩,李金秋,等.椰糠生物炭对热区双季稻田N2O和CH4排放的影响[J].环境科学,2021,42(8):3931-3942.
Wang Z J,Wang H H,Li J Q,et al.Effects of coconut chaff biochar amendment on methane and nitrous oxide emissions from paddy fields in hot areas[J].Environmental Science,2021,42(8):3931-3942.(in Chinese)
[37] Wang Y,Zhang J,Kuang S,et al.Effcts of wheat straw and its biochar application on soil physiochemical properties and organic carbon fractions in flue-eured tobacco field[J]. Joumal of Plant Nutition and Fertitizer,2020,26(2):285- 294.
[38] 廖添怀,李欢,王艳玲.稻秆及稻秆生物炭添加对稻田红壤有机碳组分及CH4和CO2累计排放量的影响[J].农业环境科学学报,2022,41(7):1598-1609.
Liao T H,Li H,Wang Y L.Effects of addition of rice straw and rice straw biochar on soil organic carbon fractions and cumulative emissions of CH4and CO2in reddish paddy soil[J].Journal of Agro-Environment Science,2022,41(7): 1598-1609.(in Chinese)
[39] 江明华,程建中,李心清,等.生物炭对农田土壤CO2排放的影响研究进展[J].地球与环境,2021,49(6):726-736.
Jiang M H,Cheng J Z,Li X Q,et al.The effect of biochar on the farmland soil CO2emission:a review[J].Earth and Environment,2021,49(6):726-736.(in Chinese)
[40] 高尚志,刘日月,窦森,等.不同施量生物炭对土壤团聚体及其有机碳含量的影响[J].吉林农业大学学报,2022,44 (4):421-430.
Gao S Z,Liu R Y,Dou S,et al.Effects of different application rates of biochar on soil aggregates and their organic carbon content[J].Journal of Jilin Agricultural University,2022,44(4):421-430.(in Chinese)
[41] 范靖尉,白晋华,任寰宇,等.减氮和施生物炭对华北夏玉米−冬小麦田土壤CO2和N2O排放的影响[J].中国农业气象,2016,37(2):121-130.
Fan J W,Bai J H,Ren H Y,et al.Effects of reducing nitrogen and biochar application on CO2and N2O emissions from summer maize-winter wheat field in north China[J]. Chinese Journal of Agrometeorology,2016,37(2):121-130. (in Chinese)
[42] 郭琴波,王小利,段建军,等.氮肥减量配施生物炭对稻田有机碳矿化及酶活性影响[J].水土保持报,2021,35(5): 369-374.
Guo Q B,Wang X L,Duan J J,et al.Effects of nitrogen reduction combined with biochar application on organic carbon mineralization and enzyme activity in paddy field [J].Journal of Soil and Water Conservation,2021,35(5): 369-374.(in Chinese)
[43] 马雯琪,蒋靖佰伦,李典鹏,等.施用生物质炭5年后夏玉米土壤呼吸研究[J].农业资源与环境学报,2021,38(1):111- 118.
Ma W Q,Jiang J B L,Li D P,et al.Effect of biochar application on soil respiration in a summer maize crop after five years[J].Journal of Agricultural Resources and Environment, 2021,38(1):111-118.(in Chinese)
[44] 宋敏,齐鹏,蔡立群,等.不同生物质炭输入水平下黄绵土N2O 日排放特性[J].干旱地区农业研究,2017,35(4):137- 144.
Song M,Qi P,Cai L Q,et al.Diurnal variations of gases emission in loessial soil under biochar application[J]. Agricultural Research in the Arid Areas,2017,35(4): 137-144.(in Chinese)
[45] Teutscherova N,Vazquez E,Masaguer A,et al.Comparson of lime and biochar-mediated pH changes in nitrification and ammonia oxidizers in degraded acid soil[J].Biology and Fertility of Soils,2017,53(7):811-821.
[46] Luo X,Wang A,Hou C,et al.The limited effects of carbona-ceous material amendments on nitrite-oxidizing bacteria in an Alfisol[J].Science of the Total Environment, 2020,734:139398.
[47] 谢立勇,许婧,郭李萍,等.生物炭对棕壤玉米田CO2与N2O排放的影响[J].中国农业气象,2018,39(8):493-501.
Xie L Y,Xu J,Guo L P,et al.Impacts of biochar application on CO2and N2O emissions from brown soil with maize[J].Chinese Journal of Agrometeorology,2018,39(8): 493-501.(in Chinese)
[48] 赵光昕,张晴雯,刘杏认,等.农田土壤硝化反硝化作用及其对生物炭添加响应的研究进展[J].中国农业气象,2018, 39(7):442-452.
Zhao G X,Zhang Q W,Liu X R,et al.Nitrification and denitrification and its response to biochar addition in agricultural soil:a review[J].Chinese Journal of Agrometeorology, 2018,39(7):442-452.(in Chinese)
[49] 宋开付,于海洋,张广斌,等.川中丘陵区覆膜再生稻田N2O 排放规律研究[J].农业环境科学学报,2019,38(6): 1381-1387.
Song K F,Yu H Y,Zhang G B,et al.N2O emissions from ratoon paddy fields covered with plastic film mulchi-ng in the hilly area of central Sichuan,China[J].Journal of Agro- Environment Science,2019,38(6):1381-1387.(in Chinese)
[50] 杨彩迪,宗玉统,卢升高,等.不同生物炭对酸性农田土壤性质和作物产量的动态影响[J].环境科学,2020,41(4): 1914-1920.
Yang C D,Zong Y T,Lu S G,et al.Dynamic effects of different biochars on soil properties and crop yield of acid farmland[J].Environmental Science,2020,41(4):1914-1920. (in Chinese)
[51] Pan F,Li Y Y,Chapman S J,et al.Effect of rice straw application on microbial community and activity in paddy soil under different water status[J].Environmental Science and Pollution Research,2016,23(6):5941-5948.
[52] 秦玲玲.关于土地休耕与生态补偿的文献综述[J].农业经济,2020(2):88-90.
Qin L L.Literature review on land fallow and ecological compensation[J].Agricultural Economy,2020(2):88-90.(in Chinese)
[53] 宋大利,习向银,黄绍敏,等.秸秆生物炭配施氮肥对潮土土壤碳氮含量及作物产量的影响[J].植物营养与肥料学报,2017,23(2):369-379.
Song D L,Xi X Y,Huang S M,et al.Effects of combined application of straw biochar and nitrogen on soil carbon and nitrogen contents and crop yields in a fluvoaquic soil[J].Plant Nutrition and Fertilizer Science,2017,23(2): 369-379.(in Chinese)
[54] 刘慧敏,张圣也,郭怀刚,等.生物炭对谷子幼苗生长及光合特性的影响[J].干旱地区农业研究,2020,38(1):86-91.
Liu H M,Zhang S Y,Guo H G,et al.Effects of biochar supplement in soil on growth and photosynthetic characteristics of millet seedlings[J].Agricultural Research in the Arid Areas,2020,38(1):86-91.(in Chinese)
[55] 吴震,董玉兵,熊正琴.生物炭施用3年后对稻麦轮作系统CH4和N2O综合温室效应的影响[J].应用生态学报,2018, 29(1):141-148.
Wu Z,Dong Y B,Xiong Z Q.Effects of biochar application three-years ago on global warming potentials of CH4and N2O in a rice-wheat rotation system[J].Chinese Journal of Applied Ecology,2018,29(1):141-148.(in Chinese)
[56] 向伟,王雷,刘天奇,等.生物炭与无机氮配施对稻田温室气体排放及氮肥利用率的影响[J].中国农业科学,2020, 53(22):4634-4645.
Xiang W,Wang L,Liu T Q,et al.Effects of Biochar plus inorganic nitrogen on the greenhouse gas and nitrogen use efficiency from rice fields[J].Scientia Agricultura Sinica, 2020,53(22):4634-4645.(in Chinese)
Effect of Isonitrogen Substitution for Biochar Application on Greenhouse Gas Emissions from Southern No-till Early Rice Fields
LI Shi1,2, ZHANG Jun-hui1, HU Jun-ming1, ZHOU Feng-jue2, LI Ting-ting1, XU Mei-hua1,2, MA Jie-ping1,2,LU Zhan-cai1,2
(1.Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciencess/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, China;2.Agricultural College, Guangxi University, Nanning 530004)
Biochar has been recognized as a new exogenous organic substrate and is often used as an important organic resource for carbon reduction because of its stability, adsorption and carbon nutrient richness. The study was conducted in a typical indica rice area of Nanning from 2021 to 2022, against the background of having high early indica rice yields, simultaneous rain and heat, and unique cropping system. In this paper, authors set three treatments: Control treatment (CK): no fertilizer. Inorganic N input (T1, chemical fertilizer) treatment: chemical fertilizer application at conventional fertilizer level, compound fertilizer 800kg·ha−1, urea 260.87kg·ha−1, potassium 193.55kg·ha−1. Inorganic N with organic N (T2, biochar + chemical fertilizer) treatment: biochar 4000kg·ha−1, compound fertilizer 738.67kg·ha−1, urea 146.09kg·ha−1, potassium 34.19kg·ha−1. The cumulative greenhouse gas emissions, emission equivalents, rice yield traits and the effect of isonitrogen substitution of biochar application on greenhouse gas emissions and rice yield in early southern rice fields were analyzed by regular monitoring of soil greenhouse gas emissions in rice fields during the rice reproductive period using a split static box-meteorological chromatography method 5d after rice transplanting, this study provide a basis for optimizing intensive early rice low-carbon cultivation and reduce fertilizer and increase efficiency. The results showed that: (1) biochar can reduce CH4and CO2emissions from paddy soils, and reduce the combined emission equivalent by slowing down CH4emissions. The application of fertilizer with biochar can mitigate the increase of greenhouse gas carbon emissions caused by fertilizer application alone, and its delayed effect of mitigating CO2emissions is more obvious. In biochar treatment (T2), compared with the chemical fertilizer treatment (T1), the maximum CH4emission flux in 2021 was reduced by 41.38% and the cumulative emission was reduced by 31.25%, and the maximum emission flux in 2022 was reduced by 50.50% and the cumulative emission was significantly reduced by 50%, and the combined emission equivalents of 2 years were significantly lower than those of the T1 treatment. The maximum CO2emission flux and cumulative emission in 2021 were reduced by 57.38% and 37.68%, respectively, compared with the T1 treatment, and the corresponding reduction in 2022 was 16.06% and 35.52% compared to the T1 treatment. (2) Biochar can suppress N2O emissions, significantly reduce cumulative emissions, and reduce nitrogen source emission equivalents. Compared to the T1 treatment, the maximum N2O emission flux was reduced by 5.43% and the cumulative emission was significantly reduced by 33.53% in 2021 in T2 treatment; the maximum emission flux was reduced by 73.75% and the cumulative emission was significantly reduced by 54.33% in 2022, and there was no significant change with the CK treatment. (3) Biochar facilitates the optimization of intensive early indica rice cultivation structure and enhances the productivity of early indica rice. After biochar was put into the paddy field for 2 years, the effect of increasing yield became more and more obvious, and the theoretical yield of T2 treatment was 1.02−1.33 times that of T1 treatment, while the actual yield was 1.06−1.32 times that of T1 treatment. Fertilizer with biochar reduced greenhouse gas emissions and increased rice yield in early indica rice fields, which can be used as an optimization model for low-carbon production of intensive early indica rice in the south.
Greenhouse gas; Biochar; Low carbon optimization; Intensive rice field; Early indica rice
10.3969/j.issn.1000-6362.2023.10.001
收稿日期:2022−11−19
国家自然科学基金项目(41661074);广西“新世纪十百千人才工程”专项资金(2018221);广西科技基地和人才专项(2022AC18008);广西农业科学院创新团队项目(桂农科2021YT040)
通讯作者:胡钧铭,研究员,主要从事农业有机资源利用与生境调控及逆境生态研究,E-mail:jmhu06@126.com
李诗,E-mail:2012038808@qq.com;张俊辉,E-mail:281113990@qq.com
李诗,张俊辉,胡钧铭,等.等氮替代施入生物炭对南方免耕早稻田温室气体排放的影响[J].中国农业气象,2023,44(10):863-875