准确度更高的高含硫天然气压缩因子计算方法

2022-12-28 11:07王辉李木盛陈荟宇
石油与天然气化工 2022年6期
关键词:状态方程含硫气藏

王辉 李木盛 陈荟宇

1.国家石油天然气大流量计量站成都分站 2.中国石油天然气能量计量与质量控制重点实验室 3.中国石油西南油气田公司天然气研究院 4.中国石油规划总院

我国含H2S天然气分布十分广泛,目前在四川、渤海湾、鄂尔多斯、塔里木和准噶尔等含油气盆地中均有发现,尤以川渝境内的高含H2S气田较多,如普光气田、罗家寨气田等。天然气压缩因子在天然气工程计算中是最重要的物性参数之一,准确计算压缩因子对高含硫气藏储量计算及管道流量的计量至关重要,如果计算出的压缩因子与实际情况差距较大,将会对高含硫气藏储量的计算、气田开发方案的编制以及气藏的动态分析产生不利的影响[1]。

美国燃气协会(American gas association,AGA)于1992 年发布了专门用于天然气压缩因子计算的AGA8号报告 ,因其公认的准确度(±0.10% 以内),AGA8-92DC方程在天然贸易交接计量 、天然气长输管线输差分析控制领域都发挥了关键作用,涉及单纯计算天然气压缩因子到适用于气相、液相天然气的压缩因子、密度、声速、比热容、焓、熵等热力学物性的计算。2015 年,国际标准化组织天然气技术委员会(ISO/TC 193)发布了采用GERG-2008方程来计算扩展温度、压力范围内的天然气热物性参数的国际标准ISO 20765-2:2015Naturalgas—Calculationofthermodynamicproperties—Part2:Single-phaseproperties(gas,liquid,anddensefluid)forextendedrangesofapplication[2]。ISO 20765-2 :2015适用的压力、温度范围分别为0.0~70.0 MPa和60.0~700.0 K,与2005年发布的以AGA8-92DC为基础的天然气热物性参数计算标准ISO 20765-1:2005Naturalgas—Calculationofthermodynamicproperties—Part1:Gasphasepropertiesfortransmissionanddistributionapplications及2006 年修订的天然气压缩因子计算系列标准 ISO 12213-2: 2006Naturalgas—Calculationofcompressionfactor—Part2:Calculationusingmolar-compositionanalysis相比[3],其不但可用于管输天然气压缩因子、声速等热物性参数的计算,还适用于致密天然气及液相天然气的压缩因子、密度、声速、焓、熵等热物性参数的计算。同时,针对天然气压缩因子的计算方法,国内外众多学者进行了大量研究,有PR状态方程、SRK模型、CPA状态方程等[4]。

由于高含硫气体中富含H2S和CO2等组分,使其物性出现较大偏离,若直接采用常规气体物性参数的计算方法确定高含硫气体的物性,则会带来较大误差[5]。但究竟哪种计算方法更适合于高含硫天然气计量,公开的资料和文献上并没有明确的描述,因此,优选出准确度更高的高含硫天然气压缩因子计算方法是十分必要的。

1 压缩因子的计算方法

目前,计算压缩因子的方法主要有状态方程法、经验公式法和图版法,但大多用于常规天然气。H2S的存在使高含硫天然气的临界参数出现偏差,常用的天然气压缩因子计算方法在计算高含硫天然气压缩因子时须对临界参数进行校正,才能得到比较精确的数据。目前,国内外计算天然气压缩因子的方法主要有以下几类。

第一类是图版法。司坦丁和凯茨在1942年提出的天然气压缩系数曲线图在石油行业已经使用了几十年。利用对比状态原理查图可得到相应对比温度、对比压力下的全体压缩因子。由于图版法存在人为误差,而且不适用于计算机编程计算,因此,工程中计算经常使用经验公式法和状态方程法[6]。

第二类是经验公式法。运用经验公式法计算酸性气体偏差系数的常用方法主要有Dranchuk-Abu-Kassem(DAK)法、Knainson-Thomas-Phillips(HTP)法、Drnachku-Puvris-Robinsion(DPR)法、李相方(LXF)法、Hall & Yarborough(HY)计算法、Cranmer法和Beg-gs & Bril(BB)法等。文献资料表明[7],目前针对高含硫天然气压缩因子的经验公式法的计算误差较大,且具有一定的局限性,需要结合酸性气体修正方法使用。其中,WA修正方法优于GXQ修正方法,而采用WA方法结合DPR模型或DAK计算模型的精度最高。

第三类是状态方程法。运用状态方程法计算酸性气体偏差系数的常见方法有AGA方程、SRK方程、PR方程、GERG方程。文献资料表明[2],PR方程是两参数立方型方程,采用该方程得到的天然气物性计算结果精度高于Van der Waals方程和RKS方程,且PR方程参数少,形式简洁,在天然气物性计算领域中应用广泛。SRK方程是RK方程的改进形式,大大改善了计算气、液相逸度的效果。CPA方程则考虑了极性分子,其在计算高压含硫天然气时的精度明显优于PR和SRK状态方程。另外,GB/T 17747.2-2011《天然气压缩因子的计算 第2部分:用摩尔组成进行计算》和ISO 20765-1:2005中推荐使用AGA8-92DC方程计算天然气压缩因子[8],而ISO 20765-2:2015中推荐使用GERG-2008方程计算天然气热物性参数。由于H2S具有毒性,含H2S天然气的压缩因子的实验数据较少,两种不同计算方法在高含硫现场的适应性需要进一步验证。GERG-2008和AGA8-92DC方程的适用范围如表1所列。

表1 压缩因子计算方程适用范围状态方程气体类别压力/MPa温度/Ky(CH4)/%y(H2S)/%AGA8-92DC管输气0~12263~33870~1000~0.02管输气范围扩展0~65223~35050~1000~0.02GERG-2008管道质量天然气0~3590~45070~1000~0.02中间质量天然气0~7060~70030~1000~27.00

2 GERG-2008方程及程序验证

2.1 GERG-2008方程

GERG-2008方程是Helmholtz自由能方程基于多元混合流体近似逼近和无量纲显式的表示形式,该模型利用混合物各个组分基本状态方程和衍生物的关联式来考虑流体的性质,将大量实验数据拟合到传统立方型方程中得到相应的回归系数[9]。GERG-2008方程体系中的参数大多由理论推导结合实验数据回归确定,这使该方程体系成为目前烃类物质热物性计算领域最为广泛和精确的计算方法,并且随着新实验数据的获得而不断扩充和完善[10]。

2.1.1GERG-2008方程基本形式

在GERG-2008方程中,对于一个给定密度、温度和摩尔组分x的Helmholtz能量α(α为无量纲)是两部分的总和,一部分是理想气体Helmholtz能量,另一部分是实际流体Helmholtz能量,其无量纲形式为:

α(d,T,x)=α0(d,T,x)+αr(δ,τ,x)

(1)

(2)

(3)

2.1.2压缩因子的求解

天然气压缩因子的计算框图如图1所示。

本研究依据 ISO 20765-2:2015介绍的公式、参数及计算流程,编制了GERG-2008 方程计算天然气压缩因子的计算程序,如图2所示。所有参数及关系式的详细信息可参考ISO 20765-2:2015 。

适用于GERG-2008方程计算的天然气混合物组分包括:CH4、N2、CO2、C2H6、C3H8、i-C4H10、n-C4H10、i-C5H12、n-C5H12、C6、C7、C8、C9、C10、H2、O2、CO、H2O、H2S、He、Ar共21个组分。其中,各组分的摩尔分数范围见表2。全质量范围扩展了中间质量范围,涵盖了所有混合组分的成分,除了水、氢和氦。

表2 中间天然气和管道质量天然气组成y/%类型CH4N2CO2C2H6C3H8i-C4H10+n-C4H10i-C5H12+n-C5H12C6管道天然气70~100 ≤20 ≤20 ≤10 ≤3.5 ≤1.5 ≤0.5≤0.1中间天然气30~100≤55≤30≤25≤14.0≤6.0≤0.5≤0.2类型C7C8、C9、C10H2O2COH2OH2SHeAr管道天然气 ≤0.05≤0.05≤10 ≤0.02≤3≤0.015≤0.02≤0.5≤0.02中间天然气≤0.10≤0.05≤40≤2.00≤13≤0.02≤27.00≤0.5≤0.05

由于没有广泛组分范围下压力和温度条件的实验数据,应仔细评估质量范围内的多组分混合物的计算。其温度和压力适用范围见表3。

表3 温度和压力适用范围项目压力/MPa温度/K对应表2中的组分≤35 ≤450全质量范围≤70≤700

从表2和表3可知,各组分的摩尔分数、温度、压力涵盖了管输天然气的绝大多数工况。

2.2 编程方法验证

选择ISO 20765-2:2015规范中的数据来验证程序的准确性,共选择了26个数据点,包括常见的天然气、轻烃及含H2、CO2、CO、O2、H2O、H2S、He、Ar非烃组分的天然气。温度为150~400 K,压力为0.2~50 MPa。

2.2.1验证气体组成

依据ISO 20765-2:2015进行数据验证。天然气气质的摩尔组成见表4,Gas1、Gas2、Gas3、Gas4为标准气样品。

表4 天然气气质的组成摩尔分数样品CH4C2H6C3H8i-C4H10i-C5H12n-C6H14n-C7H16n-C8H18H2SCO2N2HeH2O2Ar其他Gas10.7960.0570.0200.0050.0020.0010.0010.0010.0100.1000.007Gas20.6500.0100.0100.0100.0100.0100.0200.1900.0650.0050.02Gas30.7190.1000.0100.0100.0100.0200.0100.0010.0100.0100.10Gas40.0100.1500.250.100.1000.1000.1000.19

2.2.2计算程序验证

基于所编写的计算模块,采用GERG-2008方程计算验证气体的压缩因子,计算得到的验证结果见图3。

最终,计算平均偏差为0.000 01%。结果表明,该程序计算稳定,可以运用该程序计算高含硫天然气压缩因子。

3 高含硫天然气压缩因子计算方法分析

3.1 高含硫天然气实验数据

由于H2S具有强毒性,含硫化氢气体压缩因子的数据相对较少。基于文献数据比较PR方程、SRK方程、CPA方程、BWRS方程、 AGA8-92DC 方程和GERG-2008方程计算高含硫天然气压缩因子的准确度[11-16]。实验数据的温度及压力范围见表5,高含H2S天然气组成见表6。

表5 实验条件样品温度/K压力/MPa数据量H2S摩尔分数/%M1277~3534.1~34.52422.60M2277~3534.1~34.54814.38M3310~3534.1~34.5165.70M4311~3457.0~48.5216.50M5311~3457.0~48.5219.80M6311~3457.0~48.5214.70M7311~3457.0~48.5219.30M8311~3457.0~48.52119.70M9323~3431.6~4.51891.67M10313~3641.4~4.75570.83M11303~3641.4~5.86550.64

表6 高含硫天然气组成摩尔分数样品 H2SCO2N2CH4C2H6C3H6i-C4H10n-C4H10C5H12M10.226 00.005 00.004 60.756 10.007 10.000 80.000 20.000 2M20.143 80.003 00.004 60.841 40.005 90.000 80.000 30.000 2M30.057 00.013 10.005 20.915 10.008 40.000 80.000 20.000 2M40.065 00.871 00.064 0M50.098 00.831 00.071 0M60.047 00.836 00.117 0M70.093 00.800 00.107 0M80.197 00.713 00.090 0M90.916 70.083 3M100.708 30.003 10.003 00.257 00.017 90.008 30.001 20.001 00.000 2M110.506 40.006 20.005 90.425 30.035 30.016 40.002 40.002 00.000 1

3.2 计算结果分析

3.2.1样品M4压缩因子计算结果分析

选取温度在311.76 K、压力逐渐升高的样品M4的压缩因子计算结果进行分析,见表7和图4。

表7 样品M4压缩因子计算值与实验值的比较压力/MPa实验值计算值PRSRKCPABWRSGERG-2008AGA8-92DC7.070.8860.853 80.881 70.873 10.870 60.875 00.874 313.970.8110.778 60.820 40.801 40.801 90.796 90.795 120.860.8130.780 70.832 20.807 30.816 20.798 10.795 727.760.8690.828 10.889 80.862 80.879 10.856 80.854 234.650.9510.895 30.957 40.939 20.962 70.940 70.937 941.551.0440.970 71.003 01.024 01.055 01.034 21.031 548.441.1411.050 01.143 01.112 01.152 01.131 51.128 6

通过该组实验数据的分析,AGA8-92DC、GERG-2008、CPA和BWRS 4种状态方程的计算值与实验值接近。

3.2.2以实验值为参考值分析各模型计算的准确度

压缩因子的实验值和计算值之间的相对偏差(RD)和平均相对偏差(ARD)的计算方法见式(4)、式(5)[17-20]。

(4)

(5)

式中:Zcal为压缩因子计算值;Zexp为压缩因子实验值;Zcali为计算值的平均值;Zexpi为实验值的平均值。

H2S摩尔分数在0%~27%时,计算得到高含硫天然气在不同计算模型下的相对偏差和平均相对偏差,见表8。

表8 高含硫天然气压缩因子状态方程计算偏差样品H2S摩尔分数温度/K压力/MPa实验数据/组相对偏差/%PRSRKCPABWRSGERG-2008AGA8-92DCM10.226 0277.64.13~34.4783.302.930.653.640.840.79310.94.13~34.4782.502.920.582.580.440.50352.64.27~34.4781.892.750.821.850.750.80M20.143 8277.64.27~34.6393.162.520.401.750.791.18291.54.27~34.6393.361.980.501.230.831.10310.94.27~34.63122.732.350.391.400.620.77330.44.27~34.6392.631.950.300.860.540.61344.84.27~34.6392.002.220.571.040.360.35 M30.057 0311.94.13~34.4781.823.391.211.660.990.80352.64.13~34.4781.572.791.131.240.820.71M40.065 0311.87.07~48.4475.311.751.391.091.301.54328.17.07~48.4475.061.121.340.981.301.49344.37.07~48.4474.391.470.811.190.830.98M50.098 0311.97.07~48.4475.431.211.531.261.321.59328.57.07~48.4474.631.620.901.660.780.99344.97.07~48.4474.071.920.501.730.410.58M60.047 0311.57.07~48.4474.552.140.781.380.500.67327.47.07~48.4473.962.400.581.540.220.35344.47.07~48.4473.532.510.531.760.210.17M70.093 0311.97.07~48.4474.382.390.901.980.330.94327.97.07~48.4473.632.800.852.300.280.21344.47.07~48.4473.133.000.812.440.560.41M80.197 0311.97.07~48.4475.181.781.272.760.710.80327.97.07~48.4473.992.640.623.180.250.15344.87.07~48.4473.442.870.613.130.470.44平均相对偏差/%3.572.340.841.860.670.75

H2S摩尔分数超过27%,计算得到高含硫天然气在不同计算模型下的相对偏差和平均相对偏差见表9。

表9 高含硫天然气压缩因子状态方程计算偏差样品H2S摩尔分数温度/K压力/MPa实验数据/组相对偏差/%PRSRKCPABWRSGERG-2008AGA8-92DCM90.916 73231.68~3.92101.640.660.751.291.07-3431.77~4.4181.891.341.291.281.32-M100.708 33132.23~4.31121.110.610.861.141.11-3231.44~3.77121.330.510.520.421.33-3432.36~4.66201.790.550.540.531.79-3632.50~4.46112.160.750.740.742.16-M110.506 43032.11~3.81120.810.750.730.860.89-3131.48~5.75180.520.450.370.520.57-3232.06~4.30132.030.620.660.650.53-3432.21~5.16142.080.530.620.690.43-3632.26~3.5191.740.770.760.830.67-平均相对偏差/%1.600.740.770.901.14-

3.2.3以GERG-2008计算值为参考值分析各模型计算准确度

GERG-2008方程的计算值和其他压缩因子计算方法的计算值之间的相对偏差(RD)和平均相对偏差(ARD)的计算方法见式(6)、式(7)。

(6)

(7)

式中:ZGERG为GERG-2008方程的压缩因子计算值。

H2S摩尔分数在0%~27%,计算得到高含硫天然气在不同计算模型下的相对偏差和平均相对偏差,见表10。

表10 高含硫天然气压缩因子状态方程计算偏差样品H2S摩尔分数温度/K压力/MPa实验数据/组相对偏差/%PRSRKCPABWRSAGA8-92DCGERG-2008M10.226 0277.64.13~34.4782.442.070.192.780.05-310.94.13~34.4782.052.470.142.130.06-352.64.27~34.4781.131.990.071.090.05-M20.143 8277.64.27~34.6392.351.720.390.950.39-291.54.27~34.6392.511.140.330.400.27-310.94.27~34.63122.101.720.230.780.15-330.44.27~34.6392.081.400.240.320.07-344.84.27~34.6391.631.850.210.680.01- M30.057 0311.94.13~34.4780.822.380.220.660.19-352.64.13~34.4780.741.950.310.420.11-M40.065 0311.87.07~48.4473.960.440.090.210.24-328.17.07~48.4473.710.180.040.320.19-344.37.07~48.4473.530.630.020.360.15-M50.098 0311.97.07~48.4474.060.110.210.060.27-328.57.07~48.4473.820.830.120.870.21-344.97.07~48.4473.651.500.091.310.17-M60.047 0311.57.07~48.4474.031.630.280.880.17-327.47.07~48.4473.732.180.361.320.13-344.47.07~48.4473.312.300.321.550.04-M70.093311.97.07~48.4474.042.050.571.640.61-327.97.07~48.4473.342.510.572.010.07-344.47.0748.4472.562.430.251.870.15-M80.197 0311.97.07~48.4474.441.060.562.040.09-327.97.07~48.4473.732.380.372.920.10-344.87.07~48.4472.962.390.142.650.03-平均相对偏差/%2.911.650.251.180.08

H2S摩尔分数超过27%,以公开的文献组分数据进行计算,AGA8-92DC方程已无法进行计算,其他高含硫天然气在不同计算模型下的相对偏差和平均相对偏差见表11。

表11 高含硫天然气压缩因子状态方程计算偏差表样品H2S摩尔分数温度/K压力/MPa实验数据/组相对偏差/%PRSRKCPABWRSAGA8-92DCGERG-2008M90.916 73231.68~3.92100.560.410.320.22--3431.77~4.4180.560.020.030.04--M100.708 33132.23~4.31120.000.490.250.03--3231.44~3.77120.000.810.800.90--3432.36~4.66200.001.221.231.24--3632.50~4.46110.001.381.391.39--M110.506 43032.11~3.81120.080.140.160.03--3131.48~5.75180.050.120.200.05--3232.06~4.30131.490.090.130.12--3432.21~5.16141.640.100.190.26--3632.26~3.5191.060.100.090.16--平均相对偏差/%0.500.440.430.40--

3.2.4各模型计算方法综合分析

根据GB/T 26979-2011《天然气藏分类》中含H2S气藏分类见表12。

表12 含H2S气藏分类分类H2S质量浓度/(g·m-3)H2S摩尔分数/%微含硫气藏<0.02<0.001 3低含硫气藏0.02~5.000.001 3~0.300 0中含硫气藏5.0~30.00.3~2.0高含硫气藏30.0~150.02.0~10.0特高含硫气藏150.0~770.010.0~50.0H2S气藏>770.0>50.0

由表12可知,高含硫气藏的H2S摩尔分数高于2%,因此,主要针对H2S摩尔分数高于2%的天然气进行研究。结合SY/T 6581-2012《高压油气井测试工艺技术规程》和GB/T 17747.1-2011《天然气压缩因子的计算 第1部分:导论和指南》中的管输气压力划分标准分类,天然气分为低压高含硫天然气(p≤12 MPa,2%≤φ(H2S)≤10%),低压特高含硫天然气(p≤12 MPa,10%≤φ(H2S)≤50%),低压富含H2S天然气(p≤12 MPa,φ(H2S)≥50%);中压高含硫天然气(12 MPa≤p≤35 MPa,2%≤φ(H2S)≤10%),中压特高含硫天然气(12 MPa≤p≤35 MPa,10%≤φ(H2S)≤50%);高压高含硫天然气(p≥35 MPa,2%≤φ(H2S)≤10%)[12]。

基于文献中公开发表的数据,调研了压力为4 ~50 MPa、温度为0~80 ℃、H2S摩尔分数为4%~92%的天然气压缩因子数据共计331组,实验数据分析结果如图5~图10所示。

由图5~图10得到各状态方程的平均相对偏差和最大相对偏差如表13~表14和图11~图12所示。

表13 各状态方程计算高含硫天然气的平均相对偏差 %天然气类型 PRSRKCPABWRSGERG-2008AGA8-92DC低压高含硫1.961.140.780.740.770.77低压特高含硫1.721.370.580.380.720.69低压富含H2S1.510.640.670.760.66-中压高含硫3.422.850.761.680.780.86中压特高含硫3.453.180.532.820.540.72高压高含硫6.581.411.541.980.490.63

表14 各状态方程计算高含硫天然气的最大相对偏差%天然气类型 PRSRKCPABWRSGERG-2008AGA8-92DC低压高含硫3.632.491.981.742.202.18低压特高含硫3.262.553.191.771.501.41低压富含H2S4.152.372.523.322.49-中压高含硫6.244.801.633.401.832.13中压特高含硫6.974.571.585.701.512.14高压高含硫8.323.932.833.411.171.48

以文献公开的实验值作为参考值[3],由表13~表14和图11~图12可知:

(1) 对于低压高含硫天然气,CPA、BWRS、GERG-2008、AGA8-92DC方程精度相当,其平均相对偏差均位于0.7%左右。

(2) 低压特高含硫天然气可以使用CPA、BWRS、GERG-2008、AGA8-92DC方程。

(3) 对于中压高含硫天然气、中压特高含硫天然气,可以使用CPA方程和GERG-2008方程,其平均相对偏差仅为0.7%左右。

(4) 对于高压高含硫天然气,GERG-2008方程具有明显的优势,其平均相对偏差为0.49%。

(5) H2S摩尔分数超过50%,SRK方程准确度最高,最大相对偏差为1.00%,平均相对偏差为0.74%,AGA8-92DC方程已无法计算。

以GERG-2008方程计算值作为参考值,分析表10和表11可知:

(1) AGA8-92DC方程的计算结果与其最接近,其平均相对偏差为0.08%;CPA方程的计算结果次之,其平均相对偏差为0.25%。

(2) H2S摩尔分数超过50%,CPA、BWRS、SRK方程的计算结果相当,其平均相对偏差为0.4%左右,AGA8-92DC方程已无法计算。

4 应用案例

为验证GERG-2008、AGA8-92DC和CPA方程在高含硫天然气压缩因子计算中的优越性,选取了国内某含硫气田的3口气井的天然气组分,见表15,气质温度为35 ℃,工况压力为7~9 MPa,通过3种算法来判断无实验值的压缩因子计算的准确性,计算结果分析见图13~图15。

表15 国内某含硫气田3口气井的天然气组成y/%井号CH4C2H6C3H8i-C4H10n-C4H10i-C5H10n-C5H10H2SCO2N2HeH2O2其他L175.5680.04014.920 8.3301.1100.0310.001L282.5220.0499.895 06.8320.0170.685L390.3890.0300.000 50.000 30.000 26.2302.900.4300.020

由图13~图15可知,GERG-2008、AGA8-92DC和CPA方程的计算结果趋势一致,较好地验证了高含硫天然气压缩因子的计算模型。

5 结论与建议

(1) 对标准中规定的组成较简单的管输天然气,GERG-2008 方程与 AGA8-92DC 方程的计算准确度基本相当,在天然气管输温度、压力范围内,两个方程的计算准确度均在 0.10% 以内;对H2S摩尔分数超过27%的高含硫天然气,CPA、SRK与GERG-2008 方程的计算准确度基本相当。

(2) 基于331组高含硫天然气压缩因子实验数据的计算结果,对于H2S摩尔分数为4.7%~22.6%的含硫天然气,以文献公开的实验值作为参考值进行计算,GERG-2008方程准确度最高,偏差范围为0.31%~1.14%,平均相对偏差为0.67%,相比AGA8-92DC方程提升了14.9%;以GERG-2008方程的计算值作为参考值进行计算,AGA8-92DC方程的计算结果与其最接近,其平均相对偏差为0.08%。

(3) 基于特高含硫天然气压缩因子实验数据的计算结果,对于H2S摩尔分数为50.6%~91.6%的含硫天然气,AGA8-92DC方程已无法进行计算。以文献公开的实验值作为参考值进行计算,CPA、SRK方程结果相当,其平均相对偏差为0.7%左右;以GERG-2008方程的计算值作为参考值进行计算,CPA、BWRS、SRK方程的计算结果相当,其平均相对偏差为0.4%左右。

(4) H2S摩尔分数在0%~27%范围内,对于研究的几种压缩因子计算方法,准确度排序依次为:GERG-2008、AGA8-92DC、CPA、BWRS、SRK、PR。由于实验数据有限,现有的研究大多针对某种工况下的计算分析,其在更广范围内的计算准确性需要进一步验证。

(5) 基于GERG-2008方程计算高含硫天然气气液两相的密度(压缩因子或逸度)、含重烃井流天然气气液两相的密度(压缩因子或逸度)、原料天然气气液两相的密度(压缩因子或逸度)的准确度比其他状态方程高,可以考虑在脱硫工艺设计和运行中、开采工艺运行中、轻烃回收工艺设计和运行中使用GERG-2008方程,设计准确度更高,开采和运行效益也更好。

(6) ISO 20765-2:2015 是以 GERG-2008 方程为基础制订的适用于不同组成、不同相态天然气物性计算的国际标准,上述分析表明,GERG-2008 方程对管输天然气压缩因子、高含硫气藏天然气压缩因子的计算都十分准确,建议天然气行业相关组织加快该国际标准及其后续标准的转化进程。

猜你喜欢
状态方程含硫气藏
气田开发中“气藏整体治水”技术理念的形成、发展及理论内涵
考虑非达西渗流的致密气藏采收率计算新方法
煤直接液化项目含硫污水水质分析及处理对策研究
含硫天然气与氨气的层流火焰速度测量与反应动力学研究
LKP状态方程在天然气热物性参数计算的应用
一种应用于高含硫气井的智能取垢器系统设计
非均布导流下页岩气藏压裂水平井产量模拟
装药密度对炸药JWL状态方程的影响
母线失电后主泵及机群运行的仿真分析
基于随机与区间分析的状态方程不确定性比较