庞世龙 欧芷阳 叶斯进 吴梓源 申文辉 何峰 陆国导
摘 要: 為探究岩溶植物的光合生理适应机制,采用Li-6400XT便携式光合作用测量系统,对广西平果市岩溶区8种适生植物的叶片净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)、水分利用效率(WUE)和气孔限制值(Ls)等光合特征参数进行了测定分析。结果表明:(1)6个光合特征参数在种内和种间均存在不同程度的变异,并且种内变异均大于种间变异。(2)Gs和Tr的变化主要来源于种间变异(46.72% ~ 49.76%),而Pn、Ci、WUE和Ls变化主要来源于种内变异(48.66% ~ 64.50%)。在生活型水平上,Pn、Gs和Tr的种内变异表现为常绿植物小于落叶植物,而Ci、WUE和Ls则相反。(3)各参数的种间变异均表现为落叶植物大于常绿植物。(4)无论在种内还是种间,Gs的总体变异程度最大,其次是Tr和Pn,再次是Ls和WUE,Ci最小。Pn、Gs和Tr三者之间呈显著正相关(P<0.01);Ls与WUE呈显著正相关(P<0.05),而与Gs和Ci呈显著负相关(P<0.05)。这种关系与全球尺度基本一致,反映了植物对资源的权衡策略,验证了岩溶植物叶经济谱(LES)的存在。(5)常绿植物具有较高的Ls、WUE和较低的Gs、Tr、Ci及Pn,在LES中的位置更靠近具有高WUE、低蒸腾、低光合等特点的“缓慢投资-收益”型物种的一端;而落叶植物与之相反,位于低WUE、高蒸腾、高光合等特点的“快速投资-收益”型物种的一端。该研究结果表明,植物通过性状间的协同与权衡,采取了不同的生存策略以适应变化的环境,为后续筛选适生物种,加速植被恢复演替进程提供了科学依据。
关键词: 光合性状, 种内变异, 种间变异, 叶经济谱, 岩溶
中图分类号: Q945
文献标识码: A
文章编号: 1000-3142(2023)03-0536-11
Variation and correlation of photosynthetic traits of eight
adaptive plants in karst region of Southwest Guangxi
PANG Shilong1, OU Zhiyang1*, YE Sijin2, WU Ziyuan2,
SHEN Wenhui1, HE Feng1, LU Guodao1
( 1. Guangxi Forestry Research Institute, Guangxi Zhuang Autonomous Region, Nanning 530002, China;
2. Nanning Qingxiu Mountain Tourism Development Co., Ltd., Nanning 530022, China )
Abstract: In order to explore the photosynthetic physiological adaptation mechanism of karst plant, the leaf photosythetic parameters of eight karst adaptable plants in Pingguo City, Guangxi were detected and analyzed, including net photosynthetic rate (Pn), stomatal conductivity (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), water use efficiency (WUE) and stomatal limitation value (Ls), by using Li-6400XT portable photosynthesis system. Statistical methods, such as Pearson correlation analysis, principal component analysis (PCA), and permutational multivariate analysis of variance (PERMANOVA) were also used in this study. The results were as follows: (1) Six photosynthetic parameters had different variations within and between species, and all the intraspecific variations were greater than the interspecific. (2) Change of Gs and Tr mainly originated from interspecific variation (46.72% - 49.76%), while that of Pn, Ci, WUE and Ls mainly from intraspecific variation (48.66% - 64.50%). At the life form level, the intraspecific variations of Pn, Gs and Tr of evergreen plants were less than those of deciduous plants, but the intraspecific variation of Ci, WUE and Ls of evergreen plants was higher. (3) Interspecific variations of all the parameters of deciduous plants were greater than those of evergreen plants. (4) Gs variation was the greatest both at the intraspecific and the interspecific levels, followed by Tr and Pn, then Ls and WUE, and Ci variation were the least. There were significant positive correlations among Pn, Gs and Tr (P<0.01). Ls was significantly positively correlated with WUE (P<0.05), but negatively with Gs and Ci (P<0.05). The correlations among these photosynthetic parameters are basically consistent with the global scale, which reflects the diverse trade-off strategies of plants to environment resources. The results also verified the leaf economics spectrum (LES) of karst plant. (5) Evergreen plants were located at the slow investment-return end of the LES with high values of Ls, WUE and low values of Gs, Tr, Ci and Pn. On the contrary, deciduous plants were located at the quick investment-return end of the LES with low value of WUE and high value of Pn and Tr. The results reflect karst plant adapt to changing environment with different adaptation strategies by trade-offs or co-ordinations among traits, and provide scientific basis for selecting adaptive tree species and accelerating the succession process of vegetation restoration in the karst area.
Key words: photosynthetic traits, intraspecific variation, interspecific variation, leaf economics spectrum, karst
光合作用是植物吸收光能转化为化学能的过程,是植物干物质积累和新陈代谢最重要的生理过程,对实现自然界能量转换,维持大气碳-氧平衡具有重要意义(潘业兴和王帅, 2016)。光合作用既受叶片自身性状的影响,又与光照、温度、湿度、CO2浓度以及水分等外界环境因子密切相关,不同的环境因子会表现出不同的生态适应性和适应机制(Robert et al., 2007; 池永宽等, 2014)。在植物生理生态学研究中,叶片光合生理一直备受关注(曹生奎等, 2012; 谭代军等, 2019)。
近年来,气候变化对全球生态系统和生物多样性造成的一系列负面或潜在影响已引起全社会的密切关注(王常顺和汪诗平, 2015)。叶片性状对气候变化极为敏感,能够较为准确地反映植物对气候变化的响应与适应机制(Scoffoni et al., 2011; 肖迪等, 2016)。因此,以叶片为研究对象,国内外众多生态学者进行了大量研究(Wright et al., 2004; Read et al.,2014; 荀彦涵等, 2020; 庞世龙等, 2021a)。其中,叶经济谱(leaf economics spectrum, LES)的提出,为生态学研究提供了新的理论与方法(Sakschewski et al., 2015; 宋贺等; 2016),也为更好地理解植物对气候变化的适应机制提供了科学依据。LES是一系列相互联系、协同变化的性状组合,同时量化了一系列连续变化的植物资源权衡策略。LES的一端是“快速投资-收益”型物种,而另一端是“缓慢投资-收益”型物种,其间是二者的过渡梯度类型(Wright et al., 2004; 陈莹婷和许振柱, 2014; 金鹰和王传宽, 2015)。此后,在全球范围内有关LES的研究相继展开,虽然从不同尺度、不同分类群、不同生态系统利用不同性状指标验证了LES的普遍存在(Sakschewski et al., 2015; Asner et al., 2016; Zirbel et al., 2017; 朱济友等, 2018),但也有一些研究报道了与LES存在差异或矛盾的结果(Messier et al., 2017)。LES理论的检验与应用仍需更多验证。在中国LES的研究仍然存在较大空缺,尤其对极端和特殊生境的研究相对有限。
中国西南岩溶区碳酸盐岩出露面积54万 km2,是全球分布面积最大、岩溶发育最强烈、地貌类型最齐全、生态环境最脆弱的地区(何霄嘉等, 2019)。其地质背景独特、复杂且时空异质性高,水土地下漏失严重,植被无法获得充足的水分,生长受到限制,一旦遭到破坏,极难恢复,甚至会引发和加剧土地石漠化。水分亏缺是该区植被生长、分布和恢复重建的主要限制因子(Gu et al., 2015; 谭凤森等, 2019)。岩溶植被在长期进化过程中形成了独特的形态结构和生理适应机制(倪隆康等, 2019; 黄甫昭等, 2021),这为探讨岩溶植物的光合生理及其背后的生态学机理提供了良好的研究对象。目前,有关岩溶植物光合作用的研究多集中于不同物种或基于不同环境因子控制下的比较研究(罗绪强等, 2019; 李玉凤等, 2020; 欧芷阳等, 2020),对退化的岩溶生态系统植被恢复过程中植物光合生理对异质性生境的响应及其适应性调控机理的研究较少。本研究以桂西南岩溶区8种适生植物为研究对象,拟探讨如下问题:(1)不同物种及生活型植物间光合特征参数是否存在差异;(2)植物光合特征参数的种内和种间变异特征如何;(3)检验LES理论在局域尺度上的适用性。这些问题的科学解答,不仅能客观地反映出岩溶植物的生理适应机制,还能有效地揭示植物群落的构建与维持机制,为西南岩溶区石漠化综合治理和生态恢复重建提供科学依据。
1 研究地区与方法
1.1 研究区概况
研究地位于广西平果市太平镇旺里村(107°28′24″ E、23°35′10″ N),海拔402.0 ~ 667.5 m,属南亚热带季风气候,光照充足,热量丰富,雨量充沛,雨热同期。年均日照时数为1 682.7 h,年均气温为18.1 ~ 21.5 ℃,年均降水量为1 400~1 550 mm,集中分布于5—9月,占全年降水量的70%以上,年均蒸发量为1 571.9 mm,相对湿度为81%,全年无霜期345 d。该地区为典型的岩溶峰丛洼地地貌,山势险峻,岩石裸露率高,土层稀少、浅薄且分布不连续,人为干扰强烈,原始植被已遭破坏,退化为藤刺灌丛或草丛,局部土地石漠化趋势明显。2016年退耕还林,引入材用类、药用类、油料类、果木类、蔬菜类和观赏类等水土保持植物32种,其中茶条木(Delavaya toxocarpa)和苏木(Caesalpinia sappan)采用播种造林,泡核桃(Juglans sigillata)、长穗桑(Morus wittiorum)、任豆(Zenia insignis)和香椿(Toona sinensis)采用裸根苗造林,其余为容器苗造林。造林后连续抚育3年。
1.2 試验材料
在退耕还林区内,选择坡位、坡向和苗木长势基本一致的地块作为试验样地,从中选取不同生活型和叶片质地存在显著差异的8种适生植物作为研究对象(表1)。
1.3 测定方法
试验于植物生长旺季8月上旬,选择连续晴朗天气,在8:00—18:00时段内,采用Li-6400XT便携式光合作用测量系统(Li-Cor, Inc., USA)的2 cm × 3 cm标准透明叶室测定植物叶片光合日变化,每隔2 h测定1批次。测定时,设置气体流速为500 μmol·s-1,保持叶室与自然光线垂直。每物种测定3株,每株选取3片受光方向一致、叶位相同、大小相近、健康成熟的叶片进行测定。输出的测定参数包括净光合速率(Pn, μmol·m-2·s-1)、气孔导度(Gs, mol·m-2·s-1)、胞间CO2浓度(Ci, μmol·mol-1)、蒸腾速率(Tr, mmol·m-2·s-1)和大气CO2浓度(Ca, μmol·mol-1)等。水分利用效率(WUE=Pn/Tr, μmol mol-1)和气孔限制值(Ls=(Ca-Ci)/Ca×100%)的计算方法参见文献(欧芷阳等, 2020)。
1.4 数据处理
鉴于植物叶片Pn多在10:00前后达到日最大值,因此选取该时刻的光合数据,对各光合特征参数进行正态性和方差齐性检验,测定数据均服从正态分布和方差齐性;然后采用单因素方差分析(one-way ANOVA)和最小显著性差异法(LSD)检验不同物种及生活型之间的均值是否存在显著性差异。采用变异系数(CV=标准偏差/平均值×100%)衡量各参数在种内、种间和总体水平的变异程度。其中,种内变异利用各物种所有个体的实测值计算,种间变异利用每个物种的平均值计算,总体变异采用所有个体的实测值计算。利用线性混合模型(linear mixed model, LMM)和方差分解方法对生活型、物种和个体水平上的性状变异进行方差分解。以生活型为固定因子,物种和个体为嵌套随机因子,相应光合特征参数作为因变量构建线性混合模型,通过限制最大似然(restricted-maximum-likelihood,REML)来拟合模型,然后利用ape::varcomp( )函數从拟合对象中获取方差分量估计。采用Pearson相关性分析各参数在种内和种间水平上的相关关系。采用主成分分析(principal component analysis, PCA)对不同植物叶片光合特征参数进行排序,据此分析植物在LES上的分布状况,并进行置换多元方差分析(permutational multivariate analysis of variance, PERMANOVA)不同生活型对植物叶片光合特征参数的影响。上述数据分析与作图均使用R 3.6.3软件完成。
2 结果与分析
2.1 植物叶片光合特征
由表2可知,桂西南岩溶区8种适生植物叶片Pn、Gs、Ci、Tr、WUE和Ls的变幅分别为2.03 ~ 10.79 μmol·m-2·s-1、0.04 ~ 0.33 mol·m-2·s-1、137.51 ~ 213.78 μmol·mol-1、0.71 ~ 3.91 mmol·m-2·s-1、1.94 ~ 4.53 μmol·mol-1和18.06% ~ 47.89%,平均值分别为6.68 μmol·m-2·s-1、0.18 mol·m-2·s-1、180.43 μmol·mol-1、2.41 mmol·m-2·s-1、2.86 μmol·mol-1和31.39%。其中,Pn、Gs和Tr均以柚木最大,Ci以降香最大,WUE和Ls以枇杷最大;Pn、Gs和Tr以香椿最小,Ci、WUE和Ls分别以枇杷、柚木和降香最小。方差分析结果表明,6个光合特征参数在部分植物间差异显著(P<0.05),但在不同生活型(常绿和落叶)植物之间差异均不显著(P>0.05)。
2.2 光合特征参数的种内和种间变异
6个光合特征参数在种内和种间水平上均存在不同程度的变异,且种内变异均大于种间变异(表3)。从物种水平上看,香椿的Pn(47.98%)、Gs(50.65%)和Tr(46.44%)以及枇杷的Ci(11.41%)、海南菜豆树的WUE(30.57%)和Ls(30.02%)种内变异最大。在生活型水平上,Pn、Gs和Tr的种内变异表现为常绿植物小于落叶植物,而Ci、WUE和Ls则相反。各参数的种间变异均表现为落叶植物大于常绿植物。无论在种内还是种间水平,Gs的总体变异程度最大,其次是Tr和Pn,再次是Ls和WUE,Ci最小。
2.3 光合特征参数变异的来源
线性混合模型和方差分解结果表明,植物生活型、种内个体和种间物种水平对叶片光合特征参数的影响具有不同的效应(表4)。Pn、Ci、WUE和Ls的变化主要来源于种内变异(48.66% ~ 64.50%),而Gs和Tr变化主要来源于种间变异(46.72% ~ 49.76%),生活型对所有光合特征参数的影响几乎不存在。总体而言,桂西南岩溶区植物叶片光合特征参数的种内变异(49.62%)大于种间变异(37.17%),因此,种内变异是叶片光合特征参数变异的主要来源之一。
2.4 光合特征参数在种内和种间水平上的相关性
Pearson相关性分析结果表明(图1),在种内个体水平上,除Pn与Ci、WUE和Ls显著不相关外(P>0.05),其余参数之间均存在显著的相关关系(P<0.05)。在种间物种水平上,各参数的相关性显著程度均低于种内个体水平。无论是在种内还是种间水平,Pn、Gs和Tr三者之间呈显著正相关(P<0.01),Ls与WUE呈显著正相关(P<0.05),而与Gs和Ci呈显著负相关(P<0.05)。
2.5 光合特征参数的主成分分析
PCA结果表明(图2:A),第1主成分解释了植物叶片光合特征参数总变异的71.64%,与Gs、Tr、Ci和Pn呈显著正相关,与Ls呈显著负相关。第2主成分解释了总变异的20.42%,与各参数均无显著相关性(P>0.05)。两者累积解释率为92.06%,保留了原始数据的绝大部分信息,较好地反映了植物在生长过程中对资源的利用与分布,并且其影响大小主要由第1主成分决定,相当于叶片经济谱(LES)理论中的“投资-收益”策略轴。
各参数对第1主成分的贡献由大到小依次为Gs(20.70%)>Tr(19.34%)>Ls(18.28%)>Ci(16.13%)>Pn(13.98%)>WUE(11.58%),沿第1主成分从左至右呈现Ls、WUE逐渐减小而Gs、Tr、Ci、和Pn逐渐增大的变化梯度。
在物种排序图中(图2:B),常绿植物的质心位于第1主成分轴的负向区域,具有较高的Ls、WUE和较低的Gs、Tr、Ci及Pn;而落叶植物的质心位于第1主成分轴的正向区域,呈现相反的趋势。PERMANOVA结果显示,常绿和落叶植物间的差异不显著(P>0.05),群体性状相似、趋同;但常绿植物降香、枇杷、海南菜豆树和落叶植物顶果木以及香椿均分布在其95%置信区间的外围,个体趋异适应性分化较明显。
3 讨论与结论
叶片光合特性反映了植物对自然环境的响应与适应(师生波等, 2006; 李玉凤等, 2020)。其中,Gs作为植物与大气间进行碳水交换的重要通道(高冠龙等, 2016),调节光合碳同化速率与水分消耗之间的平衡(Gagen et al., 2011;全先奎和王传宽, 2015),在一定程度上反映植物的生态适应性(李中华等, 2016)。Pn是表征植物光合能力强弱最直接的参数,其大小反映植物的生存与竞争能力(罗绪强等, 2019; 刘旻霞等, 2020)。WUE是衡量植物碳水耦合关系的重要参数之一,表征植物抗旱性能和水分利用状况(李玉凤等, 2020)。本研究中,柚木的Pn、Gs和Tr最大,表现出了较高的光能利用效率,表明其具有相对较高的光合生产力。枇杷的WUE和Ls最大,表明其更耐旱,适应能力更强。桂西南岩溶区8种适生植物的Gs、Pn和WUE低于东南沿海防护林主要树种(黄敏参等, 2012),而高于湘西野生巨紫荆(Cercis gigantea)(和红晓等, 2021)。不同地区植物主要光合特征参数的差异,体现了植物对自然环境的生态适应性。相较于自然条件相对优越的东南沿海地区植物而言,桂西南岩溶区植物光合碳同化力较低,光合生产能力较弱,表现出较弱的光合特性和保守的生存策略,同時在一定程度上也反映了桂西南岩溶生境恶劣,植物生长受到抑制。
表型可塑性是植物适应异质性生境的一种普遍策略,对植物分布具有重要意义(陆霞梅等, 2007; 施建敏等, 2014)。本研究6个光合特征参数在种内和种间均存在不同程度的变异,表明不同光合参数受遗传因素和环境条件的影响程度存在差异。变异分解结果表明,Gs和Tr的变化主要来源于种间变异(46.72% ~ 49.76%),受遗传因素的限制,具有相对稳定的变化特征;而Pn、Ci、WUE和Ls变化主要来源于种内变异(48.66% ~ 64.50%),这可能源于种内个体之间的遗传变异或异质性生境下产生的表型可塑性,是植物抵御环境胁迫的重要响应与适应机制(Jung et al., 2010)。本研究还发现,这6个光合特征参数的种内变异均大于种间变异,表明植物个体在面临环境胁迫时会采取更灵活的适应策略,表现出较高的表型可塑性。这是趋同适应的结果,种内变异越高意味着物种对生境的适应性越强(Lu et al., 2018);而种间变异小则说明物种特性所带来的影响作用较小。这与前人(Hulshof et al., 2013; Carlucci et al., 2015)的研究结果一致。在局域尺度上,种内变异常常主导着群落对环境变异的响应。
在本研究中,8种适生植物叶片光合特征参数的种内变异平均值为19.54%,低于贵州退化喀斯特森林常见植物(45.21%)(罗绪强等, 2019),反映了恶劣生境下较小表型可塑性(Auger & Shipley, 2013),这可能是生境专性化的一个结果,低变异种更常见于恶劣生境(钟巧连等, 2018; 何雁等, 2021)。在生活型水平上,Pn、Gs和Tr的种内变异表现为常绿植物小于落叶植物,而Ci、WUE和Ls则相反。常绿植物的叶片通常为革质,CO2和H2O等气体从气孔到叶绿体的扩散路径较长、阻力较大(Zhang et al., 2015),从而导致Pn下降(Sack et al., 2013; 金鹰和王传宽, 2015),生长速率减缓,延长叶片碳积累的时间,进而提高WUE,增强其对异质性生境的适合度(庞世龙等, 2021a);而落叶植物的叶片为纸质,气孔阻力小,光合能力强,旱季通过落叶减少水分蒸腾和代谢消耗,承受干旱胁迫的能力较差(金鹰和王传宽, 2015)。这种差异反映了不同生活型植物叶片光合生理特性的内在区别(Tomlinson et al., 2014),直接减少了小尺度下常绿和落叶植物的竞争强度。各参数的种间变异均表现为落叶植物大于常绿植物,这可能是因为常绿植物属区域亚热带常绿阔叶林带的常见种,具有最佳的资源利用性状,占据群落性状空间的核心位置,也因此降低了种间的性状变异。落叶植物大多处于不适生长的条件下,为了生存而表现出较高的表型变异。无论在种内还是种间水平,Gs的总体变异程度最大,其次是Tr和Pn,再次是Ls和WUE,Ci最小。气孔对环境变化极为敏感,其孔径大小直接控制植物的蒸腾和光合作用(李中华等, 2016)。气孔性状由遗传和环境条件共同决定,不同遗传背景的植物气孔差异较大,其变异幅度随生境而异(Westoby & Wright, 2006)。
植物在漫长的进化过程中,逐渐形成了一系列相互联系、协同变化的性状组合(Wright et al., 2004; 陈莹婷和许振柱, 2014)。本研究发现,Pn、Gs和Tr三者之间呈显著正相关关系(P<0.01),这是因为光合作用和蒸腾作用与气孔开度密切联系且同时进行,在演替中具有协同性,呈现一致的变化规律(许洺山等, 2015)。Ls与WUE呈显著正相关关系(P<0.05),与Gs和Ci呈显著负相关关系(P<0.05),表明植物通过Ls权衡碳水之间的平衡,从而最大限度地利用有限的资源,维持较高的光合生理活动强度(Casson & Hetherington, 2010; 熊慧等, 2014)。这种关系与全球尺度基本一致,反映了植物对资源的权衡策略,进一步表明LES也存在于岩溶异质性生境。这6个光合特征参数的协同或权衡关系在种内个体水平和种间物种水平大致相同,这与何东(2016)、刘润红等(2020)的研究结果一致。这表明这些参数的相关关系在地理空间上具有广泛的有效性,以及表型发育限制对于性状变异的普遍作用(何东, 2016)。
不同物种在LES上有不同的位点,具有不同的性状组合(Wright et al., 2004; 宋贺等, 2016; 庞世龙等, 2021b)。PCA结果显示,常绿植物的质心位于第1主成分轴的负向区域,具有较高的Ls、WUE和较低的Gs、Tr、Ci及Pn,表明常绿植物在LES中的位置更靠近具有高WUE、低蒸腾、低光合等特点的“缓慢投资-收益”型物种的一端,而落叶植物与之相反,位于低WUE、高蒸腾、高光合等特点的“快速投资-收益”型物种的一端。植物在长期的进化中形成了常绿和落叶2种不同的生活史对策(王钊颖等, 2021),常绿和落叶植物生态策略的差异反映了叶寿命和光合能力之间的权衡(刘润红等, 2020)。常绿植物的叶片通常更厚实、寿命更长,用于单位叶面积建成的资源较多,以增强植物对干旱和贫瘠的适应能力,必然减少对维持光合与呼吸功能的资源投入(Ordoez et al., 2009),导致光合能力相对较弱,植株生长缓慢(Wright et al., 2004)。相反,落叶植物叶片寿命短、光合能力强、生长速率快,但抵御环境胁迫的能力较差,常以落叶的方式克服不良环境对其生长的不利影响(Poorter & Kitajima, 2007)。研究表明,常绿是对低资源可用性的适应反应,落叶是减少干旱胁迫下水分损失的适应(Lusk et al., 2008; Zhao et al., 2017)。研究区地质性和季节性干旱频发,在植被恢复与重建过程中,应对“缓慢投资-收益”型物种——常绿植物给予重视(于鸿莹等, 2014; 庞世龙等; 2021a)。PERMANOVA结果显示,常绿和落叶植物间的差异不显著(P>0.05),二者在LES上没有相互分离。这可能是由于实验设计没有区分早期和晚期落叶植物所致(Zhao et al., 2017; 王钊颖等, 2021),也可能是岩溶植被具有强烈的选择性(嗜钙性、耐旱性、耐瘠性和石生性),使其在性状和资源间的协调趋于一致(Reich, 2014)。
LES为分析植物对全球气候变化的响应与适应机制提供了新的思路和探索途径(Shipley et al., 2006; 宋贺等, 2016)。本研究以桂西南8种适生植物为研究对象,分析验证了其LES的存在,并进一步指出不同生活型植物叶片光合性状的特征及其相互关系,体现了植物通过性状间的协同与权衡,采取不同的生存策略适应变化的环境。这为遏制岩溶区植被退化、加快生态恢复、促进可持续发展提供了科学依据,具有重要的理论和现实意义。未来应加强人类活动和气候变化双重胁迫下植物群落分布格局及其构建机制的研究,有助于推动退化生态系统的恢复重建。
参考文献:
ASNER GP, KNAPP DE, ANDERSON CB, et al., 2016. Large-scale climatic and geophysical controls on the leaf economics spectrum [J]. Proc Nat Acad Sci USA, 113(28): 4043-4051.
AUGER S, SHIPLEY B, 2013. Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest [J]. J Veg Sci, 24(3): 419-428.
CAO SK, FENG Q, SI JH, et al., 2012. Relationships of photosynthesis and transpiration of Populus euphratica with their affecting factors [J]. J Arid Land Res Environ, 26(4): 155-159. [曹生奎, 冯起, 司建华, 等, 2012. 胡杨光合蒸腾与影响因子间关系的研究 [J]. 干旱区资源与环境, 26(4): 155-159.]
CARLUCCI MB, DEBASTIANI VJ, PILLAR VD, et al., 2015. Between- and within-species trait variability and the assembly of sapling communities in forest patches [J]. J Veg Sci, 26(1): 21-31.
CASSON SA, HETHERINGTON AM, 2010. Environmental regulation of stomatal development [J]. Curr Opin Plant Biol, 13(1): 90-95.
CHEN YT, XU ZZ, 2014. Review on research of leaf economics spectrum [J]. Chin J Plant Ecol, 38(10): 1135-1153. [陈莹婷, 许振柱, 2014. 植物叶经济谱的研究进展 [J]. 植物生态学报,38(10): 1135-1153.]
CHI YK, XIONG KN, ZHANG JH, et al., 2014. Study on the photosynthetic rate and water use efficiency of three leguminous grass species in karst rocky desertification area [J]. Sin J Grassl, 36(4): 2057-2064. [池永寬, 熊康宁, 张锦华, 等, 2014. 喀斯特石漠化地区三种豆科牧草光合与蒸腾特性的研究 [J]. 中国草地学报, 36(4): 2057-2064.]
GAO GL, ZHANG XY, CHANG ZQ, et al., 2016. Environmental response simulation and the up-scaling of plant stomatal conductance [J]. Acta Ecol Sin, 36(6): 1491-1500. [高冠龙, 张小由, 常宗强, 等, 2016. 植物气孔导度的环境响应模拟及其尺度扩展 [J]. 生态学报, 36(6): 1491-1500.]
GAGEN M, FINSINGER W, WAGNER-CREMER F, et al., 2011. Evidence of changing intrinsic water-use efficiency under rising atmospheric CO2 concentrations in Boreal Fennoscandia from subfossil leaves and tree ring δ13C ratios [J]. Global Change Biol, 17(2): 1064-1072.
GU DX, ZHANG, ZF, MALLIK, A, et al., 2015. Seasonal water use strategy of Cyclobalanopsis glauca in a karst area of southern China [J]. Environ Earth Sci, 72(2):1007-1014.
HE D, 2016. Plant functional trait variation and community assembly: a case study in a subtropical evergreen forest [D]. Guangzhou: Sun Yat-Sen University. [何东, 2016. 植物功能性状变异与群落构建: 以黑石顶常绿阔叶林为例 [D]. 广州: 中山大学.]
HE HX, YANG Y, HUANG B, 2021. Study on photosynthetic rate diurnal variation of wild Cercis gigantea with two flower colors in western Hunan [J]. Nonw For Res, 39(2): 213-221. [和红晓, 杨艳, 黄斌, 2021. 湘西两种花色野生巨紫荆光合作用日变化规律 [J]. 经济林研究, 39(2): 213-221.]
HE XJ, WANG L, KE B, et al., 2019. Progress on ecological conservation and restoration for China karst [J]. Acta Ecol Sin, 39(18): 6577-6585. [何霄嘉, 王磊, 柯兵, 等, 2019. 中国喀斯特生态保护与修复研究进展 [J]. 生态学报, 39(18): 6577-6585.]
HE Y, YAO YP YAO YP, et al., 2021. Interspecific and intraspecific variation of functional traits of woody species in the dominant Cyclobalanopsis glauca community in the karst area of Guilin city, Southwest China [J]. Acta Ecol Sin, 41(20): 8237-8245. [何雁, 姚玉萍, 姚义鹏, 等, 2021. 桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究 [J]. 生态学报, 41(20): 8237-8245.]
HUANG FZ, LI JX, LI DX, et al., 2021. Physiological and ecological adaptation of karst woody plants to drought [J]. Guihaia, 41(10): 1644-1653. [黄甫昭, 李健星, 李冬兴, 等, 2021. 岩溶木本植物对干旱的生理生态适应 [J]. 广西植物, 41(10): 1644-1653.]
HUANG MS, DU XN, LIAO MM, et al., 2012. Photosynthetic characteristics and water use strategies of coastal shelterbelt plant species in Southeast China [J]. Chin J Ecol, 31(12): 2996-3002. [黄敏参, 杜晓娜, 廖蒙蒙, 等, 2012. 东南沿海潮间带防護林主要树种的光合特性及水分利用策略 [J]. 生态学杂志, 31(12): 2996-3002.]
HULSHOF CM, VIOLLE C, SPASOJEVIC MJ, et al., 2013. Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude [J]. J Veg Sci, 24(5): 921-931.
JIN Y, WANG CK, 2015. Trade-offs between plant leaf hydraulic and economic traits [J]. Chin J Plant Ecol, 39(10): 1021-1032. [金鹰, 王传宽, 2015. 植物叶片水力与经济性状权衡关系的研究进展 [J]. 植物生态学报, 39(10): 1021-1032.]
JUNG V, VIOLLE C, MONDY C, et al., 2010. Intraspecific variability and trait-based community assembly [J]. J Ecol, 8(5): 1134-1140.
LI YF, HUANG J, MA JM, et al., 2020. The leaf photosynthetic characteristics of 50 common plants on karst rocky mountain in Guilin [J]. Acta Ecol Sin, 40(23): 8649-8659. [李玉凤, 黄婧, 马姜明, 等, 2020. 桂林喀斯特石山50种常见植物叶片光合特性 [J]. 生态学报, 40(23): 8649-8659.]
LI ZH, LIU JP, GU HL, et al., 2016. Review on the effects of drought stress on plant stomatal characteristics [J]. Subtrop Plant Sci, 45(2): 195-200. [李中华, 刘进平, 谷海磊, 等, 2016. 干旱胁迫对植物气孔特性影响研究进展 [J]. 亚热带植物科学, 45(2): 195-200.]
LIU MX, XIA SJ, MU RL, et al., 2020. Seasonal variation of photosynthetic characteristics of three typical green plant species in central Loess Plateau [J]. Chin J Ecol, 39(12): 4098-4109. [刘旻霞, 夏素娟, 穆若兰, 等, 2020. 黄土高原中部三种典型绿化植物光合特性的季节变化 [J]. 生态学杂志, 39(12): 4098-4109.]
LIU RH, BAI JL, BAO H, et al., 2020. Variation and correlation in functional traits of main woody plants in the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China [J]. Chin J Plant Ecol, 44(8): 828-841. [刘润红, 白金连, 包含, 等, 2020. 桂林岩溶石山青冈群落主要木本植物功能性状变异与关联 [J]. 植物生态学报, 44(8): 828-841.]
LU XM, ZHOU CF, AN SQ, et al., 2007. Phenotypic plasticity, allometry and invasiveness of plants [J]. Chin J Ecol, 26(9): 1438-1444. [陆霞梅, 周长芳, 安树青, 等, 2007. 植物的表型可塑性、异速生长及其入侵能力 [J]. 生态学杂志, 26(9): 1438-1444.]
LU XT, HU YY, ZHANG HY, et al., 2018. Intraspecific variation drives community-level stoichiometric responses to nitrogen and water enrichment in a temperate steppe [J]. Plant Soil, 423(1/2): 307-315.
LUO XQ, ZHANG GL, WANG SJ, et al., 2019. The variation characteristics of leaf photosynthesis of common plants in degraded karst forest communities [J]. Ecol Environ Sci, 28(9): 1713-1721. [羅绪强, 张桂玲, 王世杰, 等, 2019. 退化喀斯特森林群落常见植物叶片光合作用变异特征 [J]. 生态环境学报, 28(9): 1713-1721.]
LUSK CH, REICH PB, MONTGOMERY RA, et al., 2008. Why are evergreen leaves so contrary about shade [J]. Trend Ecol Evol, 23(6): 299-303.
MESSIER J, MCGILL BJ, ENQUIST BJ, et al., 2017. Trait variation and integration across scales: is the leaf economic spectrum present at local scales? [J]. Ecography, 40(6): 685-697.
NI LK, GU DX, HE W, et al., 2019. Research advances in plant ecological adaptability in karst area [J]. Chin J Ecol, 38(7): 2210-2217. [倪隆康, 顾大形, 何文, 等, 2019. 岩溶区植物生态适应性研究进展 [J]. 生态学杂志, 38(7): 2210-2217.]
ORDOEZ JC, VAN BODEGOM PM, WITTE JPM, et al., 2009. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility [J]. Glob Ecol Biogeogr, 18(2): 137-149.
OU ZY, PANG SL, TAN ZQ, et al., 2020. Effects of drought stress on photosynthesis and water consumption of main afforestation tree species in the rocky desert area in Southwest Guangxi [J]. Chin J Ecol, 39(10): 3237-3246. [欧芷阳, 庞世龙, 谭长强, 等, 2020. 干旱胁迫对桂西南石漠化地区主要造林树种光合与耗水特性的影响 [J]. 生态学杂志, 39(10): 3237-3246.]
PAN YX, WANG S, 2016. Plant physiology [M]. Yanji: Yanbian University Press. [潘业兴, 王帅, 2016. 植物生理学 [M]. 延吉: 延边大学出版社.]
PANG SL, OU ZY, LING FC, et al., 2021a. Leaf trait variations and leaf economic spectrum of 18 plant species suitable in a karst area of Southwest Guangxi [J]. Chin J Ecol, 40(10): 3041-3049. [庞世龙, 欧芷阳, 凌福诚, 等, 2021a. 桂西南岩溶区18种适生植物叶性状变异及经济谱 [J]. 生态学杂志, 40(10): 3041-3049.]
PANG SL, OU ZY, SHEN WH, et al., 2021b. Leaf function traits variations and adaptive strategies of dominant woody economic plants in karst area of Southwest Guangxi [J]. Guihaia, 41(5): 707-714. [庞世龙, 欧芷阳, 申文辉, 等, 2021b. 桂西南喀斯特地区优势木本经济植物叶功能性状变异及其适应策略 [J]. 广西植物, 41(5): 707-714.]
POORTER L, KITAJIMA K, 2007. Carbohydrate storage and light requirements of tropical moistand dry forest tree species [J]. Ecology, 88(4): 1000-1011.
QUAN XK, WANG CK, 2015. Comparison of foliar water use efficiency among 17 provenances of Larix gmelinii in the Maoershan area [J]. Chin J Plant Ecol, 39(4): 352-361. [全先奎, 王传宽, 2015. 帽儿山17個种源落叶松针叶的水分利用效率比较 [J]. 植物生态学报, 39(4): 352-361.]
READ QD, MOORHEAD LC, SWENSON NG, et al., 2014. Convergent effects of elevation on functional leaf traits within and among species [J]. Funct Ecol, 28(1): 37-45.
REICH PB, 2014. The world-wide ‘fast-slow plant economics spectrum: a traits manifesto [J]. J Ecol, 102(2): 275-301.
ROBERT J, JAMES WD, KYLE EH, et al., 2007. Soil nutrients influence spatial distributions of tropical tree species [J]. Proc Nat Acad Sci USA, 104(3): 864-869.
SACK L, SCOFFONI C, JOHN GP, et al., 2013. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis [J]. J Exp Bot, 64(13): 4053-4080.
SAKSCHEWSKI B, VON BLOH W, BOIT A, et al., 2015. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model [J]. Glob Change Biol, 21(7): 2711-2725.
SCOFFONI C, RAWLS M, MCKOWN A, et al., 2011. Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture [J]. Plant Physiol, 156(2): 832-843.
SHI JM, YE XH, CHEN FS, et al., 2014. Adaptation of bamboo to heterogeneous habitat: phenotypic plasticity [J]. Acta Ecol Sin, 34(20): 5687-5695. [施建敏, 叶学华, 陈伏生, 等, 2014. 竹类植物对异质生境的适应—表型可塑性 [J]. 生态学报, 34(20): 5687-5695.]
SHI SB, LI HM, WANG XY, et al., 2006. Comparative studies of photosynthetic characteristics in typical alpine plants of the Qinghai-Tibet Plateau [J]. Chin J Plant Ecol, 30(1): 40-46. [师生波, 李惠梅, 王学英, 等, 2006. 青藏高原几种典型高山植物的光合特性比较 [J]. 植物生态学报, 30(1): 40-46.]
SHIPLEY B, LECHOWICZ MJ, WRIGHT I, et al., 2006. Fundamental trade-offs generating the worldwide leaf economics spectrum [J]. Ecology, 87(3): 535-541.
SONG H, YU HY, CHEN YT, et al., 2016. Leaf economics spectrum among different plant functional types in Beijing Botanical Garden, China [J]. Chin J Appl Ecol, 27(6): 1861-1869. [宋贺, 于鸿莹, 陈莹婷, 等, 2016. 北京植物园不同功能型植物叶经济谱 [J]. 应用生态学报, 27(6): 1861-1869.]
TAN DJ, XIONG KN, ZHANG Y, et al., 2019. Daily photosynthesis dynamics of different degraded Zanthoxylum bungeanum in karst rocky desertification area and its relationship with environmental factors [J]. Chin J Ecol, 38(7): 2057-2064. [谭代军, 熊康宁, 张俞, 等, 2019. 喀斯特石漠化地区不同退化程度花椒光合日动态及其与环境因子的关系 [J]. 生态学杂志, 38(7): 2057-2064.]
TAN FS, SONG HQ, LI ZG, et al., 2019. Hydraulic safety margin of 17 co-occurring woody plants in a seasonal rain forest in Guangxis Southwest karst landscape, China [J]. Chin J Plant Ecol, 43(3): 227-237. [谭凤森, 宋慧清, 李忠国, 等, 2019. 桂西南喀斯特季雨林木本植物的水力安全 [J]. 植物生态学报, 43(3): 227-237.]
TOMLINSON KW, POORTER L, BONGERS F, et al., 2014.Relative growth rate variation of evergreen and deciduous savanna tree species is driven by different traits [J]. Ann Bot, 114(2): 315-324.
WANG CS, WANG SP, 2015. A review of research on responses of leaf traits to climate change [J]. Chin J Plant Ecol, 39(2): 206-216. [王常顺, 汪诗平, 2015. 植物叶片性状对气候变化的响应研究进展 [J]. 植物生态学报, 39(2): 206-216.]
WANG ZY, CHEN XP, CHENG Y, et al., 2021. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains [J]. Chin J Plant Ecol, 45(3): 242-252. [王钊颖, 陈晓萍, 程英, 等, 2021. 武夷山49种木本植物叶片与细根经济谱 [J]. 植物生态学报, 45(3): 242-252.]
WESTOBY M, WRIGHT IJ, 2006. Land-plant ecology on the basis of functional traits [J]. Trend Ecol Evol, 21(5): 261-268.
WRIGHT IJ, RRICH PB, WESTOBY M, et al., 2004. The worldwide leaf economics spectrum [J]. Nature, 428(6985): 821-827.
XIAO D, WANG XJ, ZHANG K, et al., 2016. Effects of nitrogen addition on leaf traits of common species in natural Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China [J]. Chin J Plant Ecol, 40(7): 686-701. [肖迪, 王曉洁, 张凯, 等, 2016. 氮添加对山西太岳山天然油松林主要植物叶片性状的影响 [J]. 植物生态学报, 40(7): 686-701.]
XIONG H, MA CE, LI L, et al., 2014. Stomatal characteristics of ferns and angiosperms and their responses to changing light intensity at different habitats [J]. Chin J Plant Ecol, 38(8): 868-877. [熊慧, 马承恩, 李乐, 等, 2014. 不同生境条件下蕨类和被子植物的气孔形态特征及其对光强变化的响应 [J]. 植物生态学报, 38(8): 868-877.]
XU MS, HUANG HX, SHI QR, et al., 2015. Responses of soil water content to change in plant functional traits in evergreen broadleaved forests in eastern Zhejiang Province [J]. Chin J Plant Ecol, 39(9): 857-866. [许洺山, 黄海侠, 史青茹, 等, 2015. 浙东常绿阔叶林植物功能性状对土壤含水量变化的响应 [J]. 植物生态学报, 39(9): 857-866.]
XUN YH, DI XY, JIN GZ, 2020. Vertical variation and economic strategy of leaf trait of major tree species in a typical mixed broadleaved-Korean pine forest [J]. Chin J Plant Ecol, 44(7): 730-741. [荀彦涵, 邸雪颖, 金光泽, 2020. 典型阔叶红松林主要树种叶性状的垂直变异及经济策略 [J]. 植物生态学报, 44(7): 730-741.]
YU HY, CHEN YT, XU ZZ, et al., 2014. Analysis of relationships among leaf functional traits and economics spectrum of plant species in the desert steppe of Nei Mongol [J]. Chin J Plant Ecol, 38(10): 1029-1040. [于鸿莹, 陈莹婷, 许振柱, 等, 2014. 内蒙古荒漠草原植物叶片功能性状关系及其经济谱分析[J]. 植物生态学报, 38(10): 1029-1040.]
ZHANG YJ, CAO KF, SACK L, et al., 2015. Extending the generality of leaf economic design principles in the cycads, an ancient lineage [J]. New Phytol, 206(2): 817-829.
ZHAO YT, ALI A, YAN ER, 2017. The plant economics spectrum is structured by leaf habits and growth forms acrosssubtropical species [J]. Tree Physiol, 37(2): 173-185.
ZHONG QL, LIU LB, XU X, et al., 2018. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China [J]. Chin J Plant Ecol, 42(5): 562-572. [钟巧连, 刘立斌, 许鑫, 等, 2018. 黔中喀斯特木本植物功能性状变异及其适应策略 [J]. 植物生态学报, 42(5): 562-572.]
ZHU JY, YU Q, LIU YP, et al., 2018. Response of plant functional traits and leaf economics spectrum to urban thermal environment [J]. J Beijing For Univ, 40(9): 72-81. [朱濟友, 于强, 刘亚培, 等, 2018. 植物功能性状及其叶经济谱对城市热环境的响应 [J]. 北京林业大学学报, 40(9): 72-81.]
ZIRBEL CR, BASSETT T, GRMAN E, et al., 2017. Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration [J]. J Appl Ecol, 54(4): 1070-1079.
(责任编辑 李 莉 王登惠)
收稿日期: 2022-06-25
基金项目: 广西林业科研与推广项目(GL2020KT08); 广西科技计划项目(桂科AB16380300)。
第一作者: 庞世龙(1977-),高级工程师,主要从事喀斯特石漠化植被恢复研究,(E-mail)ps5218@126.com。
通信作者: 欧芷阳,博士,教授,主要从事植物生理学研究,(E-mail)ozhiyang@126.com。