李煜,杨绍佳,唐骁,王安城,安建峰
(1.中国电建集团华东勘测设计研究院有限公司,浙江 杭州,311122;2.国网新源浙江缙云抽水蓄能有限公司,浙江 丽水,321400;3.南京水利科学研究院,江苏 南京,210024)
某抽水蓄能电站尾水洞内径6.2 m,阻抗式调压室设置在尾水岔管下游20.0 m处,调压室大井直径13.0 m,高度76 m,阻抗孔直径5.0 m。尾水洞与连接管通过直角岔管和弯道连接,岔管支臂中心高程低于尾水洞中心高程0.6 m,弯道内径5.0 m,中心转弯半径5.0 m,连接管长度约66.0 m。
考虑到带长连接管的阻抗式调压室布置复杂性和工程建设实际情况,重点研究与该抽水蓄能电站尾水调压室类似的三种典型布置型式(方案一、二、三)下的调压室底部流态及流量系数。其中,原方案(见图1)连接管直径为5.0 m;方案一连接管直径为6.2 m,与隧洞直径相同;方案二连接管直径为4.0 m,洞径比40%;方案三连接管直径与隧洞直径相同,但在连接管和大井连接处采用阻抗板型式,孔口直径4.0 m,断面面积有所减小。
图1 原方案示意图Fig.1 The original plan
针对各典型方案建立三维数学模型进行计算分析。本研究数值计算采用有限体积法离散控制方程,并采用具有二阶精度且绝对稳定的二阶迎风格式插值求解控制体边界上的物理量及其导数,通过基于压力修正法的SIMPLIC 算法迭代求解代数方程组[1-10]。
各方案下水流全部流入调压室时的调压室底部流速分布情况见图2~9。由图可看出,各典型布置型式下水流总体流态与原方案类似。当水流全部流入调压室时,隧洞内水流先在平面上90°偏转进入岔管支管,支管内主流集中于迎水面,并在背水面形成剪切回流。在回流扰动作用下,支管内主流紊动较强。支管水流经弯道进入连接管,主流同样集中于迎水面,而在背水面上发生边界层分离,形成回流。同时,由于水流的紊动和壁面约束,连接管内水流出现振荡,呈螺旋式流动。水流自连接管进入大井后,发生扩散,并逐步再次附着于大井边壁,大井内水流相对稳定。
图2 水流全部流入调压室时底部隧洞和岔管水流流速(原方案)Fig.2 The flow velocity in tailrace tunnel and bifurcated pipe when all water flows into the surge tank under original plan
图3 水流全部流入调压室时连接管和大井水流流速(原方案)Fig.3 The flow velocity in connecting pipe and surge tank when all water flows into the surge tank under original plan
图4 水流全部流入调压室时底部隧洞和岔管水流流速(方案一)Fig.4 The flow velocity in tailrace tunnel and bifurcated pipe when all water flows into the surge tank under plan A
图5 水流全部流入调压室时连接管和大井水流流速(方案一)Fig.5 The flow velocity in connecting pipe and surge tank when all water flows into the surge tank under plan A
图6 水流全部流入调压室时底部隧洞和岔管水流流速(方案二)Fig.6 The flow velocity in tailrace tunnel and bifurcated pipe when all water flows into the surge tank under plan B
图7 水流全部流入调压室时连接管和大井水流流速(方案二)Fig.7 The flow velocity in connecting pipe and surge tank when all water flows into the surge tank under plan B
图8 水流全部流入调压室时底部隧洞和岔管水流流速(方案三)Fig.8 The flow velocity in tailrace tunnel and bifurcated pipe when all water flows into the surge tank under plan C
图9 水流全部流入调压室时连接管和大井水流流速(方案三)Fig.9 The flow velocity in connecting pipe and surge tank when all water flows into the surge tank under plan C
对比各方案水流流动情况发现,岔管内水流流态与洞径比密切相关。当连接管直径和隧洞直径相同时,水流自隧洞进入连接管后,连接管有效过水断面面积约占总面积的50%;当连接管直径与隧洞直径比为65%(原方案)时,连接管有效过水断面面积约占总面积的45%;当连接管直径与隧洞直径比为40%(方案二)时,连接管有效过水断面面积所占比例进一步缩小。因此,连接管直径与隧洞直径比越小,则连接管有效过水断面面积占比越小,连接管内水流局部流速越大,背水面回流强度和紊动强度均有所增大。受岔管支臂内强旋流影响,连接管转弯处水流流态亦有所不同。当连接管直径与隧洞直径比减小时,连接管弯道局部水流均匀性劣化,主流向迎水面集中程度越高,弯道内水流越紊乱,连接管内水流均匀化所需距离越长。
各方案下水流全部流出调压室时的调压室底部流速分布情况见图10~17。由图可看出,各典型布置型式下水流总体流态与原方案类似。
图10 水流全部流出调压室时底部隧洞和岔管水流流速(原方案)Fig.10 The flow velocity in tailrace tunnel and bifurcated pipe when all water flows out of the surge tank under original plan
图11 水流全部流出调压室时连接管和大井水流流速(原方案)Fig.11 The flow velocity in connecting pipe and surge tank when all water flows out of the surge tank under original plan
图12 水流全部流出调压室时底部隧洞和岔管水流流速(方案一)Fig.12 The flow velocity in tailrace tunnel and bifurcated pipe when all water flows out of the surge tank under plan A
图13 水流全部流出调压室时连接管和大井水流流速(方案一)Fig.13 The flow velocity in connecting pipe and surge tank when all water flows out of the surge tank under plan A
图14 水流全部流出调压室时底部隧洞和岔管水流流速(方案二)Fig.14 The flow velocity in tailrace tunnel and bifurcated pipe when all water flows out of the surge tank under plan B
图15 水流全部流出调压室时连接管和大井水流流速(方案二)Fig.15 The flow velocity in connecting pipe and surge tank when all water flows out of the surge tank under plan B
图16 水流全部流出调压室时底部隧洞和岔管水流流速(方案三)Fig.16 The flow velocity in tailrace tunnel and bifurcated pipe when all water flows out of the surge tank under plan C
图17 水流全部流出调压室时连接管和大井水流流速(方案三)Fig.17 The flow velocity in connecting pipe and surge tank when all water flows out of the surge tank under plan C
对比各方案水流流动情况,水流自大井进入连接管后较为平顺,不同连接管直径下流态差别很小。较为特殊的是,方案三连接管顶部采用收缩布置,水流经阻抗孔进入连接管后形成局部射流,并在连接管中部再附着于边壁。
各方案下水流全部流入调压室时的调压室底部压力分布情况见图18~25。由图可看出,各典型布置型式下调压室底部压力分布与原方案差别不大,压力与流速直接相关。当水流全部流入调压室时,支管、连接管和大井内各个回流区压力较主流区更低。总体而言,部分水流进入调压室连接管、大井和岔管内时的压力分布较全流入时更为均匀,部分水流进入调压室隧洞内时的流态则较全流入时更为紊乱,回流区更长,压力梯度更明显。
图18 水流全部流入调压室时底部隧洞和岔管压力(原方案)Fig.18 The pressure in tailrace tunnel and bifurcated pipe when all water flows into the surge tank under original plan
图19 水流全部流入调压室时连接管和大井压力(原方案)Fig.19 The pressure in connecting pipe and surge tank when all water flows into the surge tank under original plan
图20 水流全部流入调压室时底部隧洞和岔管压力(方案一)Fig.20 The pressure in tailrace tunnel and bifurcated pipe when all water flows into the surge tank under plan A
图21 水流全部流入调压室时连接管和大井压力(方案一)Fig.21 The pressure in connecting pipe and surge tank when all water flows into the surge tank under plan A
图22 水流全部流入调压室时底部隧洞和岔管压力(方案二)Fig.22 The pressure in tailrace tunnel and bifurcated pipe when all water flows into the surge tank under plan B
图23 水流全部流入调压室时连接管和大井压力(方案二)Fig.23 The pressure in connecting pipe and surge tank when all water flows into the surge tank under plan B
图24 水流全部流入调压室时底部隧洞和岔管压力(方案三)Fig.24 The pressure in tailrace tunnel and bifurcated pipe when all water flows into the surge tank under plan C
图25 水流全部流入调压室时连接管和大井压力(方案三)Fig.25 The pressure in connecting pipe and surge tank when all water flows into the surge tank under plan C
隧洞水流全部流入和流出调压室时,计入大井与连接管之间能量损失后的水头损失及水损系数三维数值模拟结果见表1。
表1 不同布置型式下水流进出调压室流量系数Table 1 Coefficients of inflow and outflow with different layout patterns
对于带长连接管的调压室,在水力过渡过程计算分析时,大井与连接管之间的水头损失往往作为管段之间的局部损失单独考虑。
利用三维流场数值模拟方法研究不同布置方案下调压室底部水流流速分布、压力分布和进出流流量系数的变化规律,研究结果表明:
(1)连接管直径与隧洞直径比越小,则连接管内有效过水断面面积越小,连接管内水流局部流速越大,背水面回流强度和紊动强度均有所增大。
(3)对于带长连接管的阻抗式调压室,在水力过渡过程计算分析时,大井与连接管之间的水头损失往往作为管段之间的局部损失单独考虑。该情况下,各方案水流进出调压室时流量系数略大。■