李自强,杨梅,张新忠,罗逢健,楼正云,梁爽*
改良QuEChERS方法与UPLC-MS/MS联用测定茶叶中草甘膦、草铵膦及氨甲基膦酸
李自强1,杨梅2,张新忠2,罗逢健2,楼正云2,梁爽1*
1. 吉林农业大学植物保护学院,吉林 长春 130118;2. 中国农业科学院茶叶研究所农产品质量安全研究中心,浙江 杭州 310008
建立了改良QuEChERS-超高液相色谱-串联质谱法(UPLC-MS/MS)快速检测红茶和绿茶中草甘膦、草铵膦及氨甲基膦酸残留的分析方法。样品经纯净水提取2次,提取液采用MWCNT、C18、PVPP和CNT-OH吸附剂分散固相萃取净化,质谱以多反应监测模式(MRM)进行测定,外标法定量。结果表明,红茶和绿茶基质中,草甘膦、草铵膦和氨甲基膦酸在一定浓度范围内线性良好,相关系数(2)为0.999 3~1.000 0,方法的检出限(LOD)分别为0.005 0、0.030、0.030 mg·kg-1,定量限(LOQ)分别为0.050、0.10、0.10 mg·kg-1,平均加标回收率在81.6%~120.0%,相对标准偏差(RSD)在0.6%~13.6%。该方法前处理简单、成本低、重复性好、灵敏度高,适用于红茶和绿茶中草甘膦、草铵膦及氨甲基膦酸的检测。
QuEChERS;茶;草甘膦;草铵膦;氨甲基膦酸
草甘膦(Glyphosate)和草铵膦(Glufosinate)是非选择性的广谱型除草剂,被广泛用于农业、林业和城市环境中的杂草控制[1]。氨甲基膦酸(Aminomethyl phosphonic acid,AMPA)是草甘膦和草铵膦在植物和土壤中主要的代谢物[2]。然而,有研究表明草甘膦会对肝脏、免疫系统和生殖系统等产生影响[3],草铵膦可能会引起神经系统疾病[4]。由于草甘膦和草铵膦的广泛应用,导致其经常在植物、土壤、食物、甚至人类尿液中被检测到[5]。
茶树()是一种重要的经济作物,以其芽叶为原料制成的茶叶是世界范围内流行的饮品[6]。茶叶中含有许多对人体有益的成分,如茶多酚、氨基酸、黄酮、咖啡碱和维生素等,具有抗氧化、抗菌、抗癌和抗炎等作用[7]。茶树一般生长在湿热环境,容易受到病虫草的危害,为了保证茶叶的品质和产量,化学农药仍是主要的防治措施。草甘膦和草铵膦具有优秀的除草活性,我国已在茶园登记使用[8]。目前,在GB/T 2763—2021[9]中规定草甘膦和草铵膦在茶叶中的最高残留限量(MRL)分别为1.0 mg·kg-1和0.50 mg·kg-1,欧盟(EU)规定茶叶中草甘膦和草铵膦的MRL值分别为2.0 mg·kg-1和0.10 mg·kg-1[10],日本规定茶叶中草甘膦和草铵膦的MRL值分别为1.0 mg·kg-1和0.30 mg·kg-1[11]。由于这些化合物具有较高的水溶性,在茶叶冲泡过程中其残留物很容易转移至茶汤中,易造成饮茶风险。目前贵州省、浙江省丽水市和云南省勐海县等地区已出台茶园禁用草甘膦的管理措施。因此,对茶叶中草甘膦、草铵膦和氨甲基膦酸的监测十分必要。
目前,草甘膦、草铵膦和氨甲基膦酸检测方法有毛细管电泳法(CE)[12]、气相色谱法(GC)[13]、高效液相色谱法(HPLC)[14]、离子色谱-串联质谱法(IC-MS/MS)[15]、液相色谱-串联质谱法(LC-MS/MS)[16]、超高效液相色谱-串联质谱法(UPLC-MS/MS)[17]和气相色谱-串联质谱法(GC-MS)[18]等。其中UPLC-MS/MS为上述目标化合物常用的检测方法,具有基质干扰小,灵敏度高,分析速度快等特点[19]。因此,本研究采用UPLC-MS/MS为检测方法。此外,由于茶叶基质的复杂性,样品前处理是影响目标物准确定量的关键性步骤。目前,固相萃取法(SPE)如亲水/亲油平衡(HLB)固相萃取柱[20]、混合型阳离子(MCX)固相萃取柱[21]和十八烷基键合硅胶(C18)固相萃取柱[22]是草甘膦、草铵膦和氨甲基膦酸检测最为常用的净化方式之一。QuEChERS方法(Quick,easy,cheap,effective,rugged and safe)具有“绿色化学”的特点,自2003年以来在农药残留分析领域中受到了研究者的广泛关注[23]。与固相萃取法相比,QuEChERS方法中所用净化材料成本更低,净化速度更快。然而,目前QuEChERS方法在茶叶的草甘膦、草铵膦和氨甲基膦酸检测中应用较少[3,8,24-25],且缺少不同净化材料对茶叶中草甘膦、草铵膦和氨甲基膦酸净化的系统性研究。
本研究拟建立一种改良的QuEChERS方法与UPLC-MS/MS结合同时检测红茶和绿茶中草甘膦、草铵膦及氨甲基膦酸残留的分析方法,旨在满足茶叶检测需求,保证检测结果准确可靠的同时,具有简便快捷、成本低、无需前处理调节pH、基质效应低等优点。
Waters ACQUITY UPLC H-Class超高效液相色谱串联Xevo TQ-S micro三重四极杆串联质谱仪,配有MassLynx 4.1处理软件(美国Waters公司);3K-15冷冻离心机(德国Sigma公司);Vortex Genie 2型涡旋振荡器(美国Scientific Industries);0.22 µm Filter Unit水系滤膜(天津博纳艾杰尔科技有限公司)。
农药标准物质草甘膦、草铵膦和氨甲基膦酸购自天津阿尔塔科技有限公司,纯度>99.0%;纯净水购自杭州娃哈哈集团有限公司;石墨化炭黑(GCB,120~400目)、-丙基乙二胺(PSA,40~63 μm)、十八烷基键合硅胶(C18,40~60 μm)购自天津博纳艾杰尔科技有限公司;多壁碳纳米管(MWCNT,5~10 nm)购自上海麦克林生化科技股份有限公司;交联聚乙烯吡咯烷酮(PVPP)购自广州昂飞生物科技有限公司;羟基化碳纳米管(CNT-OH,10~20 nm)购自中国科学院成都有机化学有限公司。Oasis HLB-SPE柱(填料量/上样体积:60 mg/3 mL)和Oasis MCX-SPE柱(填料量/上样体积:60 mg/3 mL)购自天津一方科技有限公司;C18-SPE柱(填料量/上样体积:1 g/6 mL)购自杭州津本科学仪器有限公司。
单标准品储备液(100 mg·L-1):依次精准称取不同质量的草甘膦、草铵膦和氨甲基膦酸农药标准物质于50 mL容量瓶中,用纯净水进行溶解、定容,配成质量浓度为100 mg·L-1的单标准品储备液,在4 ℃冰箱中保存。
混合标准品工作液(10 mg·L-1):准确吸取5 mL已配制好的单标准品储备液于50 mL容量瓶中,用纯净水定容至刻度线,配成质量浓度为10 mg·L-1混合标准品工作液,在4 ℃冰箱中保存。
1.3.1 样品前处理
提取:精确称取3.00 g磨碎后成茶样品(精确至0.01 g)至50 mL聚丙烯塑料离心管中,加入15 mL纯净水后混匀,涡旋振荡提取5 min,于11 000 r·min-1离心5 min,取全部上清液于50 mL离心管中,重复上述提取步骤进行第2次提取,并将两次提取液混匀,待净化。
净化:称取5 mg MWCNT、20 mg C18、60 mg PVPP和50 mg CNT-OH于2 mL离心管中,加入2 mL提取液,涡旋30 s,在14 000 r·min-1下离心5 min,收集上清液。
衍生:取0.6 mL净化液,分别依次加入0.4 mL 10 mg·mL-1的FMOC-Cl乙腈溶液和0.2 mL 5%的硼酸钠缓冲溶液(pH=9),涡旋混匀后,在40 ℃水浴下衍生过夜。在14 000 r·min-1下离心5 min后,过0.22 µm水系滤膜至进样小瓶,待UPLC-MS/MS进样分析。
1.3.2 色谱条件
流动相A为0.1%甲酸-乙腈,流动相B为0.1%甲酸-水。流动相洗脱程序为0~1.5 min,30% A;1.5~3.0 min,30%~55% A;3.0~7.0 min,55%~90% A;7.0~10.2 min,90%~100% A;10.2~10.4 min,100%~70% A;10.4~12.0 min,70%~30% A。色谱柱为Acquity HSS T3柱(100 mm×2.1 mm,1.8 µm),柱温为40 ℃。进样体积为5.0 µL,流速为0.3 mL·min-1。
1.3.3 质谱条件
质谱条件:电喷雾正电离模式(ESI+),多反应监测(MRM)模式;离子源温度为150 ℃;脱溶剂气N2温度为350 ℃,流量为700 L·h-1;毛细管电压为3.5 kV;碰撞气Ar流量为0.35 mL·min-1;锥孔气N2流量为60 L·h-1;倍增电压为650 V。质谱参数如表1所示。
使用Excel 2019计算回收率、标准曲线方程、基质效应等数据,使用OriginPro 2018作图。
由于草甘膦缺少发色基团和荧光基团,检测前一般需要先进行衍生化。本研究借鉴文献[8]中的衍生化步骤,选择FMOC-Cl作为衍生试剂。其衍生原理主要是在碱性条件下,FMOC-Cl可以取代目标化合物氮原子上的氢从而生成更为稳定的衍生物,便于仪器检测[26]。
草甘膦、草铵膦和氨甲基膦酸均为强极性化合物,易溶于水,难溶于大多数有机溶剂[27]。目前茶叶中草甘膦、草铵膦和氨甲基膦酸的提取溶剂一般采用纯水[28]、水-二氯甲烷[29]、水-乙腈[30]、水-甲醇[31]或碱性水溶液[32],提取净化效率分别为94.0%~116.0%、79.4%~95.2%、80.6%~98.1%、83.7%~92.2%、75.6%~96.6%,其中以纯水和碱性水溶液提取最为常见。本研究选取成本最低的纯水进行提取优化,在绿茶空白基质添加水平为1.0 mg·kg-1下,对比了纯水提取1次和纯水提取2次对目标物的提取效果,结果如图1所示,纯水提取2次得到的目标物回收率(86.8%~100.8%)明显高于纯水提取1次(75.9%~89.6%)。
基于此,进一步研究了茶叶中农药残留检测常用的提取方式(涡旋和超声)对目标物的提取能力,并参照文献[28]和文献[31]设定涡旋和超声时间分别为5 min和30 min。涡旋振荡可将样品与提取液通过高速转动短时间内混合均匀,在转动过程中提取液与目标物的不断接触达到快速提取的目的[33]。超声波辅助主要是利用超声波在液体中的空化作用加速了分析物的溶解和扩散,从而提高了提取效率[34]。如图1所示,两种提取方式对目标化合物的提取效果无明显差异。因此,选择耗时短的涡旋振荡为后续的提取方式。
表1 目标化合物的质谱分析参数
注:*表示定量离子
Note: * represents quantification ions
注:VE1表示纯水涡旋提取1次,VE2表示纯水涡旋提取2次,UE2表示纯水超声提取2次
2.2.1 单一净化材料的优化
QuEChERS方法的净化材料一般为MgSO4、NaCl和PSA[35],其中盐(MgSO4和NaCl)的加入可以诱导水相和有机相更好地分离。PSA常用于去除脂肪酸、糖类等形成氢键的成分[36]。然而,传统的净化材料无法满足复杂基质的净化,因此需要筛选其他净化材料,通过改进QuEChERS方法以满足净化需求。目前用于茶叶农药残留检测的净化材料有GCB、PSA、MWCNT、C18、PVPP和CNT-OH等。其中,GCB用于去除色素和类固醇[37];MWCNT对色素等物质具有较好的去除效果[38];C18为非极性吸附剂,可有效去除脂肪酸等非极性化合物[39];PVPP常用于去除多酚类物质,是极性干扰化合物和脂肪酸去除的有效吸附剂[40];CNT-OH表面富含羟基,增加了其在水溶液中的分散效果以及对水溶性杂质的去除效果[41]。
本研究分别考察了这6种净化材料在不同剂量下对草甘膦、草铵膦和氨甲基膦酸回收率的影响,以期获得单一材料的最佳用量,并为后续组合净化材料的用量提供参考。将混合标准品工作液加入到绿茶空白样品提取液中,配制成质量浓度为1.0 mg·L-1的基质标准溶液进行净化材料优化。不同净化材料用量以及对应的回收率结果如图2所示。结果发现,6种净化材料中PSA对草甘膦的吸附作用最强,且对草甘膦的吸附作用随着PSA用量的增加而增强,当用量大于20 mg时会对草甘膦产生明显的吸附,回收率由93.1%降到53.3%。这可能是因为PSA吸附剂是一种弱阴离子交换剂,可与各种极性有机酸(如草甘膦等)发生强烈相互作用[42]。PSA同时也会对草铵膦和氨甲基膦酸产生一定的吸附作用。类似地,当GCB用量达到300 mg时会对草甘膦产生轻微的吸附作用,C18用量达到200 mg时对3种目标物均有轻微的吸附作用。而其余3种净化材料(MWCNT、PVPP和CNT-OH)在所选用量下对目标物几乎不产生吸附作用。
2.2.2 组合净化材料的优化
由于茶叶基质的复杂性,不同净化材料组合一般比单一净化材料净化效果更好[43]。基于单一净化材料的净化试验结果,对上述6种净化材料进行正交试验设计(表2)。在绿茶空白样品添加水平为1.0 mg·kg-1下,进行不同净化材料组合的添加回收试验,结果表明(图3A),18组净化材料均可得到满意的回收率(83.9%~111.7%)。同时考察了18组净化材料的净化效果,配制了质量浓度为0.005 0~5.0 mg·L-1的混合溶剂标准溶液和对应的18组净化材料净化后的绿茶基质匹配标准溶液,以基质效应(ME)作为评价标准,按照以下计算公式进行计算:
=/×100%。
式中,为溶剂标准曲线的斜率,为基质标准曲线的斜率。当<100时发生基质抑制效应,当>100时发生基质增强效应[44]。结果如图3B所示,组合2可以明显降低基质效应影响,基质抑制效应由37.3%~55.5%减弱至63.9%~73.9%。与组合1相比,采用其他组合净化目标物基质效应变化不明显。
此外,将净化材料组合2与常用固相萃取柱(HLB柱、C18柱和MCX柱)进行对比。在绿茶空白样品添加水平为1.0 mg·kg-1下,回收率结果表明(图4),4种净化方法对目标物的回收率无明显差异,在96.8%~109.6%范围内,均满足残留检测的需求。从耗时和成本方面考量,如表3所示,本研究选择的净化材料组合在净化时间和成本上远低于上述3种固相萃取柱。此外,与其他文献报道的净化材料组合相比[25,45],本研究的净化组合仍显示出较为优异的净化效率。综上所述,净化材料组合2(MWCNT 5 mg、C1820 mg、PVPP 60 mg和CNT-OH 50 mg)被选为后续试验的净化方式。
表2 正交试验设计表
注:净化材料组合(1~18)分别代表表2中编号1~18所对应的净化材料组合及用量
注:净化材料组合2为MWCNT(5 mg)、C18(20 mg)、PVPP(60 mg)和CNT-OH(50 mg)
表3 不同净化方法对比
2.3.1 方法的线性范围和基质效应
本研究主要对红茶和绿茶基质中目标化合物的线性范围和基质效应进行考察,结果如表4所示,目标物在一定范围内线性良好,相关系数(2)在0.999 3~1.000 0,满足农药残留定量分析的需求。基质效应计算根据2.2.2章节进行,结果表明,在红茶基质中草甘膦和草铵膦呈现基质增强效应,氨甲基膦酸呈现基质抑制效应;在绿茶基质中3个目标物均呈现出基质抑制效应;3种物质在红茶中的基质效应均弱于绿茶。
2.3.2 方法的准确度、精密度和定量限
对红茶和绿茶的空白样品设置不同的添加水平(0.050~5.0 mg·kg-1)进行加标回收率试验,每个水平重复5次,并通过空白基质匹配标准溶液校正的方法进行计算。结果如表5所示,目标物的平均回收率在81.6%~120.0%,相对标准偏差(RSD)在0.6%~13.6%,回收率和精密度符合农药残留分析方法的要求。定量限(LOQ)和检出限(LOD)根据红茶和绿茶的空白样品添加低浓度目标物确定,信噪比(S/N)≥10被定义为LOQ,S/N≥3被定义为LOD。本方法茶叶中3种物质的LOD为0.005 0~0.030 mg·kg-1,LOQ为0.050~0.10 mg·kg-1。
采用本研究方法对市场随机抽取的15份红茶和15份绿茶样品进行测定。结果显示,有 10份样品检出草甘膦(6份绿茶样品:0.060~0.54 mg·kg-1;4份红茶样品:0.090~0.53 mg·kg-1),1份绿茶样品检出草铵膦(0.49 mg·kg-1),1份绿茶样品检出氨甲基膦酸(0.40 mg·kg-1)。所有检出农药的残留量均低于我国GB/T 2763—2021[9]中规定的最大残留限量值,表明茶园中草甘膦和草铵膦的施药较为规范。从抽样分析结果来看,本研究所构建的检测技术可以满足实际样品中草甘膦、草铵膦和氨甲基膦酸的定量检测。
本研究系统地探究了不同净化材料对茶叶中草甘膦、草铵膦和氨甲基膦酸检测的影响,建立了改良QuEChERS前处理方法与UPLC-MS/MS相结合的检测草甘膦、草铵膦和氨甲基膦酸残留技术,并将其成功应用于红茶和绿茶的实际样品检测。目标物在一定范围内线性良好,相关系数为0.999 3~1.000 0。在0.050~5.0 mg·kg-1的添加水平下,草甘膦、草铵膦和氨甲基膦酸的平均回收率在81.6%~120.0%,RSD在0.6%~13.6%,方法的LOD分别为0.005 0、0.030、0.030 mg·kg-1,LOQ分别为0.050、0.10、0.10 mg·kg-1。该方法前处理简单、成本低、重复性好、灵敏度高,为茶叶中草甘膦、草铵膦和氨甲基膦酸残留的快速检测提供了可靠的技术支持。同时,该方法也为3个目标物在复杂基质中的净化提供参考。
表4 目标化合物的线性方程和相关系数
表5 目标化合物的添加回收率、相对标准偏差、检出限和定量限(n=5)
[1] Du Z X, Cao J Y, Li W T, et al. A method to assess glyphosate, aminomethylphosphonic acid and glufosinate in Chinese herb samples using a derivatization method and LC-MS/MS [J]. Chromatographia, 2022, 85(9): 817-829.
[2] Poiger T, Buerge I J, Bachli A, et al. Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with on-line solid phase extraction LC-MS/MS [J]. Environmental Science and Pollution Research, 2017, 24(2): 1588-1596.
[3] Wang Y, Gao W J, Li Y Y, et al. Establishment of a HPLC-MS/MS detection method for glyphosate, glufosinate-ammonium, and aminomethyl phosphoric acid in tea and its use for risk exposure assessment [J]. Journal of Agricultural and Food Chemistry, 2021, 69(28): 7969-7978.
[4] Goodwin L, Startin J R, Keely B J, et al. Analysis of glyphosate and glufosinate by capillary electrophoresis-mass spectrometry utilising a sheathless microelectrospray interface [J]. Journal of Chromatography A, 2003, 1004(1/2): 107-119.
[5] Liao Y, Berthion J M, Colet I, et al. Validation and application of analytical method for glyphosate and glufosinate in foods by liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2018, 1549: 31-38.
[6] Li H X, Zhong Q, Wang X R, et al. Simultaneous quantitative determination of residues of pyriproxyfen and its metabolites in tea and tea infusion using ultra-performance liquid chromatography-tandem mass spectrometry [J]. Agronomy-Basel, 2022, 12(8): 1829. doi: 10.3390/agronomy12081829.
[7] Huang Y S, Shi T, Luo X, et al. Determination of multi-pesticide residues in green tea with a modified QuEChERS protocol coupled to HPLC-MS/MS [J]. Food Chemistry, 2019, 275: 255-264.
[8] Tong M M, Gao W J, Jiao W T, et al. Uptake, translocation, metabolism, and distribution of glyphosate in nontarget tea plant (L.) [J]. Journal of Agricultural and Food Chemistry, 2017, 65(35): 7638-7646.
[9] 中华人民共和国国家卫生健康委员会. 食品安全国家标准食品中农药最大残留限量: GB 2763—2021[S]. 北京: 中国农业出版社, 2021. National Health Commission of the People's Republic of China. National food safety standard: maximum residue limits for pesticides in food: GB 2763—2021 [S]. Beijing: China Agriculture Press, 2021.
[10] European Commission. EU pesticide residue limit standard database [EB/OL]. [2023-01-13]. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/mrls.
[11] The Japan Food Chemical Research Foundation. Maximum Residue Limits (MRLs) List of Agricultural Chemicals in Foods [EB/OL]. [2023-01-13]. http://db.ffcr.or.jp/front.
[12] 李小娟, 孟品佳, 王燕燕, 等. 毛细管电泳-间接紫外法测定饮用水中草甘膦, 草铵膦及其代谢产物[J]. 理化检验-化学分册, 2015, 51(3): 307-311. Li X J, Meng P J, Wang Y Y, et al. Determination of glyphosate, glufosinate and their metabolites by capillary electrophoresis combined with indirect UV detection [J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(3): 307-311.
[13] Tseng S H, Lo Y W, Chang P C, et al. Simultaneous quantification of glyphosate, glufosinate, and their major metabolites in rice and soybean sprouts by gas chromatography with pulsed flame photometric detector [J]. Journal of Agricultural and Food Chemistry, 2004, 52(13): 4057-4063.
[14] Pires N L, Passos C J S, Morgado M G A, et al. Determination of glyphosate, AMPA and glufosinate by high performance liquid chromatography with fluorescence detection in waters of the santarém plateau, Brazilian amazon [J]. Journal of Environmental Science and Health Part B, 2020, 55(9): 794-802.
[15] Geerdink R B, Hassing M, Ayarza N, et al. Analysis of glyphosate, AMPA, glufosinate and MPPA with ion chromatography tandem mass spectrometry using a membrane suppressor in the ammonium form application to surface water of low to moderate salinity [J]. Analytica Chimica Acta, 2020, 1133: 66-76.
[16] Jansons M, Pugajeva I, Bartkevics V, et al. LC-MS/MS characterisation and determination of dansyl chloride derivatised glyphosate, aminomethylphosphonic acid (AMPA), and glufosinate in foods of plant and animal origin [J]. Journal of Chromatography B, 2021, 1177: 122779. doi: 10.1016/j.jchromb.2021.122779.
[17] Demonte L D, Michlig N, Gaggiotti M, et al. Determination of glyphosate, AMPA and glufosinate in dairy farm water from argentina using a simplified UHPLC-MS/MS method [J]. Science of the Total Environment, 2018, 645: 34-43.
[18] 杨亚琴, 冯书惠, 胡永建, 等. 气相色谱-质谱法测定绿茶中草甘膦和氨甲基膦酸残留量[J]. 茶叶科学, 2020, 40(1): 125-132. Yang Y Q, Feng S H, Hu Y J, et al. Determination of glyphosate and aminomethyl phosphonic acid residue in green tea by gas chromatography-mass spectrometry [J]. Journal of Tea Science, 2020, 40(1): 125-132.
[19] Zhuang M, Feng X X, Wang J, et al. Method development and validation of seven pyrethroid insecticides in tea and vegetable by modified QuEChERS and HPLC-MS/MS [J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(4): 768-778.
[20] Botero-Coy A M, Ibanez M, Sancho J V, et al. Direct liquid chromatography-tandem mass spectrometry determination of underivatized glyphosate in rice, maize and soybean [J]. Journal of Chromatography A, 2013, 1313: 157-165.
[21] Li Z M, Kannan K. A method for the analysis of glyphosate, aminomethylphosphonic acid, and glufosinate in human urine using liquid chromatography-tandem mass spectrometry [J]. International Journal of Environmental Research and Public Health, 2022, 19(9): 4966. doi: 10.3390/ijerph19094966.
[22] Ding J J, Jin G H, Jin G W, et al. Determination of underivatized glyphosate residues in plant-derived food with low matrix effect by solid phase extraction-liquid chromatography-tandem mass spectrometry [J]. Food Analytical Method, 2016, 9(10): 2856-2863.
[23] Wang J, Duan H L, Fan L, et al. A magnetic fluorinated multi-walled carbon nanotubes-based QuEChERS method for organophosphorus pesticide residues analysis inMurr [J]. Food Chemistry, 2021, 338: 127805. doi: 10.1016/j.foodchem.2020.127805.
[24] 叶美君, 陆小磊, 刘相真, 等. 柱前衍生-超高效液相色谱-串联质谱测定茶叶中草甘膦, 草铵膦及主要代谢物氨甲基膦酸残留[J]. 色谱, 2018, 36(9): 873-879. Ye M J, Lu X L, Liu X Z, et al. Determination of glyphosate, glufosinate, and main metabolite aminomethylphosphonic acid residues in dry tea using ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2018, 36(9): 873-879.
[25] 冯月超, 马立利, 贾丽, 等. 多壁碳纳米管分散固相萃取-液质联用技术测定茶叶中草甘膦, 草铵膦, 氨甲基膦酸残留量[J]. 食品安全质量检测学报, 2014, 5(4): 1147-1154. Feng Y C, Ma L L, Jia L, et al. Determination of glyphosate, glufosinate and aminomethylphonic acid residues in tea by liquid chromatography-tandem mass spectrometry using multi-walled carbon nanotubes as dispersive solid-phase extraction sorbent [J]. Journal of Food Safety and Quality, 2014, 5(4): 1147-1154.
[26] 诸力, 陈红平, 周苏娟, 等. 超高效液相色谱-串联质谱法测定不同茶叶中草甘膦、氨甲基膦酸及草铵膦的残留[J]. 分析化学, 2015, 43(2): 271-276. Zhu L, Chen H P, Zhou S J, et al. Determination of glyphosate,aminomethyl phosphonic acid and glufosinate in different teas by ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2015, 43(2): 271-276.
[27] 励炯, 安海娟, 王红青, 等. 改进的固相萃取/高效液相色谱-串联质谱法测定茶叶中草甘膦和氨甲基膦酸残留量[J]. 分析仪器, 2019(1): 102-107. Li J, An H J, Wang H Q, et al. Determination of glyphosate and aminomethyl phosphonic acid in tea by modified high performance liquid chromatography-tandem mass spectrometry with purification based on solid phase extraction [J]. Analytical Instrumentation, 2019(1): 102-107.
[28] 赵春华, 左于一菲, 孙倩. 高效液相色谱-串联质谱法检测茶叶中痕量草胺膦、草甘膦及其代谢物氨甲基膦酸残留[J]. 化学分析计量, 2018, 27(5): 96-101. Zhao C H, Zuo-Yu Y F, Sun Q. Determination of trace glufosinate, glyphosate and its metabolites residue in tea by HPLC-MS/MS [J]. Chemical Analysis and Meterage, 2018, 27(5): 96-101.
[29] 吴晓刚, 陈孝权, 肖海军, 等. 柱前衍生-超高效液相色谱-串联质谱法同时检测茶叶中草甘膦和草铵膦的残留量[J]. 色谱, 2015, 33(10): 1090-1096. Wu X G, Chen X Q, Xiao H J, et al. Simultaneous determination of glyphosate and glufosinate-ammonium residues in tea by ultra performance liquid chromatography-tandem mass spectrometry coupled with pre-column derivatization [J]. Chinese Journal of Chromatography, 2015, 33(10): 1090-1096.
[30] 孙文闪, 章虎, 王川丕, 等. 分散固相萃取净化液质联用测定茶叶中的草铵膦, 草甘膦和氨甲基膦酸残留[J]. 分析试验室, 2020, 39(6): 658-663. Sun W S, Zhang H, Wang C P, et al. Determination of glufosinate,glyphosate and aminomethyl phosphonic acid in tea by liquid chromatography triple quadrupole mass spectrometry using dispersive solid-phase extraction sorbent [J]. Chinese Journal of Analysis Laboratory, 2020, 39(6): 658-663.
[31] 王如坤, 方爱琴, 赵海英, 等. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法快速检测茶叶中草甘膦、草铵膦及其代谢物残留[J]. 食品安全质量检测学报, 2021, 12(10): 3954-3959. Wang R K, Fang A Q, Zhao H Y, et al. Rapid determination of glyphosate, glufosinate-ammonium and their metabolite residues in tea by ultra performance liquid chromatography-quadrupole electrostatic field orbital trap high resolution mass spectrometry [J]. Journal of Food Safety and Quality, 2021, 12(10): 3954-3959.
[32] 杨梅, 孙思, 刘文锋, 等. 超高效液相色谱-串联质谱法测定茶叶中草甘膦和草铵膦的残留量[J]. 食品科学, 2019, 40(10): 337-343. Yang M, Sun S, Liu W F, et al. Determination of glyphosate and glufosinate-ammonium residues in tea by UPLC-MS/MS [J]. Food Science, 2019, 40(10): 337-343.
[33] 蒋瑞东, 金戈辉. 气相色谱法测定果蔬中5种拟除虫菊酯类农药残留[J]. 化学分析计量, 2009, 18(5): 55-58. Jiang R D, Jin G H. Determination of 5 pyrethroid pesticide residues in fruits and vegetables by gas chromatography [J]. Chemical Analysis and Meterage, 2009, 18(5): 55-58
[34] 邓爱华, 冯国金. 植物性食品中有机氯农药残留量检测的前处理方法研究[J]. 分析测试学报, 2010, 29(9): 958-961. Deng A H, Feng G J. Investigation on different pretreatment methods for determination of residual organochlorine pesticides in phytogenic foodstuff [J]. Journal of Instrumental Analysis, 2010, 29(9): 958-961.
[35] Anastassiades M, Lehotay S J, Stajnbaher D, et al. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce [J]. Journal of AOAC International, 2003, 86(2): 412-431.
[36] Guan Y Q, Tang H, Chen D Z, et al. Modified QuEChERS method for the analysis of 11 pesticide residues in tea by liquid chromatography-tandem mass spectrometry [J]. Analytical Methods, 2013, 5(12): 3056-3067.
[37] Huo F F, Tang H, Wu X, et al. Utilizing a novel sorbent in the solid phase extraction for simultaneous determination of 15 pesticide residues in green tea by GC/MS [J]. Journal of Chromatography B, 2016, 1023/1024: 44-54.
[38] Han Y T, Song L, Zou N, et al. Multi-residue determination of 171 pesticides in cowpea using modified QuEChERS method with multi-walled carbon nanotubes as reversed-dispersive solid-phase extraction materials [J]. Journal of Chromatography B, 2016, 1031: 99-108.
[39] Wang C, Chen H P, Zhu L, et al. Accurate, sensitive and rapid determination of perchlorate in tea by hydrophilic interaction chromatography-tandem mass spectrometry [J]. Analytical Methods, 2020, 12(28): 3592-3599.
[40] Zhang M L, Ma G C, Zhang L, et al. Chitosan-reduced graphene oxide composites with 3d structures as effective reverse dispersed solid phase extraction adsorbents for pesticides analysis [J]. Analyst, 2019, 144(17): 5164-5171.
[41] 彭晓俊, 伍长春, 梁伟华, 等. 气相色谱-质谱法测定陈皮及其制品中的三氯杀螨醇和拟除虫菊酯残留量[J]. 理化检验-化学分册, 2019, 53(7): 848-854. Peng X J, Wu C C, Liang W H, et al. GC-MS determination of residual amounts of dicofol and pyrethroids in dried orange peel and its products [J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 53(7): 848-854.
[42] Zhao P Y, Wang L, Jiang Y P, et al. Dispersive cleanup of acetonitrile extracts of tea samples by mixed multiwalled carbon nanotubes, primary secondary amine, and graphitized carbon black sorbents [J]. Journal of Agricultural and Food Chemistry, 2012, 60(16): 4026-4033.
[43] Wang Z H, Wang X R, Wang M, et al. Establishment of a QuEChERS-UPLC-MS/MS method for simultaneously detecting tolfenpyrad and its metabolites in tea [J]. Agronomy, 2022, 12(10): 2324. doi: 10.3390/agronomy12102324.
[44] Rutkowska E, Lozowicka B, Kaczynski P. Three approaches to minimize matrix effects in residue analysis of multiclass pesticides in dried complex matrices using gas chromatography tandem mass spectrometry [J]. Food Chemistry, 2019, 279: 20-29.
[45] 曹慧, 郑军科, 黄丽英, 等. QuEChERS-UPLC/MS/MS快速测定茶叶中的草甘膦和氨甲基磷酸[J]. 食品与机械, 2016, 32(4): 84-87. Cao H, Zheng J K, Huang L Y, et al. Fast determination of glyphosate and aminomethyl phosphonic acid residues in tea QuEChERs and UPLC/MS/MS [J]. Food and Machinery, 2016, 32(4): 84-87.
Simultaneous Determination of Glyphosate, Glufosinate and Aminomethyl Phosphonic Acid Residues in Tea by Modified QuEChERS Method Coupled with UPLC-MS/MS
LI Ziqiang1, YANG Mei2, ZHANG Xinzhong2, LUO Fengjian2, LOU Zhengyun2, LIANG Shuang1*
1. College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; 2. Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
An analytical method was developed for the simultaneous determination of glyphosate, glufosinate and aminomethyl phosphonic acid residues in black and green tea by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) coupled with a modified QuEChERS method. The samples were extracted twice with pure water, and the extraction solutions were purified by dispersive solid phase extraction with MWCNT, C18, PVPP and CNT-OH adsorbents. The mass spectrometry was performed in multiple reaction monitoring (MRM) mode and quantified by external standard method. The results show that glyphosate, glufosinate and aminomethyl phosphonic acid had a good linear relationship within a certain concentration range with correlation coefficients (2) ranging from 0.999 3 to 1.000 0 in black and green tea. The limits of detection ( LOD ) of the method were 0.005 0, 0.030 mg·kg-1and 0.030 mg·kg-1, respectively. The limits of quantitation (LOQ) were 0.050, 0.10 mg·kg-1and 0.10 mg·kg-1, respectively.The average spiked recovery rates and the relative standard deviations (RSD) of pesticides were in the range of 81.6%-120.0% and 0.6%-13.6%, respectively. The method is simple, inexpensive, reproducible, sensitive and suitable for the determination of glyphosate, glufosinate and aminomethyl phosphonic acid in black and green tea.
QuEChERS, tea, glyphosate, glufosinate, aminomethyl phosphonic acid
S517.1;S482
A
1000-369X(2023)02-263-12
2023-01-13
2023-03-10
吉林省科技发展计划项目(20230202025NC)、国家自然科学基金青年项目(42007354)
李自强,男,硕士研究生,主要从事农药快速检测方面的研究,lzq_99@126.com。*通信作者:liangshuang@jlau.edu.cn