杨蓝翔 叶明露
摘 要:在希尔伯特空间中提出了一种自适应惯性投影算法来求解伪单调变分不等式与不动点问题。通过加入自适应步长规则,新算法无需估计映射的Lipschitz系数。这优化了已有的算法,并在相同的假设条件下证明了算法所生成的序列从强收敛到变分不等式解集与不动点解集的交中一点。
关键词:变分不等式;伪单调;不动点;自适应步长;惯性投影算法
中图分类号:O224 文献标志码:A 文章编号:1673-5072(2023)03-0261-08
参考文献:
[1] BAIOCCHI C,CAPELO A.Variational andquasivariational inequalities:applications to free boundary problems[M].New York:Wiley,1984.
[2] FACCHINEI F,PANG J S.Finite-dimensional variational inequalities and complementarity problems[M].Berlin:Springer,2003.
[3] KINDERLEHRER D,STAMPACCHIA G.An introduction to variational inequalities and their applications[M].New York:Academic Press,1980.
[4] KONNOV I.Combined relaxation methods for variational inequalities[M].Berlin:Springer,2001.
[5] KONNOV I.Equilibrium models and variational inequalities[M].Amsterdam:Elsevier,2007.
[6] WANG Z B,CHEN Z Y,XIAO Y B,et al.A new projection-type method for solving multi-valued mixed variational inequalities without monotonicity[J].Applicable Analysis,2020,99(9):1453-1466.
[7] GOLDSTEIN A A.Convex programming in Hilbert space[J].Bulletin of the American Mathematical Society,1964,70(5):709-710.
[8] LEVITIN E S,POLYAK B T.Constrained minimization problems[J].USSR Computational Mathematical Physics,1966,6(5):1-50.
[9] KORPELEVICH G M.The extragradient method for finding saddle points and for other problems[J].Ekonomika Matematicheskie Metody,1976,12(4):747-756.
[10]ANTIPIN A S.On a method for convex programs using a symmetrical modification of the Lagrange function[J].Ekonomika i Matematicheskie Metody,1976,12(6):1164-1173.
[11]TSENG P.A modified forward-backward splitting method for maximal monotone mappings[J].SIAM Journal on Control and Optimization,2000,38(2):431-446.
[12]CENSOR Y,GIBALI A,REICH S.The subgradient extragradient method for solving variational inequalities in Hilbert space[J].Journal of Optimization Theory and Applications,2011,148(2):318-335.
[13]陳艺,叶明露.求解伪单调变分不等式的修正投影收缩算法[J].西华师范大学学报(自然科学版),2021,42(3):246-253.
[14]CAI G,DONG Q L,PENG Y.Strong convergence theorems for inertial Tsengs extragradient method for solving variational inequality problems and fixed point problems[J].Optimization Letters,2021,15(4):1457-1474.
[15]LIU H,YANG J.Weak convergence of iterative methods for solving quasimonotone variational inequalities[J].Computational Optimization and Applications,2020,77(2):491-508.
[16]BAUSCHKE H H,COMBETTES P L.Convex analysis and monotone operator theory in Hilbert space[M].New York:Springer,2011.
[17]GOEBEL K,REICH S.Uniformconvexity,hyperbolic geometry,and non-expansive mappings[M].New York:Marcel Dekker,1984.
[18]MAINGE P E.A hybrid extragradient-viscosity method for monotone operators and fixed point problems[J].SIAM Journal on Control and Optimization,2008,479(3):1499-1515.
[19]XU H K.Iterative algorithms for nonlinear operators[J].Journal of the London Mathematical Society,2002,66(1):240-256.
Abstract:In this paper,a self-adaptive inertial projection algorithm is proposed for solving pseudomonotone variational inequalities and fixed-point problems in Hilbert space.The adding of a self-adaptive step size rule enables the new algorithm to do no estimation of Lipschitz modulus of the mapping.It is an optimization of the existing algorithm.Moreover,under the same assumption,it is proved that the sequence generated by the algorithm can strongly converge to a point in the intersection of the solution sets of variational inequalities and fixed points.
Keywords:variational inequality;pseudomonotone;fixed points;self-adaptive step size;inertial projection algorithm
基金項目:国家自然科学基金面上项目(11871059);国家自然科学基金青年项目(11801455)
作者简介:杨蓝翔(1996—),女,硕士研究生,主要从事优化理论及应用研究。
通信作者:叶明露(1975—),男,博士,教授,硕士生导师,主要从事优化理论及应用研究。E-mail:yml2002cn@aliyun.com
引文格式:杨蓝翔,叶明露.一类伪单调变分不等式与不动点问题的自适应惯性投影算法[J].西华师范大学学报(自然科学版),2023,44(3):261-268.