张家根,黄天寅,陈书琴,武宇圣,庞燕,许秋瑾
1.湖泊水污染治理与生态修复技术国家工程实验室,中国环境科学研究院
2.苏州科技大学环境科学与工程学院
3.安庆师范大学资源环境学院
南水北调东线工程沿线过境湖泊主要有东平湖、南四湖、骆马湖、洪泽湖、高邮湖,作为东线工程蓄水库、水源地,其水环境条件优劣对于流域沿线城市经济、环境、人口等发展至关重要[1-3]。湖泊水环境中重金属作为典型的累积型污染物,因其难降解、毒性大,且具有持久性[4-5],在自然条件下无法降解,大部分会通过吸附、沉淀、络合等作用沉积在湖泊沉积物中[6-8]。近年来,南水北调东线工程沿线湖泊沉积物受到入湖河流以及近岸城镇居民生产生活的影响,存在不同程度的重金属污染[9]。如李文博等[10]研究发现,近10年来骆马湖沉积物重金属的污染程度呈现递增趋势;陈乾坤等[11]运用潜在生态风险指数法对高邮湖沉积物进行评价,发现Cd 是沉积物重金属潜在生态风险的主要贡献因子,其次为As;李宝等[12]通过富集因子法得出南四湖表层沉积物重金属Cd、As、Pb 存在一定程度的富集;訾鑫源等[13]采用潜在生态风险指数法对洪泽湖进行风险评价,得出Cd 存在较严重的生态风险。但目前的研究大多针对单个湖泊开展,缺乏湖泊重金属的综合污染评价及各湖泊间的对比研究。笔者探讨了南水北调东线工程沿线南四湖、骆马湖、洪泽湖、高邮湖4 个湖泊(这4 个湖泊同属于淮河流域,各湖泊间水文水质联系相对紧密,而东平湖大部分湖区属于黄河流域,地理位置与4 个湖泊较远,故未选择)表层沉积物中7 种重金属(Cr、Cu、Ni、Zn、Pb、Cd、As)污染特征及生态风险,并与我国五大湖区其他湖泊进行对比分析,探讨其对南水北调东线工程的潜在影响,以期为南水北调东线工程沿线湖泊水环境安全及重金属污染防控提供科学参考。
南水北调东线工程从长江下游扬州附近抽引江水,利用京杭大运河及其平行的河道为输水主干线和分干线逐级提水北送,穿越淮河流域和黄河流域,并连通作为调蓄水库的高邮湖、洪泽湖、骆马湖和南四湖[14]。高邮湖位于江苏省中部,淮河中下游,是江苏省第三大湖泊,湖泊长48 km,最大宽度为28 km,水域面积为760.67 km2,平均水深1.4 m,总库容为9.716×108m3[15]。洪泽湖位于江苏省北部、淮河中下游,分属江苏省淮安、宿迁2 市,是淮河流域最大的湖泊,水域面积为2 069 km2,平均水深1.9 m[16]。骆马湖位于江苏省北部,由徐州、宿迁2 市共同管辖,湖泊总面积为287 km2,平均水深2.7 m,总库容为9.18×108m3[17]。南四湖位于山东省西南部,隶属济宁市和枣庄市,湖泊长约125 km,宽5~30 km,总库容为53.7×108m3,水域总面积为1 266 km2,平均水深1.46 m[18]。
1.2.1 样品采集与分析
利用网格法在4 个湖泊共设置55 个采样点,其中南四湖23 个、骆马湖12 个、洪泽湖12 个、高邮湖8 个(图1)。于2021年10—11 月根据《沉积物质量调查评估手册》[19]的要求进行采样,表层沉积物样品用抓斗式采泥器抓取,将采集好的沉积物样品装入排空空气的聚乙烯袋中,避光冷藏,于0~4 ℃下保存运回实验室,经冷冻干燥并去除杂物后过100 目筛,置于自封袋中保存。
图1 研究区概况及采样点分布Fig.1 Survey of research area and distribution of sampling points
用天平称取0.1 g 沉积物样品置于聚乙烯微波消解管中,加入硝酸-氢氟酸-高氯酸混合酸体系(HNO3-HF-HClO4),用微波消解仪(MDS-10)消解1 h 后,用赶酸仪赶酸,温度调至160 ℃,在通风橱内赶酸1 h,直至管中液体底部出现黄色颗粒;冷却后加入5 mL 2%的HNO3,随后使用50 mL 比色管对消解管内液体进行定容,其间不断用2%的HNO3冲洗消解管内壁并转移至比色管,定容至50 mL,过0.45µm 滤膜后待测;最后使用电感耦合等离子体质谱仪(ICP-MS 7700Series)进行沉积物样品中重金属元素Cr、Ni、Cu、Zn、As、Cd、Pb 浓度测定。上述分析过程所用试剂均为优级纯,试验用水均为超纯水,使用GBW07312(GSD-12)水系沉积物标准样品作为质控检查试验精度,其相对标准偏差<10%。
1.2.2 重金属污染评价方法
1.2.2.1 优劣解距离多指标综合评价模型
优劣解距离多指标综合评价模型(TOPSIS 法)于1981年由Hwang 等提出,是多目标决策分析中适用于多变量多因素的模型[20-21]。本研究采用TOPSIS 法对多个湖泊水环境中多种重金属元素污染情况进行分析。首先建立多个湖泊多种重金属的原始矩阵X,该矩阵的最优评价方案及最劣评价方案即为对所有数据进行评价的最低和最高标准[22]。所建立的n个湖泊、m种重金属的原始矩阵X如下:
式中xij为各湖泊i点位的第j种重金属的浓度,mg/kg。
对原始矩阵X做归一化处理:
式中:uij为原始矩阵中xij归一化处理后的数值,其取值为0~1;xmin为xij中每种重金属浓度的最小值,mg/kg;xmax为xij中每种重金属浓度的最大值,mg/kg。
由于湖泊沉积物重金属浓度是逆向指标,uij越接近1,表示浓度越高;uij越接近0,表示浓度越低。因此,根据归一化矩阵可确定湖泊沉积物重金属综合评价问题的最优评价方案A+(各种重金属对应的uij=0)和最劣评价方案A-(各种重金属对应的uij=1)分别为(0,0,0,0,0,0,0) 和(1,1,1,1,1,1,1),对应的分别是4 个湖泊沉积物中的7 种重金属。根据各点位的归一化数据计算出其与最优评价方案A+和最劣评价方案A-的距离与:
式中:uij优对应的是A+中每个数值,即为0;uij劣对应的是A-的每个数值,即为1;为i点位的归一化数据uij与A+的距离;为i点位的归一化数据uij与A-的距离。
计算得出各点位评价指标与A+的接近程度,即各点位的综合风险指数(Ci,数值为0~1),用以表示对各点位的综合评价结果,公式如下:
1.2.2.2 潜在生态风险指数法
潜在生态风险指数法由瑞典科学家Hakanson提出,被普遍用于综合评价重金属的潜在生态风险,计算公式[23]如下:
式中:Cfj为重金属j的污染指数;m为重金属种类数,个;Cj为重金属j的实测浓度,mg/kg;Cnj为重金属j的地球化学背景值(表1),mg/kg;Erj为重金属j的潜在生态风险系数;Trj为重金属j的毒性系数,Cr、Ni、Cu、Zn、As、Cd、Pb 的毒性系数分别为2、5、5、1、10、30、5;RI 为重金属综合潜在生态风险指数。Erj、RI 的评价等级划分见表2。
表1 山东省、江苏省土壤环境重金属元素背景值[24]Table 1 Background values of heavy metal elements in soil environment of Shandong and Jiangsu Provincemg/kg
表2 Erj、RI 评价等级划分Table 2 Evaluation grade division of Erj and RI
采用Excel 2016、Origin 2021、GraphPad Prism8软件分析处理并绘制箱线图、柱状图及聚类热图等;根据点位坐标信息并结合各湖泊对应点位重金属综合风险指数,通过ArcGIS 10.8 软件进行克里金插值,得到湖泊表层沉积物的采样点位分布图和重金属综合污染指数的统计空间插值图。
南水北调东线工程沿线4 个湖泊表层沉积物中7 种重金属(Cr、Cu、Ni、Zn、Pb、Cd、As)浓度如图2所示。南四湖表层沉积物重金属Cr、Ni、Pb、As、Cd 浓度均值分别为87.18、44.79、15.32、15.46、0.25 mg/kg,分别是山东省土壤背景值的1.45、1.42、1.40、2.33、3.25 倍,其Cd、As、Cr、Ni 浓度均值为4 个湖泊中最高。高邮湖表层沉积物重金属Zn、Pb、As、Cd 浓度均值分别为85.21、25.06、16.07、0.22 mg/kg,是江苏省土壤背景值的1.31、1.14、1.71、2.59 倍,其Zn、Pb 浓度均值为4 个湖泊中最高,Cd、As 浓度最大值分别在湖区东部样点G1、G4 处,达到背景值的3.53、2.31 倍。洪泽湖表层沉积物中As、Cd 浓度均值为14.42、0.17 mg/kg,是江苏省土壤背景值的1.53、2.00 倍,Cd、As 浓度最大值分别在湖区西部样点H12、湖心北部样点H2 处,达到对应背景值的3.18、2.05 倍。骆马湖表层沉积物As、Cd 浓度均值为10.82、0.15 mg/kg,是江苏省土壤背景值的1.15、1.76 倍,为4 个湖泊中最低。
图2 4 个湖泊表层沉积物重金属浓度及差异性分析Fig.2 Analysis of heavy metal concentration and differential analysis of surface sediments of the four lakes
采用单因素方差分析(ANOVA)对4 个湖泊表层沉积物中7 种重金属的浓度进行差异性分析,结果如图2 所示。4 个湖泊表层沉积物重金属浓度除Cu、Zn 外均有显著性差异。南四湖表层沉积物中Cr、Ni 浓度显著高于其他3 个湖泊(P<0.001),As 浓度显著高于骆马湖(P<0.001);高邮湖表层沉积物中Cd 浓度显著高于骆马湖(P<0.01),高于洪泽湖(P<0.05)。综上可知,南四湖、高邮湖表层沉积物中Cd、As 浓度显著高于其他2 个湖泊。南四湖湖周区域多为煤矿开采基地及农副产品生产基地,煤矿开采过程中造成的As 排放和湖区周边农业生产的农药使用可能是造成As 累积的主要原因,而化肥在农业生产中的大量使用可能是造成Cd 等重金属积累的重要原因[9];高邮湖湖区Cd、As 浓度较高可能与密集施用化肥与农药的农田和养殖池塘废水排放有关[1]。
我国主要湖泊区域划分为青藏高原湖区、蒙新高原湖区、东部平原湖区、东北平原与山地湖区、云贵高原湖区五大湖区[25]。南四湖、骆马湖、洪泽湖、高邮湖属于东部平原湖区,这4 个湖泊表层沉积物重金属浓度与五大湖区典型湖泊的对比见表3。由表3 可知,4 个湖泊表层沉积物Zn、Cd、Cu、Pb、As 浓度均低于同属于东部平原湖泊的太湖、巢湖、洞庭湖、鄱阳湖,Cd、As 浓度与东北平原及山地湖泊相比较高,Cr、Pb、As 浓度均高于蒙新高原湖区的乌梁素海、博斯腾湖、乌伦古湖。与青藏高原湖区的湖泊相比,4 个湖泊表层沉积物Cr、Ni、Zn、Cd、Cu 浓度较高,但Pb、As 浓度低于青藏高原湖区的纳木错、羊卓雍错;与云贵高原湖区的湖泊相比,4 个湖泊表层沉积物重金属Pb、Cu、As 浓度均较低。综上可知,不同区域湖泊沉积物重金属的分布具有明显的区域性差异,且工农业发展迅速、人类活动频繁地区的湖泊沉积物重金属浓度高于工农业发展落后、人类活动较少的地区,说明除了地质构造特征不同导致重金属土壤背景值存在区域性差异外,工农业生产等人类行为也是导致湖泊沉积物重金属存在差异的主要因素[26-27]。
表3 4 个湖泊与我国五大湖区典型湖泊表层沉积物重金属浓度对比Table 3 Comparison of heavy metal concentrations in surface sediments of the four lakes and typical lakes in the five geographic regions of Chinamg/kg
2.2.1 表层沉积物重金属综合风险指数空间分布
采用优劣解距离多指标综合评价模型,对4 个湖泊各点位表层沉积物重金属浓度数据进行整体的归一化处理,结果见表4,各湖泊沉积物重金属浓度空间分布特征如图3 所示。由图3 可知, 4 个湖泊表层沉积物重金属的空间分布特征存在明显差异。南四湖表层沉积物重金属污染表现为湖区东南部高于西北部,湖区东部点位N12、N13、N14、N18 污染较为严重,Ci最高可达0.68,该区域点位靠近西部农业种植区,重金属Cd、As、Cu 与农业生产中化肥、农药的使用及农业污水排放有关,农业退水及农田面源污染可能带来As、Cd、Cu 污染。对比李宝等[12]2020年的研究,发现本研究南四湖表层沉积物中Pb、As 浓度波动较小,但Cd 浓度上升趋势较为明显。
表4 4 个湖泊表层沉积物重金属浓度归一化指标Table 4 Normalized index of heavy metal contents in surface sediments of the four lakes
图3 4 个湖泊表层沉积物重金属综合风险指数空间分布Fig.3 Spatial distribution of composite evaluation index of heavy metals in surface sediments of the four lakes
骆马湖表层沉积物重金属污染在空间分布上呈现自西向东递增的趋势,污染主要集中在东南湖区和北部入湖河口。骆马湖东南湖区中L5、L9、L10 点位污染较重,综合风险指数(Ci)为0.46~0.52。结合骆马湖水文水质特征可知,湖水整体流向东部及南部,东南岸带出湖河口较少形成自然积累条件,且湖区东南部土壤粒径较小,重金属较易吸附在沉积物上;此外,湖区东部和南部围网围塘渔业养殖的分布也可能是导致该区域重金属As、Cd、Pb 污染的重要因素[17]。北部(老沂河)入湖河口区域L1、L2 点位(入湖河口)污染较重,Ci为0.40~0.46,推测该区域污染来源主要以老沂河的外源污染输入为主。对比Wang 等[17]2021年的研究,发现本研究骆马湖表层沉积物中重金属Cr、Cu、As、Zn 浓度波动较小,重金属Cd、Pb 浓度有小幅度上升趋势。
洪泽湖表层沉积物重金属污染空间分布表现为东部高于西部,可能的原因:洪泽湖为过水型湖泊,入湖河流主要分布在湖西、南部,出湖河流主要集中在湖东部,地势较东部湖区低,沉积物重金属浓度较高,其中H3、H6、H7、H9 点位Ci最高可到0.69。对照訾鑫源等[13]2018年的研究,发现本研究洪泽湖表层沉积物中重金属Cr、Cu、As、Zn 浓度波动较小,基本与江苏省土壤背景值持平,重金属Cd、Pb、As 浓度有小幅度上升。
高邮湖表层沉积物重金属污染在空间分布上表现为东部高于西部,污染集中分布在湖心东、南部,其中以G4、G7 点位污染较为突出,Ci最高可达0.63,这可能与东部湖区靠近高邮市区,受到市政、工业、农业和水产养殖源排放的污染有关;对比陈乾坤等[11]2013年的研究,发现本研究高邮湖表层沉积物中重金属Cr、Cu、As、Zn、Cd、Ni 浓度波动较小,其中Cd、As 浓度超过江苏省土壤背景值较多。
根据4 个湖泊表层沉积物中各种重金属的平均浓度,采用优劣解距离多指标综合评价模型进行多重比较的综合评价,结果见表5。Ci越大表明该区域受重金属污染程度越大;反之,受污染程度越小。根据Ci对4 个湖泊沉积物重金属污染程度进行排序,结果为南四湖>高邮湖>洪泽湖>骆马湖。
表5 4 个湖泊表层沉积物重金属污染程度综合评价对比Table 5 Comprehensive evaluation and comparison of heavy metal pollution in surface sediments of the four lakes
2.2.2 表层沉积物重金属潜在生态风险评价
对4 个湖泊表层沉积物中的单项重金属潜在生态风险及7 种重金属的综合潜在生态风险进行评价,结果如表6、图4 所示。由表6 可知,比较Erj发现,4 个湖泊表层沉积物重金属主要风险贡献因子均为Cd,其在4 个湖泊所有点位风险贡献占比均达到50%以上,其中在骆马湖(54.27)、洪泽湖(60.02)存在中等生态风险,在高邮湖(94.71)、南四湖(96.36)存在较高生态风险。南四湖N14 点位Cd 的Erj为178.50,达到高生态风险水平,为4 个湖泊所有点位中最大值。4 个湖泊表层沉积物中其他6 种重金属单项潜在生态风险等级均为低风险(即Erj<40),其中As 潜在生态风险仅次于Cd,在4 个湖泊所有点位风险贡献占比均达到13%以上。姜会敏等[40]的研究也发现,滇池、太湖、洞庭湖等湖泊沉积物重金属Cd 的潜在生态风险指数远高于其他重金属,这可能与Cd 的环境背景值低、毒性系数高有关。
表6 4 个湖泊与我国五大湖区湖泊表层沉积物重金属Erj、RI 对比Table 6 Comparison of Erj、RI of heavy metals in surface sediments of the four lakes and typical lakes in the five geographic regions of China
图4 4 个湖泊表层沉积物重金属潜在生态风险评价结果Fig.4 Evaluation results of potential ecological risk of heavy metals in surface sediments of the four lakes
4 个湖泊的RI 排序分别为南四湖>高邮湖>洪泽湖>骆马湖,并且综合潜在生态风险等级均为低(即RI<150)。与我国五大湖区其他湖泊比较,4 个湖泊表层沉积物重金属RI 均低于同属于东部平原湖区的太湖(161.41)、鄱阳湖(393.98)和云贵高原湖区的滇池(157.00)。
(1)南水北调东线工程沿线南四湖、骆马湖、洪泽湖、高邮湖表层沉积物中重金属Cd、As 浓度与背景值相比较高,分别是背景值的1.18~3.25 倍、1.15~2.33 倍。与我国五大湖区湖泊相比较,不同区域湖泊表层沉积物重金属的分布具有明显的差异,除了地质构造特征导致的区域性差异外,工农业生产等人类行为也是导致湖泊沉积物重金属存在差异的主要因素。
(2)4 个湖泊表层沉积物重金属浓度存在一定的空间差异,其表层沉积物重金属综合潜在生态风险水平均表现为低风险,对南水北调东线工程的潜在影响较小,但Cd 作为4 个湖泊综合潜在生态风险的主要贡献因子,其单项重金属潜在生态风险水平为中等至较高。
(3)建议加强南水北调东线工程沿线湖泊所在区域政府针对湖泊周边工业、农业生产排放的监管,并进一步调整和优化各湖泊上游的产业结构,同时严格控制重金属污染输入,以确保南水北调东线工程沿线湖泊的水环境安全。