带压渗吸核磁共振实验研究
——以江汉盆地潜江凹陷潜江组泥质白云岩为例

2023-02-20 00:42:02曾星航祁尚义许国庆李秀云
油气地质与采收率 2023年1期
关键词:中孔煤油岩样

曾星航,祁尚义,许国庆,江 昀,李秀云

(1.页岩油气富集机理与有效开发国家重点实验室,北京100101;2.中国石化石油工程技术研究院,北京100101;3.中国石油勘探开发研究院,北京100083)

页岩油是继致密油之后的又一具备广阔开发 潜力的非常规油气资源,在中国分布广泛、储量丰富,目前已探明的页岩油地质储量为7.37×108t,是有效的接替能源[1-4]。

潜江凹陷位于江汉盆地中部,为典型内陆盐湖盆地,其中潜江组发育193个盐韵律层段,主要岩性为泥质白云岩和泥岩夹白云岩[5],其生烃指数多大于100,既是烃源岩,又是储层,具有明显的油浸特点,其累积厚度约为2 000 m,页岩油地质储量达1.00×108t[6],具有良好的勘探开发前景。

由于页岩油储层微纳米孔隙发育,与常规储层相比具有低孔隙度、超低渗透率的特点,开发难度大,大规模体积压裂储层改造是重要的开发手段[7-8]。中外的页岩储层压裂施工表明,大量压裂液注入地层后,返排率普遍低于30%[9],但却出现了返排率越低,产量越高的现象[10],这是因为在体积改造+压后焖井开发模式下,压裂液注入后在毛细管力作用下进入储层,渗吸现象明显,而渗吸作用被认为是原油开采的重要动力之一,可有效提高原油产量[11-13]。近年来针对渗吸驱油问题,诸多学者做了广泛研究,李侠清等从岩心状态、渗透率、孔喉分布、润湿性、裂缝构造等方面进行了自发渗吸实验研究[14-16],屈亚光等对页岩储层压裂液渗吸及返排机理进行研究,得到储层岩石含水饱和度、毛细管力等因素对压裂液渗吸与返排的影响规律[17]。

储层实际开发中压后往往存在流体压力,而目前的实验研究主要集中于常压下的自发渗吸实验,忽略了流体压力对渗吸作用的影响,模拟条件与储层真实情况存在较大差异。考虑流体压差的带压渗吸实验研究较少,关于页岩油储层的带压渗吸规律研究尚未见报道。为此,以江汉盆地潜江凹陷潜山组泥质白云岩岩心为样品,基于建立的带压渗吸方法,借助低场核磁共振技术开展实验研究,揭示不同流体压力作用下的渗吸实验规律,对比不同压力下不同孔隙区间岩样渗吸动用程度,并讨论渗吸作用对储层物性的影响,为非常规储层压后焖井制度及渗吸开采机理的进一步研究提供了新思路。

1 实验器材与方法

1.1 实验器材

实验仪器 实验仪器主要包括CMS300 岩心覆压孔渗自动测试仪、SY1A07 型超低渗透岩心真空加压饱和装置、MacroMR12-150H-G 低场核磁共振分析仪、高精度柱塞泵和活塞式加压渗吸容器等设备(图1)。

图1 带压渗吸实验装置示意Fig.1 Schematic of experimental device for forced imbibition

岩心样品 岩心取自江汉盆地潜江凹陷潜江组页岩油储层,岩性为泥质白云岩[18],埋深为2 630~2 720 m,其储层渗透率为0.007~0.059 mD,孔隙度为3.30%~6.46%,属于典型的低孔低渗透储层。岩心编号分别为S1,S2,S3和S4,其脆性矿物以碳酸盐岩为主,表现出高碳酸盐岩、低石英、低黏土矿物特点,其全岩矿物成分结果较为接近(表1),可作为相同岩性的平行样品开展渗吸实验。接触角平均值为45.3°,表现为水湿,为渗吸油水置换提供了基础条件。对S1—S3 岩样开展不同流体压力下的常压、带压渗吸实验,S4 岩样黏土矿物含量较高,作为比对样品开展常压渗吸实验。实验前将岩心切割成直径为2.476~2.488 cm,长度为5.146~5.648 cm 的柱塞样品。

表1 岩心样品基本参数Table1 Basic parameters of core samples

实验流体 选用3 号航空煤油和2%KCL 氘水溶液作为实验流体(表2),以消除两相含氢流体对核磁信号的影响,核磁监测信号全部来自于油相。在渗吸实验中,核磁信号变化量即可反映岩样中煤油的采出量,转换可得其渗吸采收率。

表2 常温常压下流体样品参数Table2 Parameters of experimental fluids at room temperature and atmospheric pressure

1.2 实验方法

通过活塞式加压渗吸容器模拟不同流体压力下岩样带压渗吸过程,具体实验步骤包括:①使用CMS300 岩心覆压孔渗自动测试仪测试干燥岩样的气测渗透率和孔隙度,获得渗吸前的物性参数。②将岩样置于SY1A07 型超低渗透岩心真空加压饱和装置中,抽真空12 h 后,在20 MPa 压力下饱和煤油120 h 后取出,使用MacroMR12-150H-G 低场核磁共振分析仪测试岩样饱和煤油状态下T2谱。③将岩心浸于含有2%KCL 氘水溶液(简称氘水)的活塞式加压渗吸容器中,打开渗吸容器顶部二通阀,使用高精度柱塞泵向活塞式加压渗吸容器加压(流体压力依次为0,5,10 MPa),直到顶部阀门出液,关闭阀门。高精度柱塞泵以恒压模式运行保持压力。每隔一段时间取出岩样,使用棉纱擦干表面后,包裹聚四氟生料带,测试不同时间各岩样T2谱。④重复步骤③,直至T2谱不发生明显变化,即视为实验结束,实验总时长不超过840 h,随着实验进行,测试间隔逐渐加长。⑤将渗吸实验结束的岩样重新进行洗油、烘干处理,使用CMS300 岩心覆压孔渗自动测试仪测试各岩样的气测渗透率和孔隙度,获得渗吸后的物性参数。

由不同时间测得的T2谱,分析带压渗吸过程中岩样内部油水分布变化规律,同时根据不同时间测得的核磁信号量(T2谱曲线峰面积)计算渗吸采收率,其表达式为:

2 实验结果与分析

2.1 孔隙类型及分布

核磁共振通过监测氢质子的信号反映多孔介质中流体分布特征,在均匀分布磁场中,不考虑扩散弛豫和自由弛豫的影响,弛豫时间(T2谱曲线横坐标)与岩样孔隙半径之间存在正相关关系,对应转换关系表达式为:

对于饱和煤油岩样,相同测试参数下的T2谱可有效表征岩样内部孔隙分布。各岩样T2谱(图2)均呈明显双峰分布,弛豫时间分布范围接近,主要为0.01~714.94 ms,且在1~100 ms 有明显的主峰,大于100 ms的范围内仅有极少信号分布。

图2 饱和煤油岩样T2谱Fig.2 T2 spectrum of saturated kerosene cores

在弛豫时间与孔隙半径的转换关系中,表面弛豫率往往难以确定,并且相同岩性的表面弛豫率也存在差异[19],参考确定T2截止值的方法[20-21]及LOUCKS 等提出的孔隙尺寸划分方法[22],依据T2谱的形态特征和弛豫时间,对岩样孔隙类型进行分类(表3),将岩样内部空间结构划分为小孔、中孔、大孔/微裂缝3 种类型,以便于解释渗吸过程中不同孔隙区间的渗吸实验规律。

表3 基于弛豫时间的孔隙类型及占比Table3 Pore types and proportion based on relaxation time

由表3 可知,98.82%的孔隙分布于小孔、中孔孔隙区间,这是因为页岩油储层微纳米孔喉发育,物性较差。

2.2 不同压力下的渗吸采收率

根据不同渗吸时间的核磁信号量可得渗吸采收率随时间变化(图3),可将整体渗吸过程分为渗吸初期、渗吸过渡期和渗吸后期3个阶段[23]:①渗吸初期(0~50 h),吸水量迅速增加,孔隙中的煤油被氘水置换采出,表面可观察到细小的油滴渗出,采油量和渗吸采收率随时间增加快速上升。②渗吸过渡期(50~314 h),渗吸速率减缓,曲线斜率降低。③渗吸后期(314~816 h),吸水量逐渐趋于饱和,渗吸过程也逐渐达到平衡状态,渗吸采收率曲线趋于平稳。

图3 渗吸采收率随时间变化Fig.3 Variation of oil recovery with imbibition time

带压渗吸和常压渗吸的主要区别在渗吸过渡期和渗吸后期。随着流体压力增大,渗吸过渡期渗吸采收率曲线斜率逐渐升高,渗吸置换速率降幅减小。从渗吸过渡期进入渗吸后期的时间间隔也随流体压力升高逐渐加大,S1 岩样在常压下渗吸进行到314 h 时即达到临界时间,渗吸采收率不再发生明显变化,而S3 岩样在10 MPa 压力下渗吸后期采收率仍有一定程度的升高,实验结束时,较S1 岩样有明显增加。

在0,5 和10 MPa 压力下,页岩油岩样最终采收率分别为17.19%,21.37%和27.95%,在流体压力作用下,孔隙中更多煤油在毛细管力驱动作用下被氘水置换采出,带压渗吸可有效提高岩样渗吸采收率。

2.3 孔隙渗吸动用规律

分析S1 和S3 岩样渗吸实验中不同时刻的核磁T2谱(图4)可发现,在不同流体压力下,2 块岩样在渗吸过程中T2谱变化特征相似,均随着实验进行逐渐降低,中孔的降幅最大,是渗吸的主要作用区间。

图4 不同流体压力下页岩油岩样渗吸T2谱Fig.4 T2 spectrum of shale oil core samples at different fluid pressures

不同点在于相同的实验时间内,S3 岩样的T2谱下降幅度更大,中、小孔的核磁信号量出现更为明显的减小,经计算渗吸结束时S3岩样整体渗吸采收率较S1 岩样提升了62.59%,与江昀等实验结果类似,带压渗吸实验中,岩样平均有效孔隙半径会因为流体压力增加而减小,产生强化渗吸作用,提高渗吸采收率[24]。

为进一步研究不同孔隙类型的渗吸动用规律,将岩样渗吸过程中的核磁信号量变化按照孔隙类型进行处理,可以得到不同孔隙的动用程度随时间变化(图5),由于大孔/微裂缝核磁信号量变化较小,主要讨论中、小孔的孔隙动用程度变化。渗吸初期,中、小孔的孔隙动用程度增幅较快,其曲线斜率逐渐发生变化,中孔的动用程度曲线斜率存在明显拐点(162 h),涨幅减缓,而这一时刻小孔动用程度有较大提升(S3 岩样更为明显),在拐点之后,中孔的动用程度恢复上涨趋势,而小孔的动用程度曲线趋于平稳,说明在渗吸过程中,中、小孔之间存在油水流动。

图5 不同流体压力下页岩油岩样孔隙动用程度随渗吸时间的变化Fig.5 Variation of production percentage of pores in shale oil core samples with imbibition time at different fluid pressures

在渗吸初期,氘水经流动通道进入中孔,在毛管压力作用下将孔隙中的煤油置换采出,中孔含水饱和度迅速上升;随着实验进行,氘水沿孔隙内壁逐渐进入小孔,渗吸进入过渡期,因为岩样水湿,毛管压力是渗吸的主要驱油动力,在饱和煤油情况下,小孔毛细管力大于中孔,小孔中的煤油被氘水置换流入中孔,小孔动用程度增大,储存于中、小孔中的煤油共同通过中孔渗吸采出,由于中孔的煤油量得到补充,在流出速度相同情况下,其动用程度增幅会减小(曲线拐点);由于毛细管力与含水饱和度存在负相关关系[25],随着小孔含水饱和度增加,小孔的驱油动力逐渐减弱,进入中孔的煤油量降低,小孔渗吸动用程度增幅减缓,逐渐趋于稳定。渗吸后期,渗吸置换集中作用于中孔,中孔中的煤油随渗吸进行不断采出,动用程度持续升高。

中、小孔是主要的煤油储集空间,中孔同时也为渗吸置换提供流动通道。带压渗吸主要强化了渗吸过渡期和渗吸后期2 个阶段,在10 MPa 流体压力下,S3 岩样中孔孔隙动用程度从12.05%提升至16.95%,小孔孔隙动用程度由3.45%上升至8.75%。说明在高流体压力作用下,更多氘水进入中、小孔进行油水置换,孔隙动用程度增大,使得整体渗吸采收率大幅提高。

2.4 裂缝对渗吸的影响

S4 岩样渗吸过程中的T2谱变化呈现出明显不同,随着实验进行,可以观察到微孔部分油相核磁信号量大幅降低,曲线右移,T2谱范围扩大,580.52~1 245.89 ms 出现新谱峰(图6),这部分核磁信号在饱和煤油状态下并不存在,表明在渗吸实验中其内部孔隙结构发生了变化,岩样出现新裂缝(图7)。

图6 S4岩样渗吸T2谱Fig.6 T2 spectrum of shale oil core sample S4 during imbibition

图7 S4岩样在渗吸过程中产生裂缝Fig.7 Fractures in shale oil core sample S4 during imbibition

杨柳等认为,黏土矿物含量是岩样渗吸致裂的主要原因[5],S4 岩样由于黏土矿物含量较高(23.7%),氘水进入后产生层间黏土膨胀,使内部孔隙连通、微裂缝扩展,整体孔隙空间变大。

一方面,裂缝使岩样渗吸效率显著提高,实验进行到162 h 时即达到临界时间,小孔核磁信号量下降幅度最大,渗吸更多作用于小孔,贡献率为20.74%,裂缝提供了额外的油水流动通道,增大了岩样的渗吸接触面积,使得更多小孔中的煤油可以更高效地被氘水渗吸采出;另一方面,裂缝使岩样孔隙尺度增大,大孔/微裂缝对应的毛细管力较弱,无法提供足够的驱油动力,从而使从小孔置换出的煤油在大孔/微裂缝中滞留,含油量随着实验进行逐渐升高,实验结束时的油相分布频率相较于渗吸实验前提高6.48%(图8),渗吸过程中,大孔/微裂缝不仅是渗吸流动通道,在无其他驱油动力情况下也是渗吸采出煤油的滞留空间。

图8 S4岩样渗吸前后孔隙油相分布频率Fig.8 Distribution frequency of pore oil phase in shale oil core sample S4 before and after imbibition

2.5 渗吸对物性的影响

渗吸作用在一定程度上可提高采收率,但流体侵入往往会对储层产生影响,对比渗吸前后的孔渗参数可明确渗吸实验对储层物性的影响,4 块岩样实验前后的气测渗透率、孔隙度测试结果如表4 所示。

从表4 可以看出,渗吸实验前4 块岩样孔渗参数较为接近,平均气测孔隙度为4.33%,渗透率为0.017 mD,渗吸结束后均出现了不同程度的变化,渗吸对岩样的影响存在两面性。S4 岩样由于渗吸作用产生裂缝,物性得以改善,气测孔隙度、渗透率均明显提高;而其余3块岩样均有不同程度的降低,并且孔隙度降幅随流体压力升高逐渐加大,S3 岩样在10 MPa 压力下渗吸后气测孔隙度、渗透率分别下降了26.56%和88.89%,带压渗吸在提高采收率的同时对储层物性的伤害更大。

表4 渗吸前后岩样孔渗参数变化Table4 Variation of core porosity and permeability before and after imbibition

渗吸实验会改变储层岩心物性,但要明确这部分改变对页岩油储层压裂后开发利用的实际影响,仅通过静态渗吸模拟实验是不够的,应结合驱替等实验手段开展进一步室内研究,探索物性改变后的储层返排及多相渗流规律。

3 结论

基于低场核磁共振测试技术对江汉盆地潜江凹陷潜江组页岩油储层进行不同流体压力下的带压渗吸实验,结果表明:页岩油储层物性较差,超过98%的储集空间分布在小孔、中孔区间,中孔作为主要储集空间,平均占比为67.99%。相较于常压渗吸,5 和10 MPa 压力下的渗吸采收率分别提高24.32%和62.59%,提高流体压力可有效提高渗吸采油效率,带压渗吸更易使小孔隙发挥油水置换作用。高黏土矿物含量是岩样渗吸致裂的主要原因,岩样孔隙结构发生变化,大孔/微裂缝占比提高,裂缝为岩样提供额外流动通道,增大渗吸接触面积,提高了油水置换效率,同时在无其他驱油动力情况下也作为渗吸采出煤油的存储空间存在。渗吸作用对页岩油储层岩样具有两面性,存在改善物性及伤害储层的对立现象。

符号解释

A0——渗吸实验前岩心饱和煤油状态的核磁信号量,a.u.;

Ai——第i次测试的岩心核磁信号量,a.u.;

C——岩石孔隙形状因子;

S——岩心表面积,cm2;

T2——弛豫时间,ms;

r——孔隙半径,cm;

V——孔隙体积,cm3;

ηo——渗吸采收率,%;

ρ——表面弛豫率,μm/s。

猜你喜欢
中孔煤油岩样
裂隙几何特征对岩体力学特性的模拟试验研究
煤矿安全(2023年7期)2023-08-04 03:39:06
预制裂纹砂岩样力学特性与能量演化规律研究
航空发动机维修中孔探技术的应用分析
电子制作(2019年12期)2019-07-16 08:45:46
频繁动力扰动对围压卸载中高储能岩体的动力学影响*
爆炸与冲击(2019年6期)2019-07-10 01:37:50
乌东德大坝首个中孔钢衬浇筑完成
为什么煤油灯需要借助灯芯才能燃烧
百科知识(2017年21期)2017-12-05 20:37:10
正丁醇/煤油混合物非预混燃烧压力振荡特性
高能合成煤油GN-1理化性能及应用分析
载人航天(2016年5期)2016-10-19 09:24:10
基于磁性液体的岩样总体积测试方法
计测技术(2014年1期)2014-04-15 18:27:34
未来10年我国煤油消费量将翻番
中国石化(2013年10期)2013-09-18 06:11:08