海藻水溶肥和黄腐酸水溶肥对富士苹果树体生长及果实品质的影响

2023-10-04 16:01刘丽魏志峰石彩云高登涛刘军伟司鹏
果树学报 2023年5期
关键词:苹果

刘丽 魏志峰 石彩云 高登涛 刘军伟 司鹏

摘要:【目的】研究施用海藻水溶肥和黄腐酸水溶肥对M9T337 自根砧富士苹果根系生长、叶片生长和果实品质的影响,对两种功能性肥料的使用效果和CI-600 根系原位监测系统在苹果树根系生长中的应用效果进行评价。【方法】以5年生M9T337 矮化自根砧阿珍富士为材料,用复合肥(对照)、等量NPK 海藻水溶肥(AF)、等量NPK 黄腐酸水溶肥(FF)处理苹果树,用CI-600 根系原位监测系统对根系进行监测,同时测定了各处理苹果叶片生长情况和果实品质。【结果】两种新型肥料均有促进根系生长的作用,不同施肥处理的叶片叶绿素相对含量、百叶鲜质量、百叶干质量、单果质量、果形指数、可溶性固形物含量、固酸比、维生素C含量均高于对照。不同施肥处理对果皮着色也有不同程度改善。用主成分降维分析进行综合效果的评价,综合效果由高到低为:AF>FF>对照。【结论】海藻水溶肥和黄腐酸水溶肥均促进了富士苹果根系的生长,同时提高了叶片叶绿素相对含量、净光合速率和叶片中干物质含量,提升了果实品质。海藻水溶肥处理综合效果优于黄腐酸水溶肥。CI-600 根系原位监测系统在苹果根系观测中具有较好的应用效果。

关键词:苹果;根系原位监测;海藻水溶肥;黄腐酸水溶肥

中图分类号:S661.1 文献标志码:A 文章编号:1009-9980(2023)05-0893-09

我国是世界苹果起源中心之一,也是世界第一大苹果生产国[1]。2019 年我国苹果栽培面积1 978.10 khm2 ,产量4 242.54 万t,分别占世界近一半,在国际市场上具有举足轻重的地位[2]。

海藻水溶肥和黄腐酸水溶肥是两种新型的功能性肥料。海藻水溶肥是含有海藻提取物的一种新型肥料,海藻提取物含海藻寡糖、海藻酸、天然有机酸等多种陆源植物无法比拟的有机态营养和调节作物生长的类内源激素活性物质,可直接被作物根系吸收利用,具有促进作物生长、增加产量、增强抗性、改善品质等多种作用[3-4]。黄腐酸是腐殖酸类物质的三大组分之一,不仅能够改良土壤团粒结构、提高土壤肥力,而且还能促进作物生长、增强抗逆性、提高作物产量和品质[5-6]。

根系是果树的重要器官之一,是果树与土壤中水、肥、气、热交互作用的唯一桥梁,果树生长发育所需要的水分、养分及其合成的各种生理活性物质都是通过根系来完成的,根系分布的形态能够反映土壤中的物质和能量被果树利用的情况以及生产力水平[7-8]。目前,田间果树根系测定一般都是采用壕沟法等破坏性方法,费工费力,并且很难做到持续观测。

CI-600 根系原位监测系统是一款效果较好的根系监测系统,可通过根管持续对根系进行非破坏性监测,在林木、作物上已有应用,但在果树上应用较少。

笔者在本研究中对生产上主栽的富士苹果进行海藻水溶肥和黄腐酸水溶肥等新型肥料处理,测定了树体叶片生长和果实品质等,同时应用CI-600 根系原位监测系统对根系生长进行了监测,旨在评价这两种新型肥料在苹果树上的应用效果,为生产提供指导,同时对CI-600 根系原位监测系统在苹果根系观测中的应用效果进行评价,为以后的应用提供参考。

1 材料和方法

1.1 试验材料

试验于2020 年在河南省灵宝市寺河山中国农业科学院郑州果树研究所苹果试验站进行。以5 年生M9T337 矮化自根砧阿珍富士(Aztec Fuji)为材料,株行距为1.2 m×3.5 m,树体生长一致,树形为高纺锤形。生理落果后,所用试验树按照5 个果·cm-2干截面积进行留果。

供试土壤为壤砂土,基本性状:有机质含量(w,后同)15 g · kg-1,全氮含量5.09 mg· g-1,有效磷含量63.92 mg·kg-1,速效钾含量131.67 mg?kg-1,pH7.14。

供试肥料为:复合肥(15-15-15)、海藻水溶肥(5-6-9,海藻提取物含量≥60%)、黄腐酸水溶肥(10-10-10,矿源黄腐酸含量≥3%)、尿素(N含量46%)、过磷酸钙(P2O5含量12%)、硫酸钾(K2O含量52%)。

1.2 試验设计

试验设计3 个处理,分别为复合肥(对照)、海藻水溶肥(AF)、黄腐酸水溶肥(FF)。选择生长势一致的植株进行试验,每个处理3 次重复,单株小区,完全随机设计,共计9 株。各处理按氮磷钾分别为360 kg·hm-2、180 kg·hm-2、360 kg·hm-2施用,不足部分由无机肥补充。所有处理分3 次施入:开花前(3月20 日)、幼果期(5 月20 日)、果实膨大期(7 月20日),各时期氮磷钾投入量分别是全年投入量的40%、30%、30%。水溶肥处理均采用简易装置的水肥一体化施肥技术,肥料滴在距离主干两侧40 cm处。其他田间管理一致。

2020 年1 月,对选择的试验树进行预埋管。每株预埋入2 根微根管,南北两侧各一根。在距离主干30 cm 处,垂直于地面插入土壤中。安装时微根管正对中心干,埋于两株中间,不影响行间管理。微根管外径70 mm,内径64 mm,长度100 cm,地面外露20 cm,埋入土壤垂直深度80 cm。自5 月开始每月用原位根系扫描仪CI-600 进行根部扫描,直到11月底为止,每月扫描一次。

1.3 试验方法

1.3.1 根系参数获取分析 将不同处理不同方向扫描图片根据土壤垂直位置分为0~20 cm、20~40 cm、40~60 cm、60~80 cm 等4 层分别进行标记。利用WinRHIZO Tron MF 2019 分析软件对采集的图像进行根系的长度、表面积、体积等参数的分析,获取相关的根系数据。不同标记图片根据土层位置拼接成根系完整图片。

在利用微根管技术获得根系参数时,常将面积单位转换成体积单位[9]。以单位土壤体积(S×D)为基础计算相关指标,S 为单个微根管观察的土壤面积,D 为微根管能够观测到的土层厚度,本试验中S=7π×80 cm2,D=0.25 cm。根长密度(mm· cm-3)=L/(S×D),L 为单根微根管根总长。根表面积密度(mm2 · cm-3)=SA(/ S×D),SA为单根微根管根总表面积(mm2)。根体积密度 V(mm3 · m- 3)=V(/ S ×D)。V 为单根微根管根总体积(mm3)。根条数密度(×103 ·m-3)=TN(/ S×D)。TN为单根微根管根总条数(×103)。单根长(mm)=总根长密度(mm·cm-3)/根条数密度(×103 ·m-3)[10]。

1.3.2 叶片指标测定 于8 月上中旬取处理当年生枝条中部外围健康成熟完整叶片进行测定,每个处理取10 枚叶片,每个处理3 个重复。叶绿素含量采用SPAD-502 叶绿素仪测定;叶面积采用叶面积仪LI-3000C 进行测定;光合指标在晴天8:00—10:00,用美国PPSystem 公司的CIRAS-3 便携式光合仪测定;用电子天平称量百叶鲜质量;叶片称取质量后,置烘箱105 ℃杀青15 min,再于80 ℃烘箱烘干至恒质量,48 h 后测定百叶干质量。

1.3.3 果实品质测定 10月下旬果实成熟期每处理在中部外围随机采10 个果,样品带回实验室进行测量分析。单果质量用天平进行测定;果形指数用游标卡尺进行测定;可溶性固形物含量用日本Atago-PAL-1 型数字糖度计测定;果实硬度用GY-1 果实硬度计测定;可滴定酸含量采用韩国GMK-835N水果酸度计进行测定;果实色差采用NR60CP 进行测定L、a和b,每个果取3个点测得的各项数据取平均值;维生素C含量依照GB 5009.86—2016 进行测定。

1.3.4 试验数据处理 使用Excel 整理试验数据和作图,利用SPASS 22.0 进行方差分析。

采用模糊数学隶属函数法对不同处理的测定指标进行综合评价。

用于测定指标综合评价的隶属函数值[X(μ1),X(μ2)]的计算公式为[11]:

X(μ1)=(Xi-Xmin)(/ Xmax-Xmin),

i=1,2,3,…,n;(1)

X(μ2)=1-(Xi-Xmin)(/ Xmax-Xmin),

i=1,2,3,…,n。(2)

式中,Xi为第i 个综合指标;Xmin表示第i 个综合指标的最小值,Xmax表示第i 个综合指标的最大值。如某一指标与处理呈正相关,则用X(μ1)表示;如某一指标与处理呈负相关,则用X(μ2)表示。

2 结果与分析

2.1 不同处理对富士苹果根系生长的影响

通过监测发现,不同处理中M9T337 自根砧富士根系多分布在20~40 cm土层,其次是40~60 cm土层,0~20 cm 和60~80 cm 土层根系分布较少。其中对照处理(图1)分布的根系密度明显少于AF(图2)和FF(图3)处理,5—6 月有少量新根长出,7—10 月基本没有新根长出,根系颜色变暗,活力弱;AF处理根系分布密度大且新生细根居多,且多数根系的分布要比对照和FF处理深。AF处理在不同时期一直都有新根长出,通过图片可以看到土壤中有大量新生的白色毛细根系,说明根系生长旺盛,生长活力强;处理FF 的根系分布密度高,但新生白根密度明显少于处理AF。处理FF 在5—6 月有大量新根长出,7 月新生根变少,8 月长出一些新生的毛细根,9—10月新生根变少,根系颜色变暗,活力弱。

从表1 可以看出,根长密度生长量、根表面积密度生长量、根条数密度生长量从大到小依次为:AF>FF>对照。其中处理AF根长密度生长量比对照提高300%,比处理FF提高145%;处理AF根表面积密度生长量比处理FF提高245%;处理AF根条数密度生长量比对照提高267% ,比处理FF 提高57.14%。根平均直径生长量最大的是处理FF,其次是处理AF,对照最小。总体来说处理AF、FF 对根系生长均有促进作用。

2.2 不同处理对富士苹果叶片面积、叶绿素相对含量、百叶鲜质量、百叶干质量的影响

通过不同施肥处理可以看出(表2),施肥处理的叶片面积、叶绿素相对含量、百叶鲜质量、百叶干质量均高于对照,其中处理AF的叶片面积最大,其次是处理FF,分别比对照提高7.18%、4.46%;处理AF的叶绿素相对含量比对照提高4.50%,处理FF的叶绿素相对含量比对照提高3.22%;处理AF的百叶鲜质量和百叶干质量均大于处理FF,两个处理的百叶鲜质量分别比对照提高9.04%和2.63%,百叶干质量分别比对照提高4.55%和0.88%。

2.3 不同处理对富士苹果叶片光合指标的影响

通过表3 可以看出,不同施肥处理的净光合速率均高于对照,分别为15.9 μmol · m- 2 · s- 1 和15.07 μmol·m-2·s-1,分别高于对照8.16%和2.52%;处理对照的胞间CO2浓度和蒸腾速率最高,高于处理AF和FF;处理AF的气孔导度最高为454.11mmol·m-2·s-1,其次是处理FF为448.78 mmol·m-2·s-1,对照最低。

2.4 不同处理对富士苹果果实品质的影响

不同施肥处理的单果质量、果形指数、可溶性固形物含量、固酸比、维生素C含量均高于对照(表4),其中处理AF 和FF 的单果质量分别比对照提高16.86%和12.00%;可溶性固形物含量则分别比对照提高4.35%和3.59%;固酸比分别比对照提高0.97%和31.55%;维生素C含量则分别比对照提高12.74%和21.66%。果实硬度从大到小依次为FF>AF>对照。

2.5 不同处理对富士苹果果皮着色的影响

通过对果皮色差测定可以发现处理后的果皮亮度值L、红绿色差值a 和黄蓝色差值b 均高于对照。处理AF 的L 值最大为48.13,处理FF 的a 和b 值最大,分别为36.22 和12.80(图4)。

2.6 不同处理对富士苹果产量的影响

通过表5 可以看出,不同处理的产量均大于对照的2 647.35 kg · 666.7 m-2,且差异显著。两个处理产量之间差异不显著,其中处理AF 产量最高为3 217.45 kg · 666.7 m-2,比对照提高21.53%;其次是处理FF,产量为3 162.57 kg · 666.7 m-2,比對照提高19.46%。

2.7 不同处理的各项指标综合评价

利用隶属函数法对3 个处理21 个指标的隶属函数值进行了计算,并将平均隶属函数值进行排序(表6),处理AF的平均隶属函数值最高为0.73,处理FF平均隶属函数值为0.69,对照平均隶属函数值为0.11,说明处理AF 和FF 均优于对照,其中处理AF的叶片指标、果实品质指标和根系生长指标等平均隶属函数值最高,效果优于处理FF。

3 讨论

3.1 原位根系扫描仪对富士苹果根系的监测效果

用微管观测得到的参数主要有根数、根长密度、比根长、延长指数、净根系生产长度、根生长速率、根死亡速率等,其中根系长度、根系表面积、根系体积、根尖数等参数作为分析根系的主要指标[12-13]。在本试验中可以看到,几种处理根系多分布在20~40 cm、40~60 cm土层,海藻水溶肥处理的根长密度生长量比对照高300%,比黄腐酸水溶肥高145%;根表面积密度生长量比黄腐酸水溶肥高245%;根条数密度生长量比对照高267%,比黄腐酸水溶肥高57.14%。根平均直径生长量最大的是黄腐酸水溶肥,其次是海藻水溶肥,对照最小。果树是多年生植物,根系生长情况由前一年贮藏营养所决定。在同等生长管理施肥条件下,可认为两种肥料促进果树生根作用显著。其中海藻水溶肥促发新根作用优于黄腐酸水溶肥。黄腐酸水溶肥中的黄腐酸分子可以通过植物根系吸收进入植物体,提高细胞膜的通透性、刺激植物的生长和提高产量,并已在小麦、玉米、红薯、油菜、葡萄等多种作物上应用[14-16]。海藻水溶肥里面含有海藻酸类物质,具有促进植物生长发育和根系生长,以及果实膨大的作用,能够提高果实单果质量[17]。这和前人研究结果一致。

微根管技术作为一种田间非破坏性根系原位观测的方法,是目前直接观察细根较好的方法之一,是一种可供长期观察根系的研究方法[18-19]。本试验只观测了一年数据,2021 年因河南大雨,微根管损坏严重,未能持续观测。微根管技术观测的精准程度与微根管安装的位置和倾斜角度密切相关。本试验2019 年因安装位置和倾斜角度问题未能观测到根系。利用微根管进行观测时,较难分清土壤中的其他根系和果树根系,会对观测结果带来一定影响。尽管与传统方法相比,微根管技术已经节省了大量人力和物力,但大量照片或影像资料的后期分析依然费时费力,限制了实验数据的分析数量和数据规模,迫切需要新技术的发明或进步来解决此方面问题[20]。

3.2 不同施肥处理对富士苹果叶片生长、果实品质的影响

海藻类物质肥料能够提高果实可溶性固形物含量,降低石细胞数量,提升果实品质[11]。黄腐酸不仅有抗蒸腾作用,还有促进根系对营养元素的吸收、提高叶绿素含量的作用,提高果实的产量和品质[21]。

在本研究中黄腐酸水溶肥处理的叶绿素相对含量比对照提高4.50%,海藻水溶肥处理的叶绿素相对含量比对照提高3.22%,处理后百叶鲜质量和百叶干质量也都高于对照。不同施肥处理的单果质量、果形指数、可溶性固形物含量、固酸比、维生素C含量均高于对照,其中海藻水溶肥和黄腐酸水溶肥处理后的单果质量分别比对照提高16.86%和12.00%;可溶性固形物含量则分别比对照提高4.35%和3.59%;固酸比分别比对照提高0.97%和31.55%;维生素C含量则分别比对照提高12.74%和21.66%。不同处理对果皮着色也有不同程度提高。

4 结论

黄腐酸水溶肥和海藻水溶肥处理后,促进了富士苹果根系生长,同时提高了叶片叶绿素相对含量、净光合速率和叶片中干物质含量,提升了果实品质,并不同程度促进了着色。利用隶属函数值进行综合评价得出,海藻水溶肥效果优于黄腐酸水溶肥。

CI-600 根系原位监测系统在苹果根系观测中具有较好的应用效果。

参考文献References:

[1] 高源,刘凤之,王昆,王大江,龚欣,刘立军. 苹果部分种质资

源分子身份证的构建[J]. 中国农业科学,2015,48(19):3887-

3898.

GAO Yuan,LIU Fengzhi,WANG Kun,WANG Dajiang,Gong

Xin,LIU Lijun. Establishment of molecular ID for some apple

germplasm resources[J]. Scientia Agricultura Sinica,2015,48

(19):3887-3898.

[2] National Bureau of Statistics[DB/OL]. [2022-12-01]. https://data.

stats.gov.cn/easyquery. htm?cn=C01.

[3] 劉金萍,刘艳丽,邵雨晴,李银辉,王修康,薛韧,李成亮. 海藻

复合肥对夏玉米产量及养分吸收利用的影响[J]. 河南农业大

学学报,2021,55(3):429-434.

LIU Jinping,LIU Yanli,SHAO Yuqing,LI Yinhui,WANG Xiukang,

XUE Ren,LI Chengliang. Effect of seaweed compound

fertilizer on yield and nutrient absorption and utilization of summer

maize[J]. Journal of Henan Agricultural University,2021,

55(3):429-434.

[4] BATTACGARYYA D,BABGOHARI M Z,RATHOR P,

PRITHIVIRAJ B. Seaweed extracts as biostimulants in horticulture[

J]. Scientia Horticulturae,2015,196:39-48.

[5] 王智,张惠芬,秦谊,李宝才,张敉. 矿源黄腐酸与生化黄腐酸

热裂解组分的对比研究[J]. 腐殖酸,2020(5):20-26.

WANG Zhi,ZHANG Huifen,QIN Yi,LI Baocai,ZHANG Mi.

A comparative study of pyrolytic components from mineral-extracted

and biodegradable fulvic acids[J]. Humic Acid,2020(5):

20-26.

[6] 刘小媛,杨劲松,姚荣江. 化肥减量配施黄腐酸降低盐渍农田

NaCl 含量提高氮磷养分有效性的协同效应[J]. 植物营养与肥

料学报,2021,27(8):1339-1350.

LIU Xiaoyuan,YANG Jinsong,YAO Rongjiang. Synergistic effects

of fertilizer reduction and fulvic acid application on decreasing

NaCl content and N,P availability of salinized soil[J].

Journal of Plant Nutrition and Fertilizers,2021,27(8):1339-

1350.

[7] 郗荣庭. 果树栽培学总论[M]. 北京:中国农业出版社,2000.

XI Rongting. General introduction to fruit tree cultivation[M].

Beijing:China Agricultural Press,2000.

[8] 杨凯,郝锋珍,续海红,郭向飞,张鹏飞. 果树根系分布研究进

展[J]. 中国农学通报,2015,31(22):130-135.

YANG Kai,HAO Fengzhen,XU Haihong,GUO Xiangfei,

ZHANG Pengfei. Research progress of the root distribution[J].

Chinese Agricultural Science Bulletin,2015,31(22):130-135.

[9] 白文明,程维信,李凌浩. 微根窗技术及其在植物根系研究中

的应用[J]. 生态学报,2005,25(11):3076-3081.

BAI Wenming,CHENG Weixin,LI Linghao. Applications of

minirhizotron techniques to root ecology research[J]. Acta Ecologica

Sinica,2005,25(11):3076-3081.

[10] 孟红志,姜璇,陈修德,李中勇,徐继忠. SH40 中间砧和自根

砧对苹果根系生长和内源激素含量的影响[J].园艺学报,

2018,45(6):1193-1203.

MENG Hongzhi,JIANG Xuan,CHEN Xiude,LI Zhongyong,

XU Jizhong. Effects of SH40 interstocks and scion-roots on apple

root growth and content of endogenous hormones[J]. Acta

Horticulturae Sinica,2018,45(6):1193-1203.

[11] 朱迎春,安国林,李卫华,刘君璞,孙德玺. 海藻酸水溶肥对西

瓜生长及产量的影响[J]. 果树学报,2020,37(12):1898-1906.

ZHU Yingchun,AN Guolin,LI Weihua,LIU Junpu,SUN Dexi.

Effects of alginate water soluble fertilizer on growth and quality

of watermelon[J]. Journal of Fruit Science,2020,37(12):1898-

1906.

[12] 黃刚,赵学勇,苏延桂. 科尔沁沙地3 种草本植物根系生长动

态[J]. 植物生态学报,2007,31(6):1161-1167.

HUANG Gang,ZHAO Xueyong,SU Yangui. Root dynamics of

three grasses in Horoin sandy land of China[J]. Journal of Plant

Ecology,2007,31(6):1161-1167.

[13] 姜慧敏,宝音陶格涛. 黄花苜蓿根系生长特征研究[J]. 中国草

地学报,2014,36(1):53-57.

JIANG Huimin,BAOYIN Taogetao. Study on the root growth

characteristics of Medicado falcata L.[J]. Chinese Journal of

Grassland,2014,36(1):53-57.

[14] 朱会调,高登涛,白茹,冯建荣,魏志峰,刘丽. 黄腐酸对阳光

玫瑰葡萄果实品质及产量的影响[J]. 石河子大学学报(自然科

学版),2021,39(5):590-596.

ZHU Huitiao,GAO Dengtao,BAI Ru,FENG Jianrong,WEI

Zhifeng,LIU Li. Effects of fulvic acid on berry quality and

yield of Shine Muscat grape[J]. Journal of Shihezi University

(Natural Science),2021,39(5):590-596.

[15] 張永霞,张英杰,巩冠群,徐恒山,袁飞. 黄腐酸对植物生长作

用效果研究[J]. 应用化工,2021,50(4):1069-1072.

ZHANG Yongxia,ZHANG Yingjie,GONG Guanqun,XU Hengshan,

YUAN Fei. Effect of fulvic acid on plant growth[J]. Applied

Chemical Industry,2021,50(4):1069-1072.

[16] 朱会调,高登涛,白茹,冯建荣,魏志峰,刘丽. 黄腐酸对土壤

养分、葡萄品质和产量的影响[J]. 新疆农业科学,2021,58(4):

672-681.

ZHU Huitiao,GAO Dengtao,BAI Ru,FENG Jianrong,WEI

Zhifeng,LIU Li. Effects of fulvic acid on soil nutrients,grape

quality and yield[J]. Xinjiang Agricultural Science,2021,58(4):

672-681.

[17] ABDEL-MAWGOUD A M R,TANTAWAY A S,HAFEZ M M,

HABIB H A M. Seaweed extract improves growth,yield and

quality of different watermelon hybrids[J]. Research Journal of

Agriculture and Biological Sciences,2010,6(2):161-168.

[18] 全先奎,于水强,史建伟,于立忠,王政权. 微根管法和同位素

法在细根寿命研究中的应用及比较[J]. 生态学杂志,2007,26

(3):428-434.

QUAN Xiankui,YU Shuiqiang,SHI Jianwei,YU Lizhong,

WANG Zhengquan. Minirhizotron and radiocarbon methods:

their application and comparison in estimating fine root longevity[

J]. Chinese Journal of Ecology,2007,26(3):428-434.

[19] MAJDI H. Root sampling methods- applications and limitations

of the minirhizotron technique [J]. Plant and Soil,1996,185(2):

255-258.

[20] 牛学礼,南志标. 运用微根管技术研究草地植物细根的进展[J].

草业学报,2017,26(11):205-215.

NIU Xueli,NAN Zhibiao. Review of minirhizotron applications

for study of fine roots in grassland[J]. Acta Prataculturae Sinica,

2017,26(11):205-215.

[21] HARPER S M,EDWARDS D G,ASHER C J. Effects of organic

acid fractions extracted from Eucalyptus camaldulensis

leaves on root elongation of maize (Zea mays) in the presence

and absence of aluminium[J]. Plant and Soil,1995,171(1):189-

192.

猜你喜欢
苹果
快乐苹果镇
0分也能拿第一
第一个大苹果
收获苹果
拿苹果
梨与苹果
会说话的苹果
苹果丰收啦
洗苹果
祸从口出