吴飘,陈建文,3,4,赵青芳,张银国,梁杰,蓝天宇,5,薛路,3,可行,4
1. 中国地质调查局青岛海洋地质研究所,青岛 266237
2. 崂山实验室海洋矿产资源评价与探测技术功能实验室,青岛 266237
3. 河海大学海洋学院,南京 210098
4. 山东科技大学地球科学与工程学院,青岛 266590
5. 中国海洋大学海洋地球科学学院,青岛 266100
探索高-过成熟烃源岩在母质来源、沉积环境和成熟度演化方面的生物标志化合物特征是油气地球化学领域的重要科学问题[1]。由于高-过成熟烃源岩的类异戊二烯烷烃、甾烷和萜烷等常规生物标志物已经趋同[2-3],众多学者致力于探究其芳烃化合物的组成和演化规律,但至今形成的具有广泛适用性的指标极少。梁狄刚等[3]认为我国南方地区海相高-过成熟烃源岩的三芳甾烷类不受成熟度影响,能有效地区分不同层系、不同岩性的烃源岩。但包建平等[4]认为高热演化会使三芳甾烷类标志物的分布和组成出现趋同现象。Alexander 等[5]、朱扬明等[6-7]和宋长玉等[8]认为9-/1-MP(甲基菲)、2,6-/2,10-DMP(二甲基菲)、1,7-/1,9-DMP、1,2,5-/1,3,6-TMN(三甲基萘)、1,2,5,6-TeMN(四甲基萘)/TeMN比值是表征有机质输入的有效指标,但上述参数也受成熟度影响[9],在高-过成熟阶段是否具有生源意义因地而异。烷基萘、烷基菲、烷基二苯并噻吩系列化合物常用于高成熟烃源岩的成熟度表征[10-12],但其成熟度适用范围[9,13-14]、在不同地区的适用性[1,15]等都存在较大争议。因此,高-过成熟烃源岩的饱和烃生物标志物参数具有趋同性,而芳烃化合物参数的影响因素存在复杂性和地区差异性,在使用时需要结合地质背景评价饱和烃和芳烃化合物指标的有效性。
南黄海盆地是下扬子地台在海域的延伸[16],其二叠系发育栖霞组、孤峰组、龙潭组、大隆组四套烃源岩。前人对下扬子陆域二叠系烃源岩的沉积相[17]和地球化学特征[18-21]开展了大量研究,总体认为二叠系以龙潭组底为界可分为两大沉积旋回[22],下部栖霞组-孤峰组以开阔台地-深水陆棚环境为主,烃源岩属于中等—极好的混合型高-过成熟烃源岩,上部龙潭组-大隆组以三角洲-深水陆棚环境为主,烃源岩属于好—很好的腐殖型成熟-高成熟烃源岩[2,23]。南黄海盆地二叠系烃源岩的研究主要关注生烃潜力评价[24-26]和沉积环境演化[27-29]。蔡来星等[26-27]认为栖霞组-孤峰组沉积于强还原条件的浅海陆棚相和潮坪相,烃源岩为高-过成熟的好—极好级别混合型烃源岩[30];而龙潭组-大隆组为强还原条件的三角洲相、潮坪相、浅海陆棚相沉积,烃源岩为成熟-高成熟的中等—好级别腐殖型烃源岩。Chen 等[31]认为栖霞组沉积于低生产力的氧化性海水环境,孤峰组硅质岩沉积于高生产力的贫氧-缺氧海水环境,而龙潭组下段泥岩形成于低生产力的贫氧微咸水环境。上述研究主要依据基础有机地球化学数据和无机元素数据,对二叠系烃源岩的生物标志化合物特征讨论较少,因而南黄海盆地二叠系烃源岩的有机质来源和油源对比尚存在争议[30]。本文依据CSDP-2 井二叠系16 个泥岩和硅质岩样品的有机地球化学数据,探讨四套高演化烃源岩的生物标志化合物特征差异,这对扬子板块海相高-过成熟烃源岩的评价和南黄海盆地二叠系油气勘探具有重要意义。
南黄海盆地位于下扬子地块东部,是叠合于下扬子地台前震旦系变质岩基底之上、由新元古代震旦纪—中生代海相残留盆地和晚中生代—新生代陆相断陷盆地等构成的多旋回叠合盆地[32-33]。古生界盆地北侧为千里岩隆起,南侧为勿南沙隆起,由北往南可分为烟台坳陷、崂山隆起、青岛坳陷3 个二级构造单元,呈现“两坳一隆”的构造格局[16,34](图1)。二叠系广泛分布于该盆地的青岛坳陷[33]和崂山隆起[16],不仅是盆地内重要的区域性烃源岩层,而且发育有致密砂岩储层[35],具备形成大型气田的物质基础[16]。截止目前,该盆地共有5 口探井钻遇二叠系,其中位于崂山断隆带西侧的CSDP-2 井在龙潭组见到多层油气显示,而关于其油气来源为上二叠统或下二叠统烃源岩尚未达成一致认识[30]。
图1 南黄海盆地构造单元划分及CSDP-2 井二叠系地层柱状图 [37]Fig.1 Division of structural units in the South Yellow Sea Basin and the Permian stratigraphic histogram of the CSDP-2 well [37]
CSDP-2 井钻遇二叠系841.9 m(图1)。其中,栖霞组分布于井段1 652.43~1 717.9 m,上段为台地相黑灰色钙质硅质泥岩或泥灰岩,下段为浅海陆棚相灰色泥岩,发育多种化石,如腕足类、蜓类及部分有孔虫[27]。孤峰组分布于井段1 633.5~1 652.43 m,岩性为黑色硅质岩、硅质泥岩和少量灰色泥岩,产菊石等化石[30]。龙潭组分布于井段921~1 633.5 m,下段岩性为大套黑色、灰黑色泥岩和泥质粉砂岩,底部夹多套煤层,为潮坪相沉积;中段为深灰色泥岩、泥质粉砂岩和灰色细砂岩、粉砂岩,为三角洲前缘-三角洲平原沉积;上段为深灰色粉砂质泥岩夹浅灰色细砂岩、粉砂岩,见丰富的植物碎屑[25]和腕足类、头足类等化石[36],总体属于三角洲前缘-三角洲平原沉积[29]。大隆组分布于井段876~921 m,下段岩性为灰色含灰粉-细砂岩和黑色碳质泥岩,上段岩性以灰白色钙质细砂岩为主,可见大量植物碎屑及菊石、腹足类化石[25],为潮坪相沉积。
共选取CSDP-2 井二叠系16 件泥岩、硅质泥岩和硅质岩岩芯样品进行地球化学分析,取样位置如图1 所示。DL-1 至LT-7 及QX-16 样品为泥岩,GF-8、GF-10、GF-12 样品为硅质泥岩,GF-9、GF-11、GF-13、GF-14 样品为硅质岩,QX-15 样品为钙质硅质泥岩。分析项目包括有机碳分析、岩石热解分析、饱和烃色谱分析、饱和烃色谱-质谱分析、芳烃色谱-质谱分析、干酪根显微组分分析、干酪根碳同位素测试和干酪根镜质体反射率测试。
(1)岩石总有机碳分析采用干烧重量法使用CS-230H 碳硫分析仪测定,测试绝对误差不超过0.03%。热解分析用油岩综合评价仪OGE-II 进行,分析参数主要包括液态烃含量S1、热解烃含量S2和最高热解峰温Tmax,其中S2的相对双差不超过50%或20%,Tmax的偏差不超过5℃。干酪根显微组分分析和镜质体反射率测试在Zeiss Axio Scope.A1 显微镜上进行,对样品采用化学分离法和重液浮选法分离出干酪根,然后将干酪根固结成型进行打磨和抛光,选用×50 油浸镜头测试均质镜质体或基质镜质体的随机反射率,测试点数不少于30 个;采用目估法统计显微组分所占面积的百分比,其中镜质组和腐泥组组分含量误差不超过7%。干酪根碳同位素在MAT 253 稳定同位素质谱仪上测定,测试误差不超过±0.2‰。
(2)饱和烃色谱分析采用美国Agilent 公司生产的6890GC 气相色谱仪。烃源岩样品经过碎样后进行索氏抽提48 h,然后通过柱层析法分离获取饱和烃和芳烃族组分。气相色谱仪的色谱柱为HP-5MS(30m×0.25mm×0.25μm),升温程序为:升温50 ℃,恒温1 min;再从50 ℃以20 ℃/min 的速率升至120 ℃,然后以3 ℃/min 的速率升至310 ℃,恒温15 min。载气为氦气,流速为1 mL/min,相关参数采用基于色谱峰面积积分的方式进行计算。
(3)饱和烃/芳烃气相色谱-质谱分析采用美国Agilent 公司生产的6890GC/5975MSD 气相色谱-台式质谱联用仪。其中,质谱仪采用EI 电离方式,电子能力为70 eV。以全扫描/多离子选择性扫描(m/z 50-580)的方式采集数据,相关参数采用基于质谱峰面积积分的方式进行计算。
本次测试烃源岩样品的总有机碳(TOC)、岩石热解、干酪根镜质体反射率Ro、干酪根类型指数TI、干酪根碳同位素数据如表1 所示,结合前人研究数据[26,30]绘制CSDP-2 井二叠系烃源岩的有机质丰度、有机质类型和有机质成熟度评价图(图2)。该井大隆组烃源岩以泥岩为主,TOC 为0.19%~4.08%,平均值为1.54%,Ro 为0.71%~0.94%,Tmax为453~481 ℃,干酪根碳同位素为-23.6‰,按照古生界海相烃源岩生烃潜力评价方法[38]其属于中等质量的III 型成熟烃源岩。龙潭组烃源岩以泥岩和碳质泥岩为主,烃源岩的TOC 为0.3%~10.6%,平均值1.9%,Ro 为0.83%~1.8%,Tmax为462~512 ℃,干酪根碳同位素为-26.5‰~-23.1‰,综合评价为中等质量的III 型成熟-高成熟烃源岩。孤峰组烃源岩主要为硅质岩和硅质泥岩,TOC 为3%~16.3%,平均值10.6%,Ro 为1.76%~2.16%,Tmax为515~553 ℃,干酪根碳同位素为-28.4‰~-26.6‰,是一套极好的II 型高-过成熟烃源岩。栖霞组上段钙质泥岩的TOC 为0.73%~14.2%,平均值为3.81%,下段黑灰色泥岩TOC 为0.57%~1.1%,平均值为0.81%,整段烃源岩的TOC 平均值为2.81%,Ro 为1.8%~2.24%,Tmax为458~520 ℃,干酪根碳同位素为-25.9‰,是一套好—很好的II2—III 型高-过成熟烃源岩。
中美贸易摩擦、商誉减值、美股调整等潜在风险仍存。客观地说目前经济形式不佳,基本面角度仍没有见底,场内投资者情绪还是悲观的多,中美贸易摩擦对中国经济的冲击在2019年上半年会显现的更加明显,上市公司大量的商誉减值也会对企业利润形成冲击,同时美股为代表的国际市场调整,大宗商品价格的巨幅波动,都会对A股形成扰动,目前大股东股权质押的危机仍没有彻底解除,所以2019年行情注定是错综复杂的,在操作时,一旦有绝地反击的大反弹行情出现,也应该注意落袋为安,不可恋战。
表1 南黄海盆地CSDP-2 井二叠系烃源岩的基本地球化学数据Table 1 Bulk geochemical data of the Permian source rocks in Well CSDP-2, South Yellow Sea Basin
图2 南黄海盆地CSDP-2 井二叠系烃源岩有机质丰度、类型和成熟度评价图Fig.2 Evaluation of organic matter abundance, type, and maturity for the Permian source rocks in Well CSDP-2, South Yellow Sea Basin
3.2.1 正构烷烃及类异戊二烯烷烃
CSDP-2 井二叠系烃源岩的正构烷烃及类异戊二烯烷烃参数见表2,饱和烃馏分的总离子流图(TIC)见图3。样品的正构烷烃碳数分布为nC15-nC35,其中nC11-nC14的正构烷烃基本缺失,这可能与饱和烃馏分在氯仿沥青抽提和族组分分离过程中存在轻烃损失有关。通常认为低碳数正构烷烃(nC14-nC19)是藻类生源输入的标志,高碳数正构烷烃(nC27-nC31)主要来源于陆生高等植物[39],龙潭组、孤峰组、栖霞组烃源岩的正构烷烃均存在以低碳数占优势的单峰形分布和以高碳数占优势的单峰形分布,但高碳数占优势的样品的干酪根碳同位素值反而显著低于低碳数占优势的样品(表1,表2)。上述现象表明,本次分析样品的正构烷烃分布受轻烃损失等因素影响已无法反映有机质来源。值得注意的是,孤峰组7 件烃源岩样品的TIC 图均在nC29处出现了不可分辨的(UCM)鼓包,且碳优势指数CPI 值为1.12~1.41(平均值1.24),nC25-nC35系列化合物呈现出明显的奇数碳优势。通常认为nC25-nC35奇数碳优势分布指示着低成熟度及高等植物角质蜡的生源特征[40],然而孤峰组烃源岩已处于高-过成熟阶段。这种不寻常的正构烷烃分布与四川盆地和鄂尔多斯盆地下古生界、前寒武系烃源岩抽提物的正构烷烃分布类似[41]。根据前人热模拟实验的结果[42-43],这类正构烷烃可能主要来源于高-过成熟烃源岩中的藻类,反映出孤峰组沉积时期存在较强的藻类生源输入。
表2 南黄海盆地CSDP-2 井二叠系烃源岩饱和烃组分的生物标志化合物参数Table 2 The biomarker parameters of the saturated fractions in the Permian source rocks of Well CSDP-2, South Yellow Sea Basin
图3 南黄海盆地CSDP-2 井二叠系烃源岩饱和烃馏分总离子流图(TIC)、甾萜烷(m/z=191, 217)质量色谱图Fig.3 The total ion chromatograms (TIC) and mass chromatograms of steranes (m/z=217) and terpanes (m/z=191) of the saturated fractions in the Permian source rocks of Well CSDP-2, South Yellow Sea Basin
二叠系烃源岩的Pr/Ph 值为0.21~0.65,大隆组烃源岩的Pr/nC17为1.46,Ph/nC18为0.88,龙潭组烃源岩的Pr/nC17为0.37~0.81( 平均值为0.53) ,Ph/nC18为0.44~0.89(平均值为0.63),栖霞组-孤峰组烃源岩的Pr/nC17为0.17~0.45(平均值为0.32),Ph/nC18为0.25~0.72(平均值为0.43)。在Pr/nC17-Ph/nC18图上(图4),龙潭组、孤峰组和栖霞组烃源岩主要分布在还原环境和水生动植物生源区域,这与干酪根碳同位素显示的II2—III 型干酪根特征相悖,说明Pr/Ph、Pr/nC17、Ph/nC18参数可能受到轻烃损失或高-过成熟度等因素的影响而无法反映沉积环境或有机质来源。
图4 南黄海盆地CSDP-2 井二叠系烃源岩的Pr/nC17-Ph/nC18 交汇图Fig.4 Crossplot of Pr/nC17 and Ph/nC18 for the Permian source rocks in Well CSDP-2, South Yellow Sea Basin
3.2.2 甾萜烷及β-胡萝卜烷
CSDP-2 井二叠系烃源岩的甾萜烷和β-胡萝卜烷参数如表2 所示,甾萜烷质量色谱图如图3 所示。栖霞组、孤峰组和龙潭组烃源岩的甾烷成熟度参数20S/(20S+20R)-ααα-C29甾烷分别为0.39~0.5、0.5~0.59 和 0.41~0.53, ββ/(ββ+αα)-C29甾烷为0.38~0.45,表现出ββ/(ββ+αα)-C29甾烷参数和栖霞组烃源岩的20S/(20S+20R)-ααα-C29甾烷参数明显低于其平衡值(分别为0.67~0.71 和0.52~0.55)的现象。这与前人提出的C29甾烷成熟度参数在高-过成熟阶段存在“倒转”现象一致[44]。
龙潭组、大隆组和栖霞组下段烃源岩的ααα20RC27、ααα20RC28、ααα20RC29规则甾烷主要表现为“L”形或“V”形分布,饱和烃TIC 图中基本未检测到β-胡萝卜烷,甾烷系列及β-胡萝卜烷化合物丰度具有“四高三低”的特征(表3),即C27甾烷与C29甾烷丰度相当或略高(C27/C29ST≥0.83)、4 甲基甾烷丰度高(4MS/C29ST≥0.1)、孕甾烷丰度高(C21-22/C29ST≥0.2)、重排甾烷丰度高(Dia.C27/C27ST≥0.22)、C28甾烷丰度低(C28/C29ST<0.8)、甾藿比值偏低(S/H<1)、β-胡萝卜烷/nCmax<0.1。与之不同的是,孤峰组和栖霞组上段硅质岩的规则甾烷主要表现为“反L”形分布,饱和烃总离子流图中检测出了丰富的β-胡萝卜烷,甾烷系列及β-胡萝卜烷化合物丰度具有“四低三高”的特征,即C27/C29ST<0.6、4MS/C29ST<0.1、C21-22/C29ST<0.2、Dia.C27/C27ST<0.1、C28/C29ST>0.9、S/H≥1、β-胡萝卜烷/nCmax≥0.5。孤峰组硅质泥岩烃源岩的规则甾烷表现为“V”形分布,饱和烃总离子流图中检测到中等丰度的β-胡萝卜烷,其甾烷系列及β-胡萝卜烷化合物突出的特征是C27甾烷、重排甾烷和β-胡萝卜烷丰度中等(0.6<C27/C29ST<0.83,0.1<Dia.C27/C27ST<0.22,0.1<β-胡萝卜烷/nCmax<0.5),而4MS/C29ST、C28/C29ST、S/H 参数与龙潭组泥岩类似,C21-22/C29ST 值与孤峰组硅质岩类似。
表3 南黄海盆地CSDP-2 井二叠系烃源岩的生物标志化合物特征Table 3 The biomarkers characteristics of the Permian source rocks in Well CSDP-2, South Yellow Sea Basin
CSDP-2 井二叠系烃源岩的萜烷组成中三环萜烷的碳数分布范围为C19-C31,均呈现出以C23三环萜烷(C23TT)为主峰的近正态分布(图3),且烃源岩的C23TT/C30H 主体为0.13~0.71,C24Tet/C26TT 为0.44~0.60,ETR 值为0.5~0.82,未表现出明显的差异。五环三萜烷中藿烷系列均以C30H 为主峰、C29H 为次主峰,呈近正态分布,C31-35升藿烷系列含量较低,且随碳数增加呈递减趋势。栖霞组-孤峰组烃源岩的Ts/Tm 为0.52~1.34,平均值为0.81,龙潭组-大隆组烃源岩的Ts/Tm 为0.92~1.1,平均值为1.0。四套烃源岩的伽马蜡烷指数为0.1~0.26,未表现出明显差异。这些特征与我国南方地区海相古生界烃源岩的萜烷化合物特征具有相似性[2],说明CSDP-2 井二叠系烃源岩的萜烷系列分布出现了趋同现象。
表4 南黄海盆地CSDP-2 井二叠系烃源岩芳香烃组分的相关参数Table 4 Parameters of aromatic fractions of the Permian source rocks in Well CSDP-2, South Yellow Sea Basin
图5 南黄海盆地CSDP-2 井二叠系烃源岩芳烃组分的总离子流图(TIC),三芳甾烷(m/z=231)和甲基三芳甾烷(m/z=245)质量色谱图Fig.5 Total ion chromatogram (TIC), and the mass chromatograms of triaromatic sterane (m/z=231) and methyl triaromatic sterane(m/z=245) of the aromatic fractions in the Permian source rocks of Well CSDP-2, South Yellow Sea Basin
常规甾萜烷成熟度参数在高热演化阶段仍具有适用性的指标主要为三降藿烷比(Ts/Tm)和重排甾烷参数(Dia.C27/C27ST)[39],成熟度升高会造成上述参数增大。但Dia.C27/C27ST 和Ts/Tm 除受成熟度影响外,还受黏土矿物含量、氧化还原条件和水体酸度影响[48],在黏土矿物含量丰富的酸性环境中含量偏高,而在碳酸盐岩烃源岩或原油中比值普遍较低。本次测试烃源岩的饱和烃馏分中Dia.C27/C27ST和Ts/Tm 与样品深度并无明显正相关关系,说明Dia.C27/C27ST 和Ts/Tm 因受岩性、沉积环境或高成熟度的趋同效应[3]等因素影响无法反映成熟度差异。芳烃成熟度参数中萘系列、菲系列和二苯并噻吩系列对有机质成熟度指示作用的理论依据主要包括成熟阶段的甲基重排反应和高演化阶段的脱甲基反应[9,12,40]。一般认为,甲基菲参数MPI-1、MPI-2、F1 和F2 可综合评价Ro 在0.65%~2.0%范围内的有机质成熟度[14,49],烷基萘和烷基二苯并噻吩可以评价高成熟阶段的有机质成熟度,但具体的成熟度评价范围因地而异[14,50-51]。上述芳烃成熟度指标也受沉积环境和有机质类型的影响,例如甲基菲指数适用于煤和III 型干酪根有机质[10-11,14],但在淡水-微咸水环境中该指数偏低,在咸水强还原环境中该指数偏高[8];烷基萘参数易受生物降解和烷基萘的绝对浓度等因素影响[14];MDR(4-MDBT/DBT)和MDBI适用于II 型和III 型有机质的成熟度表征[52],但沉积环境的还原性增强容易引起4-MDBT 的富集[50]。
如图6 所示,根据前人研究数据[30],大隆组-龙潭组烃源岩的镜质体反射率Ro 随深度增加呈单调递增的趋势,在孤峰组-栖霞组上段(1 630~1 670 m)由于岩浆热液流体上涌[30],烃源岩的Ro 在约40 m的深度内由1.7%左右迅速增加至2.0%以上,栖霞组下段Ro 随深度变化的斜率恢复正常。本次研究发现,CSDP-2 井龙潭组-大隆组烃源岩的甲基菲指数(MPI-1、MPI-2)和甲基二苯并噻吩参数(4-MDBT/DBT、MDBI)、二甲基二苯并噻吩参数(4,6-/1,4-DMDBT)随深度变化明显存在两阶段关系(图6)。在876~1 350 m 深度段,MPI-1、MPI-2、4-MDBT/DBT、MDBI、4,6-/1,4-DMDBT 均表现为随深度增加而增大;在1 350~1 630 m 深度段,上述参数随深度增加而减小。然而,F1 和F2 参数随深度增加并未出现减小的趋势(表4)。上述现象与前人提出的MPI-1 指数[11]、MDBI[53]、MDR[52,54]随成熟度增加呈现两阶段变化特征一致。这说明CSDP-2 井二叠系烃源岩中的甲基菲和甲基二苯并噻吩在1 350 m 以上深度随成熟度增加表现为甲基重排作用,而1 350 m以下深度(即约Ro>1.35%)随成熟度增加主要表现为脱甲基作用,由此导致菲(P)和二苯并噻吩(DBT)化合物的含量增加而造成MPI-1、MPI-2、4-MDBT/DBT、MDBI、4,6-/1,4-DMDBT 参数随深度变化呈负相关的趋势。因此,甲基菲指数和甲基二苯并噻吩参数可有效评估南黄海盆地龙潭组-大隆组烃源岩的成熟度。
图6 南黄海盆地CSDP-2 井二叠系烃源岩的样品深度与镜质体反射率Ro、甲基菲参数、烷基二苯并噻吩参数的相关关系Fig.6 The correlation relationships of the sample depth to the vitrinite reflectance Ro, parameters of alkyl phenanthrene, and parameters of alkyl dibenzothiophene for the Permian source rocks of Well CSDP-2, South Yellow Sea Basin
孤峰组-栖霞组烃源岩的MPI-1、MPI-2、4-MDBT/DBT、MDBI、4,6-/1,4-DMDBT 相比龙潭组-大隆组烃源岩偏高,且明显偏离参数随深度的演化趋势(图6)。针对该现象,本文利用氧化还原性指标二苯并噻吩/菲(DBT/P)[55]与上述参数进行拟合,发现孤峰组烃源岩的DBT/P 与MPI-1、F1、4-MDBT/DBT、4,6-/1,4-DMDBT 参数之间存在明显的正相关(图7)。这说明孤峰组烃源岩的甲基菲和甲基二苯并噻吩成熟度参数主要受沉积环境影响,水体还原性逐渐增强使得3-MP、2-MP、4-MDBT、4,6-DMDBT 化合物的相对丰度逐渐增加进而造成MPI-1、F1、4-MDBT/DBT、4,6-/1,4-DMDBT 逐渐增大。因此,甲基菲指数和烷基二苯并噻吩参数不能用于评估南黄海盆地孤峰组烃源岩的成熟度。
图7 南黄海盆地CSDP-2 井二叠系烃源岩的二苯并噻吩/菲(DBT/P)与甲基菲、烷基二苯并噻吩参数的相关关系Fig.7 Correlations of DBT/P vs parameters of methyl phenanthrene and alkyl dibenzothiophene for the Permian source rocks in Well CSDP-2, South Yellow Sea Basin
CSDP-2 井二叠系烃源岩的甾烷系列化合物尚未出现趋同现象,且与成熟度无明显相关性,因而该系列化合物参数可用于反映烃源岩的有机质来源。通常认为C27规则甾烷来源于低等生物如浮游动物及浮游植物,C29甾烷既可来源于陆相高等植物[56],又可来源于蓝绿藻[57]和褐藻[58],C28甾烷通常与含有叶绿素c 的特定浮游植物(如硅藻、颗石藻和沟鞭藻等)有关,其丰度随地层年龄的减小而增加,上古生界烃源岩或原油的C28/C29ST 一般为0.4~0.7[59]。本次测试的样品中栖霞组上段-孤峰组烃源岩的C28/C29ST 多大于0.7,且随C27/C29ST 的增加而降低(图8A),而栖霞组下段和龙潭组-大隆组烃源岩的C28/C29ST 普遍小于0.8,且随C27/C29ST 增加而增加(图8A),说明栖霞组上段-孤峰组和栖霞组下段、龙潭组-大隆组烃源岩的C28甾烷来源存在差异。4-甲基甾烷通常来源于海相和非海相的甲藻(如沟鞭藻)或细菌,在淡水环境中其丰度相对于咸水环境更丰富[39]。β-胡萝卜烷主要与缺氧的、盐湖相或高局限性海相环境有关[39],其前驱物与耐盐的单细胞藻类杜氏藻属(Dunaliella)有关[60]。如图8B、8C 所示,栖霞组上段-孤峰组烃源岩的C28/C29ST 与4MS/C29ST 呈明显负相关性、与β-胡萝卜烷/nCmax呈明显正相关性,而栖霞组下段和龙潭组-大隆组烃源岩的C28/C29ST 与4MS/C29ST 存在较弱的正相关性、与β-胡萝卜烷/nCmax无明显相关性,这说明栖霞组下段和龙潭组-大隆组烃源岩中的C28甾烷来源于淡水的甲藻类生物,而栖霞组上段-孤峰组烃源岩中C28甾烷与杜氏藻等耐盐性的藻类有关。元素地球化学研究表明,CSDP-2 井孤峰组硅质岩主要为上升流成因[61],而硅藻在上升洋流富营养的冷海水中往往最富集[62],因此孤峰组硅质岩中丰度极高的C28甾烷意味着沉积时期海水中可能出现了硅藻类浮游植物的繁盛。这从C27-C28-C29甾烷三角图(图8D)上栖霞组上段-孤峰组硅质岩落在浮游生物-陆生植物与硅藻生物的过渡区,而孤峰组硅质泥岩和龙潭组-大隆组泥岩主要落在浮游生物-陆生植物区域也能得到证实。
图8 南黄海盆地CSDP-2 井二叠系烃源岩的甾烷及β-胡萝卜烷相关参数散点图A:C28/C29 甾烷与C27/C29 甾烷;B:C28/C29 甾烷与4-甲基甾烷/C29 甾烷;C:C28/C29 甾烷与β-胡萝卜烷/nCmax;D:C27-C28-C29 甾烷相对含量三角图,底图据文献[67];E:C21-22 孕甾烷/C29 甾烷与C27 重排甾烷/C27 甾烷;F:C28/C29 甾烷与甾/藿。Fig.8 Scatter plots among relative parameters of sterane and β-carotane in the Permian source rocks of Well CSDP-2,South Yellow Sea BasinA: C28/C29ST vs C27/C29ST; B: C28/C29ST vs 4MS/C29ST; C: C28/C29ST vs β-carotene/nCmax; D: C27ST-C28ST-C29ST relative content triangle; template is from reference [67]; E: C21-22/C29ST vs Dia.C27/C27ST; F: S/H vs 4MS/C29ST.
如前所述,本次测试样品的Dia.C27/C27ST 并不能反映成熟度差异,但对比不同岩性烃源岩的Dia.C27/C27ST 发现该比值明显表现为泥岩>硅质泥岩>硅质岩(图8E),说明CSDP-2 井二叠系烃源岩的Dia.C27/C27ST 主要受黏土矿物含量影响。C21-22孕甾烷来源于微生物活动过程中产生的生物激素孕甾醇和孕甾酮,以及热演化过程中的规则甾烷侧链断裂[63]。CSDP-2 井栖霞组下段和龙潭组-大隆组烃源岩的C21-22/C29ST 和Dia.C27/C27ST 呈明显正相关性,而栖霞组上段-孤峰组烃源岩的C21-22/C29ST与Dia.C27/C27ST 无明显相关性(图8E),说明栖霞组下段和龙潭组-大隆组烃源岩中的C21-22孕甾烷主要来源于规则甾烷的热降解,该时期水体中的微生物活动并不明显,而栖霞组上段-孤峰组烃源岩的C21-22孕甾烷主要来源于微生物。
规则甾烷/藿烷反映真核生物(主要是藻类和高等植物)与原核生物(主要是细菌)对烃源岩的贡献。一般而言,高S/H 值(≥1)反映有机质主要来源于浮游生物或底栖藻类[64],而低S/H 值则指示陆生的或经微生物改造的有机质[65]。三芳甾烷和三芳甲藻甾烷是甲藻甾烷芳构化的产物,其来源与沟鞭藻[66]、海相疑源类胞囊或球状甲藻[62]等浮游藻类有关。栖霞组下段和龙潭组-大隆组烃源岩的S/H<1,且芳烃馏分中未检测到三芳甾烷,而栖霞组上段-孤峰组硅质岩的S/H>1、硅质泥岩的S/H<1(图8F),且芳烃馏分中存在微量的三芳甾烷系列化合物(图5)。结合C27-C28-C29甾烷三角图、S/H 值和三芳甾烷含量特征,可以认为栖霞组下段和龙潭组-大隆组烃源岩中的有机质主要来源于浮游生物和陆生高等植物,而栖霞组上段-孤峰组钙质/硅质岩的有机质来源于浮游生物和硅藻,硅质泥岩的有机质来源于浮游生物、硅藻和陆生高等植物。此外,四套烃源岩饱和烃馏分中的S/H 与4MS/C29ST 存在明显的负相关性(图8F),而与C28/C29ST 存在较明显的正相关性,说明孤峰组沉积时期硅藻类生物繁盛是造成海水的初级生产力升高的主要因素,陆源淡水及黏土矿物的输入可能会引起“稀释效应”而造成海水初级生产力降低。
CSDP-2 井二叠系烃源岩的二苯并噻吩系列化合物丰度差异显著,且与成熟度无明显相关性,因而该系列化合物参数可用于评价烃源岩的沉积环境。通常在盐湖相、海相碳酸盐烃源岩的三芴系列中硫芴含量较高,在沼泽相煤或煤成油的三芴系列中氧芴含量较高,在陆相淡水、微咸水湖相烃源岩的三芴系列中芴的含量较高[68-69]。李水福等[70]指出利用C0—C2同系物统计的DBTs/(DBTs+Fs)与DBFs/(DBFs+Fs)的关系图可以有效地区分氧化、还原环境以及介于其间的过渡环境。Hughes 等[55]认为DBT/P 反映了沉积环境中与有机质结合的活性硫的含量,利用DBT/P-Pr/Ph 可区分不同成熟度和不同岩性烃源岩的沉积环境。孤峰组烃源岩的三芴系列中硫芴含量高,在DBTs/(DBTs+Fs)-DBFs/(DBFs+Fs)相对关系图版上样品全落入强还原高盐环境(图9A),且部分样品的噻吩硫含量达到了富含硫的标准(图9B),β-胡萝卜烷异常丰富(图8C),这些特征都说明孤峰组沉积于深水陆棚或盆地相强还原高盐环境。栖霞组烃源岩样品在DBTs/(DBTs+Fs)-DBFs/(DBFs+Fs)相对关系图版上落入正常咸水还原环境(图9A),且噻吩硫含量较低、β-胡萝卜烷含量中等(图9B,8C),说明栖霞组烃源岩沉积于台地相或浅水陆棚相正常还原性浅海环境。龙潭组-大隆组烃源岩的三芴系列中芴含量较高,在DBTs/(DBTs+Fs)-DBFs/(DBFs+Fs)相对关系图版上样品主要落入沼泽相氧化环境和正常海相环境(图9A),且样品的噻吩硫含量和β-胡萝卜烷含量极低(图9B,8C),说明龙潭组-大隆组烃源岩沉积于沼泽相或潮坪相等淡水氧化或微咸水贫氧环境。少数龙潭组底界烃源岩样品的噻吩硫含量较高,预示着龙潭组底部为还原环境,说明孤峰组晚期可能存在缓慢的海退过程,也可能与CSDP-2 井在龙潭组早期为沉积洼地[29]有关。
图9 南黄海盆地CSDP-2 井二叠系烃源岩的二苯并噻吩系列化合物相关参数散点图A:二苯并噻吩系列/(二苯并噻吩系列+芴系列)和二苯并呋喃系列/(二苯并呋喃系列+芴系列),图版据文献[70];B:姥鲛烷/植烷(Pr/Ph)和二苯并噻吩/菲,图版据文献[55]。Fig.9 Scatter plots among relative parameters of the dibenzothiophene series compounds in the Permian source rocks of Well CSDP-2,South Yellow Sea BasinA: DBTs/(DBTs+Fs) vs. DBFs/(DBFs+Fs); template is from reference[70]; B: Pr/Ph vs. DBT/P; template is from reference [55].
(1)南黄海盆地上二叠统烃源岩的甲基菲指数(MPI-1、MPI-2)、烷基二苯并噻吩参数(4-MDBT/DBT、MDBI、4,6-/1,4-DMDBT)随深度增加呈两阶段变化特征,可作为有效的成熟度指标;中下二叠统烃源岩的上述参数受还原环境影响普遍偏高,不能用于反映烃源岩的有机质成熟度。
(2)根据甾烷系列、三芳甾烷系列、烷基二苯并噻吩系列化合物和β-胡萝卜烷的相对丰度特征,可将南黄海盆地CSDP-2 井二叠系烃源岩分为3 类:龙潭组-大隆组和栖霞组下段泥岩烃源岩、栖霞组上段-孤峰组钙质/硅质岩烃源岩和孤峰组硅质泥岩烃源岩。
(3)南黄海盆地龙潭组-大隆组和栖霞组下段泥岩烃源岩沉积于淡水氧化或微咸水贫氧环境,有机质来源于浮游生物和陆生高等植物;栖霞组上段-孤峰组硅质泥岩和硅质岩烃源岩沉积于还原-强还原高盐度环境,其中硅质岩的有机质来源于浮游生物和硅藻,硅质泥岩的有机质来源于浮游生物、硅藻和陆生高等植物。
致谢:在论文撰写过程中受到了程熊博士、丁文静博士、赵子斌博士的帮助,在此一并致谢。