王卓然 朱冰 余丽梅 游绍莉
摘要:肝脏容易受多种病因影响发生肝损伤,严重情况下可引起其合成、解毒、代谢和生物转化等功能发生障碍,当前针对肝衰竭、失代偿性肝硬化等终末期肝病仍缺乏高效的临床治疗手段。近年来间充质干细胞的临床疗效已被证实,基于干细胞外泌体的相关治疗成为研究热点。本文介绍了干细胞外泌体治疗的优势、机制研究进展、临床前研究现状等。从目前研究结果来看,干细胞衍生的外泌体治疗肝脏疾病具有良好应用前景,但临床前研究仍需进一步深入,临床研究有待开展。
关键词:肝疾病; 干细胞; 间质干细胞; 外泌体
基金项目:首都特色重点课题(Z151100004015019); 国家科技重大专项项目(2017ZX10203201-004)
Role of stem cell-derived exosomes in treatment of liver diseases
WANG Zhuoran1,2, ZHU Bing2, YU Limei1,3,4, YOU Shaoli2. (1. Guizhou Provincial Key Laboratory of Cell Engineering, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China; 2. Division of Liver Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China; 3. Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine, Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563001, China; 4. Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China)
Corresponding author:YU Limei, ylm720@sina.com (ORCID:0000-0002-3377-1202); YOU Shaoli, youshaoli1972@163.com (ORCID:0000-0001-8689-8509)
Abstract:
The liver is easily affected by a variety of factors to induce liver damage, which can cause disorders in the synthesis, detoxification, metabolism, and biotransformation functions of the liver in severe cases, and at present, there is still a lack of efficient clinical treatment methods for end-stage liver diseases such as liver failure and decompensated liver cirrhosis. Recent studies have confirmed the clinical efficacy of stem cells, and treatment methods based on stem cell-derived exosomes have become a research hotspot. This article introduces the advantages of treatment based on stem cell-derived exosomes, the research advances in related mechanisms, and the current status of preclinical research. Current research findings suggest that treatment based on stem cell-derived exosomes has a good application prospect in the treatment of liver diseases, but it is still needed to conduct in-depth preclinical and clinical studies.
Key words:
Liver Diseases; Stem Cells; Mesenchymal Stem Cells; Exosomes
Research funding:
Capital Clinical Characteristic Application Research on Funded Projects (Z151100004015019); National Foundation for Science and Technology Development(2017ZX10203201-004)
肝臟虽然是人体内少数具有强大再生能力的器官,但是当肝功能严重受损发展成肝衰竭或失代偿期肝硬化时,肝细胞强大的自我再生能力会受到抑制,不能维持肝脏的正常功能。目前针对终末期肝病的治疗尚缺乏特效药物和手段,最有效的治疗手段是肝移植,但是肝移植存在肝脏供体短缺、费用昂贵、术后免疫排斥等诸多问题,寻找相应的替代疗法成为近年来肝脏疾病的研究热点。
干细胞作为一类具有自我更新和多向分化潜能的细胞,近年来被广泛应用于组织的修复与再生。大量研究[1-4]证实,干细胞移植可以有效促进心、肺、肝、肌肉、骨骼等器官组织损伤的恢复,对多种疾病起到良好的治疗效果,因此干细胞移植作为肝移植的第一代替代疗法已经展开了深入的研究。干细胞治疗的机制最初认为是干细胞在损伤部位直接增殖分化,替代受损细胞以恢复组织功能[5]。随着对细胞疗法的深入研究发现,干细胞通过旁分泌机制释放的外泌体等多种生物活性物质,参与调节机体生物学功能,因而可能是更主要的治疗机制[6],于是基于旁分泌机制的干细胞外泌体疗法作为第二代肝移植替代技术得到了重视和发展,是在干细胞疗法基础上衍生而出的新兴疗法。
1 干细胞衍生外泌体治疗机制研究进展
1983年,研究者在网织红细胞内首次发现细胞外囊泡(extracellular vesicles,EV)[7],起初EV被认为是细胞为了处理胞内不需要的物质而形成的“垃圾袋”,但是经过多年的研究发现,EV是几乎所有类型细胞都会分泌的纳米级囊泡微粒,其中包含蛋白质、脂质、核酸、细胞因子等生物活性物质,广泛存在于机体的体液之中[8],EV也是细胞间通讯的重要载体,可以介导细胞间的信息交流,在人体正常生理活动以及疾病的发生和进展中发挥重要的作用[9]。国际细胞外囊泡协会将EV依据大小、生成机制等因素分为:外泌体、微囊泡以及凋亡小体三种类型[10],外泌体是其中发挥生物学功能最为强大且研究较为深入的一类。
外泌体经细胞释放后通过胞吞、胞饮、受体介导等多种方式与靶细胞相结合,对靶细胞产生多种作用,其磷脂双层膜结构,可将其中的内容物稳定传递并避免被降解。膜上含有特定蛋白標志物,可通过识别靶细胞上特异受体并与之结合或直接与靶细胞膜融合等途径[11],激活靶细胞内信号通路、调节活性酶维持组织稳态、影响靶细胞内mRNA的转录以及蛋白质的生成等,实现细胞间信息交流,从而参与机体免疫调节、刺激血管生成、抑制氧化应激反应、调节细胞增殖凋亡、诱导组织干细胞分化等[12],实现损伤修复。
已有研究[13-15]证明干细胞所分泌的外泌体可以发挥与亲代细胞类似的治疗效果。干细胞外泌体在治疗肝脏疾病方面进行了较为深入的研究,其治疗机制主要包括以下方面(图1):(1)调节肝脏免疫稳态。干细胞通过抑制炎症相关信号通路、抑制促炎细胞因子、分泌抗炎细胞因子等调节免疫细胞功能,控制免疫反应状态[16-21]。(2)调节细胞增殖与凋亡:促进肝细胞再生、减少肝细胞凋亡,保护受损肝组织[22-23]。(3)改善氧化应激:调节组织抗氧化蛋白的表达,抑制活性氧的产生[24-26];(4)减轻肝纤维化进展:抑制肝星状细胞的活化和成纤维细胞的产生,抑制胶原蛋白的分泌,减少细胞外基质的沉积[14,27]。但干细胞外泌体在疾病中发挥的治疗作用机制十分复杂,目前研究仍未能完全明确阐述,仍需要研究者不断地探索研究。
2 不同来源干细胞衍生的外泌体发挥的生物学功能可能不同
不同组织来源的干细胞具有相似的细胞表型,但外泌体受亲代细胞的来源、培养条件等诸多因素的影响,其中所含的蛋白质、核酸以及细胞因子等活性物质会产生不同程度的表达差异[28],因此,不同来源的干细胞产生的外泌体对受体细胞的作用也不尽相同[6,29]。
已有研究针对不同干细胞来源的外泌体进行了差异蛋白的分析,Pires等[30]基于富含外泌体的间充质干细胞(mesenchymal stem cells,MSC)培养基,分析其中的差异蛋白发现,骨髓间充质干细胞来源外泌体(bone marrow MSC -derived exosomes,BMSC-Exo)可能有较好的抗凋亡和氧化应激的能力,而脂肪间充质干细胞来源外泌体(adipose tissue MSC-derived exosomes,AMSC-Exo)可能有抗神经细胞兴奋性毒性的能力。Wang等[31]的研究则认为BMSC-Exo可能有着良好的再生能力,AMSC-Exo可能有更好的免疫调节作用,而脐带间充质干细胞来源外泌体(umbilical cord MSC-derived exosomes,ucMSC-Exo)可能具有更为突出的组织损伤修复能力。当然,这些差异仍需要在临床实际应用中加以论证。
不同组织来源干细胞的外泌体应用于肝脏疾病治疗的动物实验研究在国内外均有开展(表1)。
Zhao等[32]发现BMSC-Exo可以通过激活细胞自噬来减轻D-GalN/LPS诱导的肝细胞损伤和凋亡。Haga等[33]发现BMSC-Exo可调节巨噬细胞的募集和功能,抑制IL-1α、MIP-3β、干扰素γ诱导蛋白(interferon gamma-induced protein,IP)-10等促炎因子和趋化因子的表达水平,以提高D-GalN/TNFα诱导的肝衰竭小鼠的存活率。Rong等[34]证明,在对CCL4诱导的肝纤维化大鼠模型治疗中,BMSC-Exo治疗组的治疗效果要优于BMSC治疗组,且BMSC-Exo治疗可有效减轻模型大鼠的肝纤维化程度。在Lu等[35]的研究中显示,BMSC-Exo可通过调节肝脏和巨噬细胞中miR-223-3p水平和STAT3的表达,抑制自身免疫性肝炎小鼠肝脏中炎性细胞因子的释放,减轻炎症反应。Liu等[36]实验证明AMSC-Exo中的miR-17抑制巨噬细胞内炎性小体的激活,减轻炎症反应,改善D-GalN/LPS诱导的ALF小鼠生存率。Watanabe等[15]证明了AMSC来源的细胞外囊泡(AMSC-EV)可以在NASH小鼠模型中改善受损肝功能,减少胶原聚积,减轻纤维化进程,增加肝内抗炎巨噬细胞的数量,维持NASH小鼠肝脏稳态。Jin等[37]的研究发现,经AMSC-EV输注治疗可以改善ALF大鼠肝脏的炎症水平,促进肝细胞的增殖再生,抑制肝细胞的凋亡,改善ALF大鼠生存率。Wu等[38]证明在对乙酰氨基酚(APAP)诱导的肝细胞损伤模型和ALF小鼠模型中,ucMSC-Exo可以下调炎性细胞因子的分泌水平,激活PI3K/AKT和ERK1/2信号通路,减少氧化应激,抑制细胞凋亡,发挥保肝作用。Yan等[24]发现ucMSC-Exo能够改善CCl4导致的急性肝损伤小鼠模型受损的肝功能,调节ERK1/2磷酸化、抗凋亡蛋白Bcl-2的表达以及NF-κB、caspase3/9等信号通路,减少细胞的氧化应激损伤和凋亡。Chen等[39]研究发现经血来源间充质干细胞外泌体中含有ICAM-1、血管生成素(angiopoietin)-2、Axl等多种细胞因子,尾静脉注射经血来源间充质干细胞外泌体可以减少D-GalN/LPS诱导的ALF小鼠模型肝脏中单个核细胞以及凋亡活性蛋白caspase3的数量,改善小鼠肝功能,提高存活率。
以上这些研究中均未对不同组织来源的干细胞外泌体治疗效果进行深入对比研究,因此在肝脏疾病临床实际治疗中,哪种组织来源的干细胞外泌体疗效更好,目前并未有明确研究结果。
3 不同的环境下干细胞衍生的外泌体可能不同
干细胞释放的外泌体会受生长环境不同而产生差异,这一过程可能是干细胞与其周围微环境共同调节的结果[9]。许多研究证明,改变干细胞的培养环境会影响生物活性物质的分泌,例如对干细胞进行低氧、缺血或者添加细胞因子(如IFNγ、TNFα和IL-6)等的预处理,可以改变干细胞外泌体中蛋白质、mRNA、miRNA以及细胞因子等的组成和含量,这种异质性可以影响外泌体发挥免疫调节、促进再生、抗氧化等作用(表2)。
Zhang等[40]的研究证明,经TNFα预处理的ucMSC-Exo(T-Exo)有更好的抗炎作用,在D-GalN/LPS诱导的ALF小鼠模型中,T-Exo治疗改善了ALF小鼠肝脏的病理变化,抑制了NLRP3相关通路的表达,改善了炎症反应。Shao等[19]发现,经过IL-6刺激处理的ucMSC-Exo中miR-455-3P表达水平更高,可以抑制巨噬细胞的活化、减少促炎细胞因子的表达、刺激肝细胞增殖并改善CCl4诱导的急性炎症性肝损伤小鼠的组织损伤情况。Takeuchi等[16]证明经过IFNγ预处理的AMSC细胞外囊泡对CCl4诱导的肝硬化小鼠的治疗起到抗炎和抗纤维化的作用,IFNγ预处理的AMSC细胞外囊泡中含有多种抗炎巨噬细胞诱导蛋白,可以促進M2型巨噬细胞和Treg细胞的产生,提高细胞的活性与吞噬能力,促进小鼠受损肝脏组织的修复。Temnov等[25]的研究认为低氧环境培养MSC可以改善中多种蛋白质如硫氧还蛋白、半乳糖凝集素-1以及超氧化物歧化酶的表达水平升高,低氧环境培养MSC输注治疗APAP诱导的ALF小鼠,可以减轻其炎症反应和组织损伤情况、促进肝再生。Chen等[41]研究发现,BMSC与肝细胞共培养的培养基对D-GalN诱导的受损L02细胞以及ALF大鼠模型有良好的治疗效果。在BMSC与肝细胞共培养的培养基中IL-6和IL-10等细胞因子的表达更高,可以提高受损细胞的细胞活力,改善ALF大鼠肝脏结构,提高ALF大鼠存活率。
已有研究[42-43]显示外泌体中的特异性蛋白质、miRNA含量可随着机体疾病状态而发生波动,因而有研究提出外泌体中存在的mRNA、miRNA和蛋白质可作为疾病诊断、个性化治疗和预后评估的重要标志物。以上研究证实,疾病状态导致机体内环境的改变也会影响干细胞外泌体分泌的活性物质的表达,进而影响干细胞外泌体治疗的疗效。
4 临床及临床前研究现状
随着对细胞移植研究的深入,细胞疗法的不足也逐渐显现:静脉注射干细胞易在肺部毛细血管滞留,可能堵塞血管,难以大量归巢[44];干细胞在体内存活期较短易被清除[45];干细胞难以产生具有稳定表型的细胞,存在致瘤风险等[46]。干细胞外泌体应用于临床治疗在理论上具有更大的优势:外泌体体积小易达患处、免疫原性更低、便于保存运输、致瘤风险较低、不易发生外源性感染等[47-49]。目前干细胞外泌体在部分疾病的治疗上表现出高效稳定的治疗效果,并且有研究[50]证明外泌体可被肝巨噬细胞内化,有更好的肝脏靶向性。因此,干细胞外泌体可能在肝病的治疗上更具优势。
关于干细胞外泌体在肝脏疾病治疗中的研究,动物实验研究较为丰富(表1),研究结论基本一致,均证实了干细胞外泌体可发挥抑制肝脏炎症、促进肝再生、提高生存率等作用。从https://clinicaltrials.gov/上了解已注册的有关干细胞外泌体的临床治疗性研究主要聚焦于呼吸系统、运动系统和循环系统等疾病的治疗观察(图2),其中有23项应用于呼吸系统疾病,6项应用于运动系统疾病,循环系统疾病、皮肤疾病及肿瘤各有5项,其他疾病27项,但尚未看到关于无细胞疗法治疗肝病的临床研究报道。
在实际临床治疗研究中,目前干细胞外泌体治疗理论分析仍有不足:缺乏灵敏、高效、低成本的外泌体提取鉴定标准化方法;因细胞异质性难以鉴定外泌体数量和质量;外泌体发挥治疗作用的具体因子仍需进一步深入确认;适合的治疗剂量和最佳给药途径等问题仍需深入验证,这些都是干细胞外泌体治疗难以开展临床治疗性研究的瓶颈问题。
5 展望
综上所述,应用干细胞外泌体开展的试验研究近年不断涌现,并已取得一定的进展,但在临床治疗性研究中尚未广泛开展,离临床实际应用还有一定的距离。在实际临床治疗上选用什么组织来源干细胞衍生的外泌体、如何统一干细胞的样的培养条件、如何标准化外泌体的提取与鉴定及在什么疾病状态下开展治疗最为有效都是干细胞外泌体应用于临床试验研究中亟待解决的问题。同时,针对干细胞外泌体的基础研究仍需进一步深入,干细胞外泌体在安全性、异质性、作用机制等方面的细节仍有较大探索和完善的空间。
总之,干细胞外泌体在肝脏疾病的治疗中具有较大的潜力,随着干细胞及其外泌体相关研究的不断深入,上述这些问题在研究中一定会逐步解决,干细胞外泌体将展现出良好的治疗前景。
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:游绍莉、王卓然负责论文起草与撰写;游绍莉、朱冰负责拟定写作思路,指导撰写文章并最后定稿。
参考文献:
[1]BARTUNEK J, BEHFAR A, DOLATABADI D, et al. Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics[J]. J Am Coll Cardiol, 2013, 61(23): 2329-2338. DOI: 10.1016/j.jacc.2013.02.071.
[2]SILVA JD, LOPES-PACHECO M, PAZ A, et al. Mesenchymal stem cells from bone marrow, adipose tissue, and lung tissue differentially mitigate lung and distal organ damage in experimental acute respiratory distress syndrome[J]. Crit Care Med, 2018, 46(2): e132-e140. DOI: 10.1097/CCM.0000000000002833.
[3]SUK KT, YOON JH, KIM MY, et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial[J]. Hepatology, 2016, 64(6): 2185-2197. DOI: 10.1002/hep.28693.
[4]JAIBAJI M, JAIBAJI R, VOLPIN A. Mesenchymal stem cells in the treatment of cartilage defects of the knee: A systematic review of the clinical outcomes[J]. Am J Sports Med, 2021, 49(13): 3716-3727. DOI: 10.1177/0363546520986812.
[5]CHRIST B, BRCKNER S, WINKLER S. The Therapeutic promise of mesenchymal stem cells for liver restoration[J]. Trends Mol Med, 2015, 21(11): 673-686. DOI: 10.1016/j.molmed.2015.09.004.
[6]KALLURI R, LEBLEU VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. DOI: 10.1126/science.aau6977.
[7]PAN BT, JOHNSTONE RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor[J]. Cell, 1983, 33(3): 967-978. DOI: 10.1016/0092-8674(83)90040-5.
[8]PEGTEL DM, GOULD SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88: 487-514. DOI: 10.1146/annurev-biochem-013118-111902.
[9]RANI S, RYAN AE, GRIFFIN MD, et al. Mesenchymal stem cell-derived extracellular vesicles: Toward cell-free therapeutic applications[J]. Mol Ther, 2015, 23(5): 812-823. DOI: 10.1038/mt.2015.44.
[10]THRY C, WITWER KW, AIKAWA E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1): 1535750. DOI: 10.1080/20013078.2018.1535750.
[11]MELDOLESI J. Exosomes and ectosomes in intercellular communication[J]. Curr Biol, 2018, 28(8): R435-R444. DOI: 10.1016/j.cub.2018.01.059.
[12]TSUCHIYA A, KOJIMA Y, IKARASHI S, et al. Clinical trials using mesenchymal stem cells in liver diseases and inflammatory bowel diseases[J]. Inflamm Regen, 2017, 37: 16. DOI: 10.1186/s41232-017-0045-6.
[13]BORRELLI DA, YANKSON K, SHUKLA N, et al. Extracellular vesicle therapeutics for liver disease[J]. J Control Release, 2018, 273: 86-98. DOI: 10.1016/j.jconrel.2018.01.022.
[14]RONG X, LIU J, YAO X, et al. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway[J]. Stem Cell Res Ther, 2019, 10(1): 98. DOI: 10.1186/s13287-019-1204-2.
[15]WATANABE T, TSUCHIYA A, TAKEUCHI S, et al. Development of a non-alcoholic steatohepatitis model with rapid accumulation of fibrosis, and its treatment using mesenchymal stem cells and their small extracellular vesicles[J]. Regen Ther, 2020, 14: 252-261. DOI: 10.1016/j.reth.2020.03.012.
[16]TAKEUCHI S, TSUCHIYA A, IWASAWA T, et al. Small extracellular vesicles derived from interferon-γ pre-conditioned mesenchymal stromal cells effectively treat liver fibrosis[J]. NPJ Regen Med, 2021, 6(1): 19. DOI: 10.1038/s41536-021-00132-4.
[17]ZITO G, MICELI V, CARCIONE C, et al. Human amnion-derived mesenchymal stromal/stem cells pre-conditioning inhibits inflammation and apoptosis of immune and parenchymal cells in an in vitro model of liver ischemia/reperfusion[J]. Cells, 2022, 11(4): 709. DOI: 10.3390/cells11040709.
[18]LIU Y, LOU G, LI A, et al. AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages[J]. EBioMedicine, 2018, 36: 140-150. DOI: 10.1016/j.ebiom.2018.08.054.
[19]SHAO M, XU Q, WU Z, et al. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p[J]. Stem Cell Res Ther, 2020, 11(1): 37. DOI: 10.1186/s13287-020-1550-0.
[20]FAN Y, HERR F, VERNOCHET A, et al. Human fetal liver mesenchymal stem cell-derived exosomes impair natural killer cell function[J]. Stem Cells Dev, 2019, 28(1): 44-55. DOI: 10.1089/scd.2018.0015.
[21]GUO L, LAI P, WANG Y, et al. Extracellular vesicles derived from mesenchymal stem cells prevent skin fibrosis in the cGVHD mouse model by suppressing the activation of macrophages and B cells immune response[J]. Int Immunopharmacol, 2020, 84: 106541. DOI: 10.1016/j.intimp.2020.106541.
[22]LEE SC, JEONG HJ, LEE SK, et al. Hypoxic conditioned medium from human adipose-derived stem cells promotes mouse liver regeneration through JAK/STAT3 signaling[J]. Stem Cells Transl Med, 2016, 5(6): 816-825. DOI: 10.5966/sctm.2015-0191.
[23]TAN CY, LAI RC, WONG W, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models[J]. Stem Cell Res Ther, 2014, 5(3): 76. DOI: 10.1186/scrt465.
[24]YAN Y, JIANG W, TAN Y, et al. hucMSC exosome-derived GPX1 is required for the recovery of hepatic oxidant injury[J]. Mol Ther, 2017, 25(2): 465-479. DOI: 10.1016/j.ymthe.2016.11.019.
[25]TEMNOV A, ROGOV K, ZHALIMOV V, et al. The effect of a mesenchymal stem cell conditioned medium fraction on morphological characteristics of hepatocytes in acetaminophen-induced acute liver failure: a preliminary study[J]. Hepat Med, 2019, 11: 89-96. DOI: 10.2147/HMER.S196354.
[26]HONG HE, KIM OH, KWAK BJ, et al. Antioxidant action of hypoxic conditioned media from adipose-derived stem cells in the hepatic injury of expressing higher reactive oxygen species[J]. Ann Surg Treat Res, 2019, 97(4): 159-167. DOI: 10.4174/astr.2019.97.4.159.
[27]SUN C, SHI C, DUAN X, et al. Exosomal microRNA-618 derived from mesenchymal stem cells attenuate the progression of hepatic fibrosis by targeting Smad4[J]. Bioengineered, 2022, 13(3): 5915-5927. DOI: 10.1080/21655979.2021.2023799.
[28]LVAREZ-VIEJO M. Mesenchymal stem cells from different sources and their derived exosomes: A pre-clinical perspective[J]. World J Stem Cells, 2020, 12(2): 100-109. DOI: 10.4252/wjsc.v12.i2.100.
[29]LOU G, CHEN Z, ZHENG M, et al. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases[J]. Exp Mol Med, 2017, 49(6): e346. DOI: 10.1038/emm.2017.63.
[30]PIRES AO, MENDES-PINHEIRO B, TEIXEIRA FG, et al. Unveiling the differences of secretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: a proteomic analysis[J]. Stem Cells Dev, 2016, 25(14): 1073-1083. DOI: 10.1089/scd.2016.0048.
[31]WANG ZG, HE ZY, LIANG S, et al. Comprehensive proteomic analysis of exosomes derived from human bone marrow, adipose tissue, and umbilical cord mesenchymal stem cells[J]. Stem Cell Res Ther, 2020, 11(1): 511. DOI: 10.1186/s13287-020-02032-8.
[32]ZHAO S, LIU Y, PU Z. Bone marrow mesenchymal stem cell-derived exosomes attenuate D-GaIN/LPS-induced hepatocyte apoptosis by activating autophagy in vitro[J]. Drug Des Devel Ther, 2019, 13: 2887-2897. DOI: 10.2147/DDDT.S220190.
[33]HAGA H, YAN IK, TAKAHASHI K, et al. Extracellular vesicles from bone marrow-derived mesenchymal stem cells improve survival from lethal hepatic failure in mice[J]. Stem Cells Transl Med, 2017, 6(4): 1262-1272. DOI: 10.1002/sctm.16-0226.
[34]RONG X, LIU J, YAO X, et al. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway[J]. Stem Cell Res Ther, 2019, 10(1): 98. DOI: 10.1186/s13287-019-1204-2.
[35]LU FB, CHEN DZ, CHEN L, et al. Attenuation of experimental autoimmune hepatitis in mice with bone mesenchymal stem cell-derived exosomes carrying MicroRNA-223-3p[J]. Mol Cells, 2019, 42(12): 906-918. DOI: 10.14348/molcells.2019.2283.
[36]LIU Y, LOU G, LI A, et al. AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages[J]. EBioMedicine, 2018, 36: 140-150. DOI: 10.1016/j.ebiom.2018.08.054.
[37]JIN Y, WANG J, LI H, et al. Extracellular vesicles secreted by human adipose-derived stem cells (hASCs) improve survival rate of rats with acute liver failure by releasing lncRNA H19[J]. EBioMedicine, 2018, 34: 231-242. DOI: 10.1016/j.ebiom.2018.07.015.
[38]WU HY, ZHANG XC, JIA BB, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate acetaminophen-induced acute liver failure through activating ERK and IGF-1R/PI3K/AKT signaling pathway[J]. J Pharmacol Sci, 2021, 147(1): 143-155. DOI: 10.1016/j.jphs.2021.06.008.
[39]CHEN L, XIANG B, WANG X, et al. Exosomes derived from human menstrual blood-derived stem cells alleviate fulminant hepatic failure[J]. Stem Cell Res Ther, 2017, 8(1): 9. DOI: 10.1186/s13287-016-0453-6.
[40]ZHANG S, JIANG L, HU H, et al. Pretreatment of exosomes derived from hUCMSCs with TNF-α ameliorates acute liver failure by inhibiting the activation of NLRP3 in macrophage[J]. Life Sci, 2020, 246: 117401. DOI: 10.1016/j.lfs.2020.117401.
[41]CHEN L, ZHANG J, YANG L, et al. The effects of conditioned medium derived from mesenchymal stem cells cocultured with hepatocytes on damaged hepatocytes and acute liver failure in rats[J]. Stem Cells Int, 2018, 2018: 9156560. DOI: 10.1155/2018/9156560.
[42]JIAO Y, LU W, XU P, et al. Hepatocyte-derived exosome may be as a biomarker of liver regeneration and prognostic valuation in patients with acute-on-chronic liver failure[J]. Hepatol Int, 2021, 15(4): 957-969. DOI: 10.1007/s12072-021-10217-3.
[43]MA L, WEI J, ZENG Y, et al. Mesenchymal stem cell-originated exosomal circDIDO1 suppresses hepatic stellate cell activation by miR-141-3p/PTEN/AKT pathway in human liver fibrosis[J]. Drug Deliv, 2022, 29(1): 440-453. DOI: 10.1080/10717544.2022.2030428.
[44]BANG OY, KIM EH. Mesenchymal stem cell-derived extracellular vesicle therapy for stroke: challenges and progress[J]. Front Neurol, 2019, 10: 211. DOI: 10.3389/fneur.2019.00211.
[45]EGGENHOFER E, BENSELER V, KROEMER A, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion[J]. Front Immunol, 2012, 3: 297. DOI: 10.3389/fimmu.2012.00297.
[46]VOLAREVIC V, MARKOVIC BS, GAZDIC M, et al. Ethical and safety issues of stem cell-based therapy[J]. Int J Med Sci, 2018, 15(1): 36-45. DOI: 10.7150/ijms.21666.
[47]LRINCZ M, TIMR CI, MAROSVRI KA, et al. Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes[J]. J Extracell Vesicles, 2014, 3: 25465. DOI: 10.3402/jev.v3.25465.
[48]SHOKRAVI S, BORISOV V, ZAMAN BA, et al. Mesenchymal stromal cells (MSCs) and their exosome in acute liver failure (ALF): a comprehensive review[J]. Stem Cell Res Ther, 2022, 13(1): 192. DOI: 10.1186/s13287-022-02825-z.
[49]CHENG Y, ZENG Q, HAN Q, et al. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes[J]. Protein Cell, 2019, 10(4): 295-299. DOI: 10.1007/s13238-018-0529-4.
[50]WIKLANDER OP, NORDIN JZ, O′LOUGHLIN A, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting[J]. J Extracell Vesicles, 2015, 4: 26316. DOI: 10.3402/jev.v4.26316.
收稿日期:
2022-07-30;錄用日期:2022-09-21
本文编辑:林姣