李静,钱晨,林国冰,王龙,李亦扬,郑经东,尤晶晶,冷锁虎,左青松
油菜机栽毯苗培育的适宜供氮量研究
李静,钱晨,林国冰,王龙,李亦扬,郑经东,尤晶晶,冷锁虎,左青松
扬州大学农学院/江苏省作物栽培生理重点实验室/江苏省粮食作物现代产业技术协同创新中心,江苏扬州 225009
【目的】适宜机栽的油菜毯苗密度大,个体小,抗逆能力差,研究不同氮肥用量对油菜毯苗农艺性状、生理指标以及栽后活棵率的影响,明确油菜机栽毯苗培育的适宜供氮水平。【方法】于2020和2021年份以秦优10号和宁杂158两个油菜品种为供试材料,在子叶期喷施0.25 g N/盘基础上,于一叶一心期设置0(不施氮肥)、0.5、1.0、1.5和2.0 g N/盘共5个氮肥用量处理,播种后30 d测定农艺性状和生理指标,机栽后10 d田间调查活棵率。【结果】播种后30 d每盘存苗数的变化范围为627—669,随着供氮水平增加,存苗数呈先增加后降低。不同部位的含氮率随着氮肥用量的增加逐渐增加,地上部含氮率高于地下部,碳素含量随着供氮水平的增加总体上呈降低趋势,地下部碳素含量高于对应的地上部碳素含量。地上、地下部碳氮比的变化范围分别为6.98—9.69和12.35—16.26,随着供氮水平的增加均表现为下降趋势。随着氮肥用量增加,油菜毯苗株高、单株叶面积、鲜重、干重和水分含量逐渐增加,其中以地下部鲜重的增加幅度最大,秦优10号和宁杂158两个油菜品种2.0 g N/盘处理的地下部鲜重平均值与不施氮肥处理相比增加幅度分别为106.3%和95.0%。根颈直径和栽后活棵率随着氮肥用量的增加呈先增加后降低趋势,相同年份和品种试验中根颈直径均以1.5 g N/盘处理最高,不同处理栽后活棵率的变化范围为81.7%—97.1%,以1.0和1.5 g N/盘处理较高,均在95%以上,并且两者之间无显著差异。【结论】油菜毯苗培育过程中,在子叶期喷施0.25 g N/盘基础上,一叶一心期喷施1.0—1.5 g N/盘时,机械移栽后每盘存苗数较高,根颈粗、含氮率和碳氮比值适宜,栽后活棵率高。
油菜毯苗;供氮水平;碳氮比;水分含量;活棵率
【研究意义】油菜毯苗机械化移栽是一种新型的栽培模式,在油菜茬口较迟区域以及冬闲田区域有广阔的推广应用前景。油菜毯苗适合机械化高速栽插,但由于育苗密度大,苗体小,移栽时只有3—4张叶片左右,苗嫩,含水量高,栽后失水快,容易发生死苗,所以,栽培措施的合理应用非常重要。氮素作为作物生长最重要的营养元素,以往研究显示氮素供应水平对不同农作物的秧苗生长均有显著影响效应[1-3]。研究供氮水平对油菜毯苗生长的影响,可为油菜健壮毯苗培育提供理论依据。【前人研究进展】我国南方晚稻茬、双季稻茬区域,由于前茬水稻收获比较迟,油菜直播方式冬前生长时间短,生长量小,越冬期分化花芽少,抗寒力差[4-5],产量和种植效益低,而传统的人工育苗移栽油菜的种植方式费工费时,已不适应当前农业生产需求[6-7]。自2010年扬州大学与农业农村部南京农业机械化研究所开始联合探索油菜毯状苗机栽新型栽培技术。该项技术2018年度入选农业农村部发布的中国“十项重大引领性农业技术”,2019年度入选全国农业主推技术。以往传统的人工育苗移栽油菜研究指出,合理的氮肥运筹有利于培育油菜壮苗以及栽后尽快活棵[8]。油菜毯苗机械化移栽是一项栽培新技术,油菜毯苗的壮苗培育相关生理机制研究报道比较少。【本研究切入点】移栽作物的缓苗期是指作物移栽后从定植到完全成活所经历的过渡阶段,在水稻抛秧栽培技术中通常以立苗过程来反映缓苗期时间的长短,能否及时立苗也是决定抛秧成败的关键[9-10]。课题组前期对毯苗活棵过程的调查结果显示,油菜毯苗在机械移栽后一般6—10 d能直立生长,若达到10 d秧苗还不能直立生长,则会死亡或形成僵苗逐渐死亡[11],本研究以机械移栽后第10天内秧苗是否直立生长作为活棵依据,研究油菜播种后30 d毯苗生长性状及栽后活棵率对关键调控措施氮肥用量的响应。【拟解决的关键问题】设置不同的氮肥供应水平,调查和测定油菜毯苗移栽时存苗率、农艺性状和含氮率等,并结合栽后10 d秧苗活棵率,探索氮肥供应水平对秧苗的农艺和生理影响效应,明确油菜毯苗机械化移栽后高活棵率的氮肥施用量。
试验于2020和2021年度在江苏省扬州市江都区景园油菜生产专业合作社试验基地进行。供试品种为甘蓝型杂交油菜品种秦优10号和宁杂158。育秧盘规格长×宽×高为575 mm×275 mm×25 mm,选用江苏兴农基质科技有限公司生产的育苗基质(总N、P、K含量≥3%,有机质含量≥35%,pH 5.8—7.0)培育油菜毯苗。试验于每年的9月24日用12行、每行58粒的自制播种器(专利号:ZL201510754993.6)进行播种。于子叶期每盘秧苗100 mL水溶解纯氮0.25 g喷施于秧盘中,于一叶一心期(播种后12—15 d)设置不同纯氮用量试验,分别为0(不施氮肥)、0.5、1.0、1.5和2.0 g N/盘,以尿素为氮源(N,46%),兑水100 mL喷施,随机区组设计,每处理30盘,3次重复。各处理每盘于一叶一心期使用有效成分为5%的烯效唑1.5 mg和2.0 g磷酸二氢钾(P-K,52%—34%)兑水200 ml喷施。
播种后30 d测量和测定农艺性状,包括株高、根颈直径、叶面积。
叶面积:每小区取连续50株,用叶面积仪(LI-3100C)测定。苗期鲜重、干重:每小区取连续50株,按地上和地下部分开,测定鲜重后105 ℃条件下杀青30 min,80 ℃恒温烘干后称干重。存苗数:栽后30 d调查各处理存苗数。碳、氮元素含量:元素分析仪(Vario MAX CN,Elementar,Germany)测定全碳和全氮含量。栽后活棵率:播种后30 d应用2ZGK-6型油菜联合移栽机进行移栽,移栽密度设置1.20×105穴/hm2,栽插秧苗数介于1.80×105—1.95×105株/hm2,每处理机栽面积40 m2(长20 m,宽2 m),机栽后10 d调查田间活棵率。
利用Microsoft Excel 2019进行数据处理,SPSS 20.0软件对试验数据进行方差分析和显著性检验。
不同处理播种后30 d每盘存苗数的变化范围为627—669(表1),方差分析结果显示,氮肥水平对存苗数有极显著影响。同一年份和品种试验中,氮肥用量在1.0 g/盘范围内存苗数随着氮肥水平的增加而增加,1.5和1.0 g N/盘处理间无显著差异,2.0 g N/盘与1.0或1.5 g N/盘处理相比显著降低。
氮肥对株高、单株叶面积和根颈直径均有极显著影响(表1)。随着氮肥水平增加,株高和单株叶面积逐渐增加,2.0 g N/盘与不施氮肥处理相比,秦优10号和宁杂158的株高两年平均增加幅度分别为28.87%和26.10%,单株叶面积的增加幅度更大,分别为80.06%和84.20%;根颈直径随着氮肥用量的增加呈先增加后降低趋势,相同试验年份和品种试验中,均以1.5 g N/盘处理值最高。
秧苗地上部、地下部碳素含量的变化范围分别为38.91%—42.23%和41.69%—44.57%(表2),同一处理中地上部的碳素含量低于地下部碳素含量,随着氮肥用量的增加,地上和地下部碳素含量平均值总体上呈逐渐降低趋势;地上部叶片含氮率高于地下部根系含氮率,各处理叶片和根系含氮率平均值分别为4.99%和3.12%,植株地上部和地下部含氮率均随着氮肥用量的增加而增加,与不施氮肥处理相比,2.0 g N/盘处理下秦优10号和宁杂158的地上部氮含量两年平均上升幅度为22.03%和23.72%;地下部上升幅度为19.06%和15.96%;地上部、地下部碳氮比的变化范围分别为6.98—9.69和12.35—16.26,随着氮肥用量增加,地上、地下部碳氮比逐渐降低,2.0 g N/盘处理与不施氮肥各处理相比,地上、地下部碳氮比平均下降幅度分别为23.83%和19.68%,地上部碳氮比下降幅度更大。
随着氮肥用量的增加,植株地上部叶片和地下部根系的鲜重和干重均呈增加趋势(表3),其中鲜重上升幅度比干重上升幅度大。与不施氮肥相比,2.0 g N/盘处理下秦优10号和宁杂158的地上部鲜重两年平均上升幅度分别为58.9%和59.9%,地下部鲜重上升幅度分别为106.3%和95.0%;地上部干重两年平均增加幅度分别为37.7%和39.2%,地下部干重增加幅度分别为49.5%和52.3%。
随着氮肥用量的增加,植株地上部和地下部水分含量也呈逐渐增加趋势(表3),地上部和地下部水分含量的变化范围分别为86.3%—88.5%和75.3%—82.4%,植株地上部水分含量大于地下部。与不施氮肥相比,2.0 g N/盘处理下秦优10号和宁杂158的地上部水分含量两年平均上升幅度较小,分别为2.10%和1.93%,地下部水分含量上升幅度分别为8.92%和6.98%。
由图1可以看出,相同试验年份和品种试验中,均以不施氮肥处理的栽后10 d活棵率最低,其中2021年份秦优10号机栽后10 d秧苗活棵率最低,为81.7%。随着氮肥供应水平的增加,秧苗活棵率呈先增加后降低的变化趋势,同一试验年份和品种试验中1.0或1.5 g N/盘处理秧苗机栽后活棵率较高,均在95.0%以上,并且两个氮肥处理间无显著差异。
表1 不同处理播种后30 d每盘存苗数、农艺性状
表中数据为平均数±标准差,同列数据后不同小写字母表示在<0.05 水平差异显著,NS、*和**分别表示不显著、5%和1%水平差异显著。下同
Data represent mean ± standard deviation (SD). Different lowercases after the data in the same column mean significant difference at<0.05 level. Probability levels are indicated by NS, * and ** for ‘no significant’, significant difference at 0.05, and 0.01 levels, respectively. The same as below
氮素是作物生长最重要的营养元素,氮肥用量以及施用时期对作物生长均有较大影响[12-16]。本文研究氮肥用量对油菜毯苗生长的影响,在设置不同氮肥用量的施用时期上,结合了油菜种子自身特征,由于油菜种子较小,千粒重一般在3—4 g,在子叶出土展平时种子中营养就基本耗尽[17],此时需适量地补施肥料,如果前期施肥过多会导致烧苗现象发生[18-19],结合前期实践,此时每盘施用0.25 g纯氮,在这种情况下秧苗至一叶一心时(12—15 d)不至于出现明显缺氮症状,在一叶一心时秧苗有一定生物量基础上,开始设置不同供氮水平试验。
表2 不同处理播种后30 d秧苗碳、氮含量及碳氮比
结果显示,随着供氮水平增加,油菜毯苗播种后30 d每盘存苗数呈先增加后降低的趋势。增施氮肥使油菜毯苗株高和叶面积均呈增加趋势,水稻、小麦等作物上也有类似结论[20-22];根颈直径的大小是衡量油菜秧苗是否健壮的重要指标,以往常规栽培条件下的结论为随着密度增加,单株个体变小,根颈直径减小,随着氮肥用量增加,植株个体增加,根颈直径也呈增加趋势[23-26],本试验中氮肥对油菜毯苗根颈的影响与以往结果有所不同,由于试验中油菜毯苗机械移栽时折算的存苗数变化范围为3 967—4 232/m2,显著高于常规生产上人工育苗移栽油菜的秧田留苗密度以及直播油菜的留苗密度,因此在秧苗生长过程中争光拔高的竞争尤为激烈,株高的变幅与根颈直径的变幅相比更大,株高和根颈直径最高值与最低值相比增加幅度分别为30.0%和24.2%。在1.5 g N/盘范围内随着氮肥用量增加,根颈逐渐增粗,氮肥用量从1.5增至2.0 g N/盘时,株高继续增加,即使存苗密度变小,根颈直径也表现为降低趋势。
表3 不同处理播种后30 d秧苗鲜重、干重和水分含量
图中误差线为标准差,柱上不同小写字母表示同一年份和品种内试验在P<0.05水平差异显著
一般而言,增施氮肥使得植株干物重增加,含氮率也增加[27-29],而含氮率增加,又会伴随着植株鲜重和水分含量的增加[30-33]。作物秧苗移栽后要及时活棵有两个要求:一是要求秧苗抗植伤能力强,二是秧苗能及时发出新根,两者都与秧苗体内的碳、氮水平相关[34-35]。植株体内碳素水平高,细胞液渗透压大,束缚水含量高,苗体老健,抗植伤力强,栽后遇到日晒风吹,叶片不易枯萎,但是这种苗发根力差,不易活棵;秧苗的发根力主要取决于体内的氮素水平,秧苗体内含氮水平高,根细胞增殖快,发根力强,但是氮素水平高的秧苗,含水量高,苗体嫩,抗植伤能力差,并且栽后容易失水蔫死[36]。本试验中施氮水平高的油菜毯苗含氮率高,水分含量高,机械移栽后更容易失水,导致栽后活棵率比较低。传统的人工育苗移栽油菜要求苗龄适中,秧龄7—9,绿叶数6—8张,并且要求老嫩适度,外围的大叶边缘微红,叶片中间为绿色,这种苗碳氮比适中,栽后发棵快,有利于活棵,生产上要求3叶期苗床的留苗密度为90—135株/m2比较适宜[37]。对于油菜毯苗机械化移栽技术而言,要求播种密度在4 000株/m2左右,3—4叶期移栽,如果播种密度小,一方面不利于形成毯苗,另一方面是播种密度小,移栽时需求的秧盘数比较多,成本高。因此如何合理调节油菜毯苗植株体内碳氮平衡,使得油菜毯苗机栽后抗植伤力和发根力都比较强,从而保证秧苗栽后的高活棵率是油菜毯苗机械化移栽的关键技术。本试验结果显示一定范围内增施氮肥,含氮率增加,碳氮比降低,秧苗单株叶面积以及根颈直径均增加,机械化移栽后秧苗的活棵率增加,1.0和1.5 g N/盘处理的秧苗栽后活棵率无显著差异,两者地上、地下碳氮比的变化范围分别为7.44—8.09和12.94—13.96;当施氮量从1.5增至2.0 g N/盘时,秧苗株高进一步增加,根颈变细,含氮率进一步增加,水分含量高,碳氮比低,苗体嫩,机械移栽后活棵率降低。
随着供氮水平的增加,油菜毯苗播种后30 d每盘存苗数先增加后降低;地上、地下部碳氮比均逐渐降低;油菜毯苗株高、单株叶面积、鲜重、干重和水分含量逐渐增加;根颈直径和栽后活棵率呈先增加后降低趋势,根颈直径均以1.5 g N/盘处理最高,栽后活棵率以1.0和1.5 g N/盘处理较高。
[1] 仇蕾. 机插稻连粳7号苗期氮肥对秧苗生长及产量的影响. 浙江农业科学, 2017, 58(7): 1125-1127.
QIU L. Effects of nitrogen fertilizer on seedling growth and yield of machine-transplanted rice Lianjing 7 at seedling stage. Journal of Zhejiang Agricultural Sciences, 2017, 58(7): 1125-1127. (in Chinese)
[2] 张馨月, 王寅, 陈健, 陈安吉, 王莉颖, 郭晓颖, 牛雅郦, 张星宇, 陈利东, 高强. 水分和氮素对玉米苗期生长、根系形态及分布的影响. 中国农业科学, 2019, 52(1): 34-44.doi: 10.3864/j.issn.0578-1752. 2019.01.004.
ZHANG X Y, WANG Y, CHEN J, CHEN A J, WANG L Y, GUO X Y, NIU Y L, ZHANG X Y, CHEN L D, GAO Q. Effects of soil water and nitrogen on plant growth, root morphology and spatial distribution of maize at the seedling stage. Scientia Agricultura Sinica, 2019, 52(1): 34-44. doi: 10.3864/j.issn.0578-1752.2019.01.004. (in Chinese)
[3] 杨柳, 李絮花, 胡斌, 刘敏, 刘文博, 李金鑫, 张静, 王子凤. 轻度盐胁迫下施氮量对小麦苗期的生理响应. 中国土壤与肥料, 2020(3): 16-22.
YANG L, LI X H, HU B, LIU M, LIU W B, LI J X, ZHANG J, WANG Z F. Physiological response of nitrogen fertilization to wheat seedling under mild salt stress. Soil and Fertilizer Sciences in China, 2020(3): 16-22. (in Chinese)
[4] ZUO Q S, KUAI J, ZHAO L, HU Z, WU J S, ZHOU G S. The effect of sowing depth and soil compaction on the growth and yield of rapeseed in rice straw returning field. Field Crops Research, 2017, 203: 47-54.
[5] 王慧, 卜容燕, 韩上, 程文龙, 李敏, 唐杉, 胡现荣, 武际, 郭子琪, 周锦寒. 有机肥配施化肥对直播油菜产量及养分吸收利用的影响. 中国土壤与肥料, 2021(6): 156-165.
WANG H, BU R Y, HAN S, CHENG W L, LI M, TANG S, HU X R, WU J, GUO Z Q, ZHOU J H. The effects of chemical fertilizer combined with organic fertilizer on the yields, nutrient uptake and utilization of direct-seeding rapeseed. Soil and Fertilizer Sciences in China, 2021(6): 156-165. (in Chinese)
[6] 王俊林. 发展油菜种植机械化关键技术推广. 农业机械, 2021(2): 69-71.
WANG J L. Promotion of key technologies for the development of rapeseed planting mechanization.Farm Machinery, 2021(2): 69-71. (in Chinese)
[7] 李娟, 王永华, 宋丽华, 万治国, 敖友平. 油菜全程机械化轻简栽培技术探讨. 农业开发与装备, 2021(3): 24-25.
LI J, WANG Y H, SONG L H, WAN Z G, AO Y P. Discussion on the whole mechanization and simple cultivation technology of rapeseed. Agricultural Development & Equipments, 2021(3): 24-25. (in Chinese)
[8] 傅寿仲, 朱耕如. 江苏油作科学. 南京: 江苏科学技术出版社, 1995: 309-314.
FU S Z, ZHU G R. Oilseed Crops Science and Technology in Jiangsu Province. Nanjing: Jiangsu Science & Technology Publishing House, 1995: 309-314. (in Chinese)
[9] 郭保卫, 陈厚存, 张春华, 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲, 邢琳, 管文文, 黄幸福, 杨雄. 水稻抛栽秧苗立苗中的形态与生理变化. 作物学报, 2010, 36(10): 1715-1724.
GUO B W, CHEN H C, ZHANG C H, WEI H Y, ZHANG H C, DAI Q G, HUO Z Y, XU K, XING L, GUAN W W, HUANG X F, YANG X. Morphological and physiological changes in seedling standing and establishment of broadcasted rice seedlings. Acta Agronomica Sinica, 2010, 36(10): 1715-1724. (in Chinese)
[10] 秦华东, 张玉, 肖巧珍, 江立庚, 徐世宏, 丁成泉, 杨彩铃, 汪妮娜. 耕作方式对不同抛秧水稻品种立苗期根系生长的影响. 热带作物学报, 2013, 34(6): 1029-1032.
QIN H D, ZHANG Y, XIAO Q Z, JIANG L G, XU S H, DING C Q, YANG C L, WANG N N. Effect of tillage pattern on root growth of different rice cultivars during seedling standing period. Chinese Journal of Tropical Crops, 2013, 34(6): 1029-1032. (in Chinese)
[11] ZUO Q S, WANG L, ZHENG J D, YOU J J, YANG G, LENG S H, LIU J Y. Effects of uniconazole rate on agronomic traits and physiological indexes of rapeseed blanket seedling. Oil Crop Science, 2020, 5(4): 198-204.
[12] MA B L,SUBEDI K D,DWYER L M. Timing and method of15nitrogen-labeled fertilizer application on grain protein and nitrogen use efficiency of spring wheat. Journal of Plant Nutrition, 2006, 29(3): 469-483.
[13] 王继明, 宋海星, 张玲, 张振华, 官春云, 荣湘民, 刘强. 肥料运筹方式对冬油菜生长及产量的影响. 土壤, 2012, 44(2): 232-236.
WANG J M, SONG H X, ZHANG L, ZHANG Z H, GUAN C Y, RONG X M, LIU Q. Effects of fertilizer application patterns on growth and seeds yield of winter oilseed rape (L.). Soils, 2012, 44(2): 232-236. (in Chinese)
[14] 孙永健, 马均, 孙园园, 徐徽, 严奉君, 代邹, 蒋明金, 李玥. 水氮管理模式对杂交籼稻冈优527群体质量和产量的影响. 中国农业科学, 2014, 47(10): 2047-2061. doi: 10.3864/j.issn.0578-1752.2014. 10.019.
SUN Y J, MA J, SUN Y Y, XU H, YAN F J, DAI Z, JIANG M J, LI Y. Effects of water and nitrogen management patterns on population quality and yield of hybrid rice Gangyou 527. Scientia Agricultura Sinica, 2014, 47(10): 2047-2061. doi: 10.3864/j.issn.0578-1752.2014. 10.019. (in Chinese)
[15] 李鹏程, 董合林, 刘爱忠, 刘敬然, 李如义, 孙淼, 李亚兵, 毛树春. 应用15N研究氮肥运筹对棉花氮素吸收利用及产量的影响. 植物营养与肥料学报, 2015, 21(3): 590-599.
LI P C, DONG H L, LIU A Z, LIU J R, LI R Y, SUN M, LI Y B, MAO S C. Effects of nitrogen fertilizer application strategy on N uptake, utilization and yield of cotton using15N trace technique. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 590-599. (in Chinese)
[16] MA Q, WANG M Y, ZHENG G L, YAO Y, TAO R R, ZHU M, DING J F, LI C Y, GUO W S, ZHU X K. Twice-split application of controlled-release nitrogen fertilizer met the nitrogen demand of winter wheat. Field Crops Research, 2021, 267: 108163.
[17] 郭丽璇, 耿国涛, 任涛, 李小坤, 丛日环, 鲁剑巍. 施肥管理对油菜种子萌发特性的影响. 中国土壤与肥料, 2020(3): 63-68.
GUO L X, GENG G T, REN T, LI X K, CONG R H, LU J W. Effect of fertilization management on germination characteristics of winter oilseed rape (L.). Soil and Fertilizer Sciences in China, 2020(3): 63-68. (in Chinese)
[18] 李慧, 佟秋成, 陈魁, 何玉忠, 张国荣. 分层侧深施肥播种机的研发. 中国农机化学报, 2013, 34(5): 105-108.
LI H, TONG Q C, CHEN K, HE Y Z, ZHANG G R. Research and development of layered and deep side fertilizing & precision seeding machine. Journal of Chinese Agricultural Mechanization, 2013, 34(5): 105-108. (in Chinese)
[19] 米国华, 霍跃文, 曾爱军, 李刚华, 王秀, 张福锁. 作物养分管理的农机农艺结合技术研究进展. 中国农业科学, 2022, 55(21): 4211-4224. doi: 10.3864/j.issn.0578-1752.2022.21.009.
MI G H, HUO Y W, ZENG A J, LI G H, WANG X, ZHANG F S. Integration of agricultural machinery and agronomic techniques for crop nutrient management in China. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224. doi: 10.3864/j.issn.0578-1752.2022.21.009. (in Chinese)
[20] 周丽燕, 黄影华, 张善炫, 郭之瑶, 洪瑞霞, 王轶林, 夏丽莎, 付璐, 李艳大, 陈青春. 不同氮肥调控对水稻分蘖数和叶面积指数的影响. 湖北农业科学, 2020, 59(7): 33-37.
ZHOU L Y, HUANG Y H, ZHANG S X, GUO Z Y, HONG R X, WANG Y L, XIA L S, FU L, LI Y D, CHEN Q C. Effects of different nitrogen fertilizer regulation on tiller number and leaf area index of rice. Hubei Agricultural Sciences, 2020, 59(7): 33-37. (in Chinese)
[21] 吴鹏, 李福建, 于倩倩, 赵伟, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 耕作与播种方式、密度和施氮量对稻茬小麦幼苗质量的影响. 麦类作物学报, 2021, 41(1): 72-80.
WU P, LI F J, YU Q Q, ZHAO W, ZHU M, LI C Y, ZHU X K, DING J F, GUO W S. Effect of tillage and seeding method, planting density, and nitrogen rate on seedling quality of wheat following rice. Journal of Triticeae Crops, 2021, 41(1): 72-80. (in Chinese)
[22] 陈杨, 王磊, 白由路, 卢艳丽, 倪露, 王玉红, 徐孟泽. 有效积温与不同氮磷钾处理夏玉米株高和叶面积指数定量化关系. 中国农业科学, 2021, 54(22): 4761-4777. doi: 10.3864/j.issn.0578-1752.2021. 22.005.
CHEN Y, WANG L, BAI Y L, LU Y L, NI L, WANG Y H, XU M Z. Quantitative relationship between effective accumulated temperature and plant height & leaf area index of summer maize under different nitrogen, phosphorus and potassium levels. Scientia Agricultura Sinica, 2021, 54(22): 4761-4777. doi: 10.3864/j.issn.0578-1752.2021. 22.005. (in Chinese)
[23] 田效琴, 李卓, 刘永红. 密度和施氮量对油菜生长发育及产量的影响. 中国土壤与肥料, 2018(3): 26-35.
TIAN X Q, LI Z, LIU Y H. Effects of densities and nitrogen fertilizer rates on growth and yield of rapeseed. Soil and Fertilizer Sciences in China, 2018(3): 26-35. (in Chinese)
[24] WANG Z K, WANG B, KUAI J, LI Z, BAI R, ZHOU G S. Planting density and variety intercropping improve organ biomass distribution of rapeseed to alleviate the trade-off between yield and lodging resistance. Crop Science, 2021, 61(4): 2696-2712.
[25] KHAN S, ANWAR S, KUAI J, ULLAH S, FAHAD S, ZHOU G S. Optimization of nitrogen rate and planting density for improving yield, nitrogen use efficiency, and lodging resistance in oilseed rape. Frontiers in Plant Science, 2017, 8: 532.
[26] 李小勇, 顾炽明, 刘康, 廖星, 黄威, 杨志远, 秦璐. 施氮量对迟播油菜氮素利用和产量品质的影响. 中国农业科学, 2021, 54(17): 3726-3736. doi: 10.3864/j.issn.0578-1752.2021.17.014.
LI X Y, GU C M, LIU K, LIAO X, HUANG W, YANG Z Y, QIN L. Effects of nitrogen application rate on nitrogen use efficiency, yield and quality of late sowing rapeseed. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736. doi: 10.3864/j.issn.0578-1752.2021.17.014. (in Chinese)
[27] 韩自行, 张长生, 王积军, 张冬晓, 汤松, 陈爱武, 周广生, 胡立勇, 吴江生, 傅廷栋. 氮肥运筹对稻茬免耕油菜农艺性状及产量的影响. 作物学报, 2011, 37(12): 2261-2268.
HAN Z H, ZHANG C S, WANG J J, ZHANG D X, TANG S, CHEN A W, ZHOU G S, HU L Y, WU J S, FU T D. Effects of nitrogen application on agronomic traits and yield of rapeseed in no-tillage rice stubble field. Acta Agronomica Sinica, 2011, 37(12): 2261-2268. (in Chinese)
[28] 左青松, 刘浩, 蒯婕, 冯倩南, 冯云艳, 张含笑, 刘靖怡, 杨光, 周广生, 冷锁虎. 氮肥和密度对毯状苗移栽油菜碳氮积累、运转和利用效率的影响. 中国农业科学, 2016, 49(18): 3522-3531.doi: 10. 3864/j.issn.0578-1752.2016.18.006.
ZUO Q S, LIU H, KUAI J, FENG Q N, FENG Y Y, ZHANG H X, LIU J Y, YANG G, ZHOU G S, LENG S H. Effects of nitrogen and planting density on accumulation, translocation and utilization efficiency of carbon and nitrogen in transplanting rapeseed with blanket seedling. Scientia Agricultura Sinica, 2016, 49(18): 3522-3531. doi: 10.3864/j.issn.0578-1752.2016.18.006. (in Chinese)
[29] WANG Z, LI J S, LI Y F. Effects of drip system uniformity and nitrogen application rate on yield and nitrogen balance of spring maize in the North China Plain. Field Crops Research, 2014, 159: 10-20.
[30] 林宝刚, 郝鹏飞, 任韵, 怀燕, 张慧, 薛波文, 华水金. 施氮量和采收株高对油菜薹外观性状、养分积累和氨基酸组分含量的影响. 核农学报, 2022, 36(12): 2474-2481.
LIN B G, HAO P F, REN Y, HUAI Y, ZHANG H, XUE B W, HUA S J. Effect of nitrogen application rates and harvesting plant heights on appearance traits, nutrient accumulation, and amino acid composition in young stem of rapeseed. Journal of Nuclear Agricultural Sciences, 2022, 36(12): 2474-2481. (in Chinese)
[31] 鲁一薇, 崔纪菡, 郭帅, 李顺国, 校诺娅, 刘寒双, 刘猛, 夏雪岩. 缺氮胁迫对谷子幼苗生长发育的影响. 中国农业大学学报, 2022, 27(3): 18-25.
LU Y W, CUI J H, GUO S, LI S G, XIAO N Y, LIU H S, LIU M, XIA X Y. Effects of nitrogen deficiency stress on the growth of foxtail millet seedlings. Journal of China Agricultural University, 2022, 27(3): 18-25. (in Chinese)
[32] HAO X, JIA J D, MI J Q, YANG S, KHATTAK A M, ZHENG L H, GAO W L, WANG M J. An optimization model of light intensity and nitrogen concentration coupled with yield and quality. Plant Growth Regulation, 2020, 92(2): 319-331.
[33] WANG X L, YU W J, ZHOU Q, HAN R F, HUANG D F. Metabolic response of pakchoi leaves to amino acid nitrogen. Journal of Integrative Agriculture, 2014, 13(4): 778-788.
[34] 任万军, 卢庭启, 赵中操, 杨文钰. 水稻秧苗发根力与一些碳氮营养生理特性的关系. 浙江大学学报(农业与生命科学版), 2011, 37(1): 103-111.
REN W J, LU T Q, ZHAO Z C, YANG W Y. Relationship between rooting ability and some physiological characteristics about carbon and nitrogen nutrition in rice seedlings. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(1): 103-111. (in Chinese)
[35] 徐年龙, 于洪喜, 叶仁宏, 王升, 王飞, 徐梦彬, 周娜娜, 王振. 播期和栽插方式对水稻南粳9108产量和品质的影响. 大麦与谷类科学, 2020, 37(1): 15-21.
XU N L, YU H X, YE R H, WANG S, WANG F, XU M B, ZHOU N N, WANG Z. Effects of sowing date and transplanting method on the yield and quality of the rice cultivar Nanjing 9108. Barley and Cereal Sciences, 2020, 37(1): 15-21. (in Chinese)
[36] 凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000: 432-438.
LING Q H. The quality of crop population. Shanghai: Shanghai Science and Technology Press, 2000:432-438. (in Chinese)
[37] 杨文钰, 屠乃美. 作物栽培学各论 (南方本, 2版). 北京: 中国农业出版社, 2011: 227-233.
YANG W Y, TU N M. Various Exposition to Crop Cultivation (Southern Version, 2nd ed). Beijing: China Agriculture Press, 2011: 227-233. (in Chinese)
Studies on the Suitable Nitrogen Supply Level of Rapeseed Blanket Seedling for Mechanized Transplanting
LI Jing, QIAN Chen, LIN GuoBing, WANG Long, LI YiYang, ZHENG JingDong, YOU JingJing, LENG SuoHu, ZUO QingSong
College of Agriculture, Yangzhou University/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu
【Objective】The density of rapeseed blanket seedling suitable for mechanized transplanting is large and individual plant is small, so the adversity-resistant ability of rapeseed blanket seedling is poor. In order to determine the appropriate nitrogen (N) supply level, the effects of different N levels on the agronomic traits, physiological indexes and survival rate after mechanized transplanting were studied.【Method】In 2020 and 2021, two rapeseed varieties, Qinyou 10 and Ningza 158, were planted. On the basis of spraying 0.25 g N/tray at the cotyledon stage, five nitrogen fertilizer levels (0, 0.5, 1.0, 1.5 and 2.0 g N/tray) were set at one-leaf and one-tip stage. The agronomic traits and physiological indexes were measured 30 days after sowing, and the survival rate was investigated 10 days after mechanized transplanting.【Result】At 30 days after sowing, the seedling numbers per tray ranged from 627 to 669, and the seedling numbers increased first and then decreased with the increase of N supply level. The increase of N supply level increased N contents, and the N content rates in shoots were higher than those in roots. The carbon (C) decreased in general as N level increased, and the C content rates in roots were higher than those in shoots. The variation range of C/N ratios in shoots and roots was 6.98-9.69 and 12.35-16.26, respectively, which showed a downward trend with the increase of N supply level. The plant height, leaf area, fresh weight, dry weight and moisture content increased gradually with the increase of N level, and among them, the increasing extent of the fresh weight in roots was the most. When N level increased from zero to 2.0 g N/tray, the fresh weight in roots per tray in Qinyou 10 and Ningza raised by 106.3% and 95.0%, respectively. The root collar diameter and survival rate after planting showed a trend of first increasing and then decreasing as increasing of N supply level. In the same year and variety experiment, the root collar diameter of 1.5 g N/tray treatment was the highest, and the survival rates ranged from 81.7% to 97.1%. The treatments of 1.0 and 1.5 g N/tray were higher, both above 95%, and there was no significant difference between them.【Conclusion】In the process of rapeseed blanket seedling cultivation, based on 0.25 g N/tray at cotyledon stage, the N supply level from 1.0 to 1.5 g N/tray at one-leaf and one-tip stage is easy to obtain strong seedlings. Under this management, the N content and c/n ratio were appropriate, and seedling number, root collar, survival rate after mechanized transplanting were high.
rapeseed blanket seedling; nitrogen supply level; C/N ratio; moisture content; seedling survival rate
10.3864/j.issn.0578-1752.2023.16.005
2022-12-02;
2023-02-06
国家重点研发计划(2018YFD1000900)、江苏省高等学校基础科学重大项目(21KJA210003)、江苏省级现代农业发展项目(YN2022-29)、扬州市现代农业项目(YZ2022055)
李静,E-mail:MX120210720@yzu.edu.cn。通信作者左青松,E-mail:qszuo@yzu.edu.cn
(责任编辑 杨鑫浩,岳梅)