肖文联,任吉田,王磊飞,陈 波,李 杰,杨玉斌,郑玲丽
(1.西南石油大学油气藏地质及开发工程国家重点实验室,四川成都 610500;2.中国石油长庆油田分公司页岩油产能建设项目组,甘肃庆阳 745000)
鄂尔多斯盆地陇东地区西233 区长7 段储量丰富,是中国典型的页岩油储层之一。但由于储层物性差、孔隙结构复杂,即使在体积压裂或长水平井技术的基础上进行衰竭式或者水驱开发也未能大幅度地提升原油的采收率[1-2],因此有必要探究一种新的开发方式提高研究区页岩油储层的采收率。西233 区气油比高达100~140 m3/m3,伴生气资源较为丰富,这为地层能量的有效补充和储层提高采收率新方式的探索提供了可能。
注气已成为除热采之外最重要的提高采收率方法。自20 世纪80 年代以来,中外学者开展了大量的注气提高原油采收率方面的研究,并取得了显著的效果[3-5],其开发方式主要包括注气吞吐和注气驱替2 种类型[6-8]。注气吞吐方面,赵明国等针对大庆油区芳48 断块特低渗透油藏进行了CO2吞吐室内实验,发现CO2吞吐对于开采该油藏具有非常好的效果[9]。马铨峥等对新疆吉木萨尔凹陷芦草沟组致密油储层完成了CO2吞吐室内实验,认为CO2吞吐能有效地提高采收率,累积采收率提高16.5%~33.5%[10]。黄小亮等通过室内实验研究,分析了CO2吞吐提高低渗透油藏、稠油油藏采收率的机理及其影响因素(周期注入量、闷井时间、压力衰竭速度、注气方式和注气速度)[11-15]。此外,中外学者还评价了其他气体(如注烟道气、空气和天然气)在稠油、碳酸盐岩等油藏中吞吐提高原油采收率的可行性[16-18],并结合原油的高压物性实验分析了气体提高原油采收率的机理[19],发现注气能够溶解降黏、补充能量、降低界面张力等,从而提高油藏采收率。注气驱油方面,王维波等针对靖边油田低渗透油藏开展了室内注CO2驱替实验,发现周期注入CO2时原油的采收率较连续注入CO2时提高了15.29%[20]。樊建明等对比了超低渗透岩样注CO2驱替与注水驱替驱油效果,实验结果表明注CO2驱油提高了48.97%的采收率[21]。王进安等通过室内物理实验发现注水开发效果较差的低渗透储层的注气开发(注N2)效果反而越好[22]。
目前,中外学者主要在CO2和N2吞吐与驱替提高原油采收率方面完成了大量的研究工作,并取得了较为丰富的研究成果,相比于CO2和N2,伴生气较为安全,不会腐蚀井筒,效果优于N2,同时对于研究区块油藏,伴生气能够降低成本。为此,笔者以鄂尔多斯盆地陇东地区西233 区长7 页岩油储层岩样为研究对象,结合核磁共振技术开展了不同注入压力下的注伴生气多轮次吞吐和不同含油饱和度下注伴生气驱替实验,基于岩样微观特征研究成果,分析获取了注伴生气吞吐和注伴生气驱替两种实验下页岩油储层岩样原油动用和采收率变化特征,为注伴生气提高原油采收率的合理开发方式及开发参数的优选奠定了基础。
注伴生气驱油实验装置主要包括高压气源、岩心夹持器、围压泵和数据采集系统等(图1)。
图1 注伴生气驱油实验装置Fig.1 Experiment process of associated gas-flooding
注伴生气吞吐实验装置主要包括岩心夹持器、核磁共振仪、高精度驱替泵、试管(0.02 L)和数据采集系统等(图2)。西233 区长7 页岩油地层压力约为16 MPa,本实验设定的注伴生气吞吐压力19,16和13 MPa 分别代表高于、接近和低于地层压力的3种状态,实验过程中保持围压为25 MPa不变。
图2 注伴生气吞吐实验装置Fig.2 Huff-puff experiment process of associated gas injection
实验岩样取自鄂尔多斯盆地陇东地区西233区S8 井和S6 井的长7 段页岩油储层。经洗油、烘干后,测量了岩样的基本物性参数,其渗透率为0.100~0.250 mD,孔隙度约为8.00%(表1)。铸体薄片和高压压汞实验结果表明,S8 井岩样为岩屑砂岩,孔隙以粒间孔和溶蚀孔为主,孔隙半径主要为20~150 μm,最大为200 μm(图3a),连通性较差,喉道分选系数约为1.600,变异系数约为0.144,平均喉道半径为0.253 μm;S6 井岩样为岩屑砂岩,孔隙以粒间孔和溶蚀孔为主,孔隙半径主要为50~120 μm,最大为180 μm(图3b),连通性也较差,喉道分选系数、变异系数和歪度都相对较大,而平均喉道半径相对较小(表1)。
表1 实验岩样基本物性、孔隙结构参数和实验安排Table1 Basic physical properties and pore structure parameters of experimental rock samples and experimental arrangements
图3 实验岩样铸体薄片照片Fig.3 Casting thin section of samples
实验用油为煤油和5#白油(矿物油)按照体积比为1∶9 配制模拟油(在室温下黏度为1.1 mPa·s,密度为0.85 g/cm3)。
实验用水是矿化度为55 000 mg/L 的氯化锰溶液,可屏蔽水相核磁信号[23-24],在核磁共振测试中获取的T2谱信号仅是岩样中油相的信号,对应的T2谱曲线可用于分析油相在孔隙中的分布特征。
实验用气为西233 区长7 页岩油井口所取的伴生气,用色谱仪分析得到伴生气组成结果(图4):以CH4为主,含有部分C2H6,C3H8,CO2,N2和O2,含有少量的C4H10和C5H12。此外,通过细管实验测得伴生气与原油的最小混相压力为36 MPa(大于地层压力16 MPa),这说明在注伴生气的驱替实验和吞吐实验中伴生气与原油之间难以达到混相。
图4 伴生气组成结果Fig.4 Composition of associated gas
1.2.1 注伴生气驱油实验
为便于对比注伴生气的驱油实验,在S8井中选择3块物性相近的岩样进行不同压力下注伴生气的驱油实验。主要步骤包括:①将选取岩样抽真空至133 Pa,然后在20 MPa下用55 000 mg/L 的氯化锰溶液和模拟油完全饱和岩样。②用模拟油驱替完全饱和水岩样至束缚水状态,并在地层温度(60 ℃)下老化7 d 以上,获取含束缚水岩样;测定完全饱和油岩样和含束缚水岩样的核磁共振T2谱曲线(等待时间、回波间隔、回波个数和扫描次数分别设置为3 000 ms,0.5 ms,2 048 个和32 次)。③参照岩石中两相流体相对渗透率测定方法[25],在恒定驱替压力1 MPa(岩样出口端为大气压)下开展完全饱和油岩样和含束缚水岩样的注伴生气驱油实验,测定气驱过程中累积产气量、累积产油量,待含气率达到99%时停止驱替,并测定气驱后岩样的核磁共振T2谱曲线。
1.2.2 注伴生气吞吐实验
为便于对比吞吐实验中气油两相流动特征及不同孔隙区间原油动用特征,分别在S8 井和S6 井中选取物性相近(比如渗透率和孔隙度相近、润湿性均为油湿等)岩样开展注伴生气吞吐实验,主要步骤包括:①重复注伴生气驱油实验中的步骤①和②,获取含束缚水岩样,并测定含束缚水岩样的核磁共振T2谱曲线。②保持围压25 MPa不变,在室温条件下缓慢注入伴生气直到“吞”入压力达到19 MPa(模拟高于地层压力下的超前注气开发),保持压力恒定12 h 之后缓慢打开出气阀,测定产油量、岩样质量以及“吐”油后的岩样核磁共振T2谱曲线,再次装入岩样后,重复上述步骤,直到岩样质量和核磁共振T2谱曲线不发生明显变化时完成一次吞吐测试。③重复步骤②分别完成“吞”入压力是16 MPa(模拟接近地层压力下的超前注气开发)和13 MPa(模拟生产一段时间后的注气开发)下的吞吐测试,吞吐实验完成。
由完全饱和油岩样和含束缚水岩样的累积产气量和累积产油量测试结果(图5a)可以看出:累积产气量随时间增长呈幂函数特征(R2为0.725 9~0.980 8),初期产气量随时间增长较为缓慢,而后期产气量随时间增长快速增加;相对于含束缚水岩样,完全饱和油岩样的累积产气量更高。对完全饱和油岩样或含束缚水岩样,相比于S6 井的岩样,S8井岩样的累积产气量更多。
图5 注伴生气驱油实验累积产气量和累积产油量曲线Fig.5 Cumulative gas production curves and cumulative oil production curves during associated gas-flooding process
相对而言,累积产油量随时间增长呈对数函数特征(R2为0.986 2~0.997 7);相对于含束缚水岩样,完全饱和油岩样的累积产油量也更高(图5b)。对完全饱和油岩样或含束缚水岩样,相比于S6井的岩样,S8井岩样的累积产油量更多。
图6 为S8 井和S6 井完全饱和油岩样和含束缚水岩样在注伴生气驱油前后的核磁共振T2谱曲线。由于实验岩样中水信号被屏蔽,T2谱信号幅度越高,表明岩样中含油量越多;T2谱曲线靠右的信号幅度越高,表明岩样中大孔隙中的含油量越多。
图6 注伴生气驱油前后T2谱曲线Fig.6 T2 spectra curves before and after associated gas-flooding process
在初始状态下,完全饱和油岩样和含束缚水岩样的最大弛豫时间都接近500 ms;完全饱和油岩样和含束缚水岩样的T2谱曲线都呈现出双峰的特征,且右峰(2~500 ms)的信号大于左峰(0.01~2 ms)的信号,这表明岩样中的油在较大孔隙和较小孔隙中均有分布,且较大孔隙中的含油量更多;完全饱和油状态和含束缚水状态下,两者的左峰相差较小,但是含束缚水岩样右峰的信号幅度更低。在注伴生气驱油之后,完全饱和油岩样和含束缚水岩样左右两峰中原油信号量都降低了,左峰对应的较小孔隙中原油信号量降低幅度较小(或不明显),右峰对应的较大孔隙中原油信号量降低幅度较大,这说明两种状态下注伴生气驱油过程中均动用了较大孔隙中的原油。
注伴生气不同吞吐压力下实验结果(图7)表明,在束缚水状态下(第1轮吞吐前),原油在岩样中的分布也是呈现出双峰的特征,且右峰较大孔隙中的原油赋存较多。随着吞吐周期(或者轮次)的增加,核磁共振T2谱曲线对应的信号幅度总体上逐渐降低,且主要表现在右峰信号幅度的降低,左峰小孔隙中的信号幅度降低较小。
图7 不同吞吐压力下T2谱曲线Fig.7 T2 spectra curves at different huff-puff pressures
第1 轮吞吐后T2谱面积(T2谱曲线与横坐标所围面积)降低幅度最大(从黄色实线降到蓝色实线),说明第1 轮吞吐采出的油量最多;第2 轮吞吐后T2谱面积降低幅度减小(从蓝色实线降到绿色实线),到第3轮吞吐和第4轮吞吐时,T2谱面积减小幅度非常小,说明注伴生气吞吐产油量主要源于前2轮吞吐。此外,对比分析发现随着吞吐压力的降低,对应轮次下的T2谱面积减小幅度也降低,吞吐压力越低,注伴生气吞吐产油量越少。
核磁共振是一种能探测流体中氢原子的弛豫信号,进而评价多孔介质中流体含量及其分布的技术。核磁共振横向弛豫时间主要包括体弛豫时间、表面弛豫时间、扩散弛豫时间,其表达式为:
在均匀磁场中回波间隔足够小时,扩散弛豫时间T2D可被忽略;此外,流体的体弛豫时间为2~3 s,相对于横向弛豫时间可被忽略,(1)式可简化为:
当把孔隙简化成球形和柱状孔隙时,(2)式中S/V可被改写为Fr/r,则横向弛豫时间与孔隙半径满足线性模型[26-27]:
此外,还有学者提出用乘幂模型表征横向弛豫时间与孔隙半径的关系[28-29]:
在上述模型的基础上,首先,在同一坐标系下绘制了T2的累积分布曲线和高压压汞曲线对应的孔隙半径累积分布曲线,发现2 条累积分布曲线呈现出幂函数特征;然后,结合横向弛豫时间与孔隙半径之间的乘幂模型((4)式),用最小二乘法原理分别拟合得到4块岩样横向弛豫时间与孔隙半径之间的拟合参数(图8),即转换系数(M)和幂指数(n);最后,用获取的转换系数和幂指数,计算得到4块岩样的孔隙半径分布为0.001~20 μm,这与铸体薄片分析结果(孔隙半径分布为20~200 μm,图1)差距较大,说明用高压压汞曲线和核磁共振T2谱曲线转换得到的孔隙大小不符合实际岩样。
图8 核磁共振横向弛豫时间与孔隙半径关系Fig.8 Relationship between NMR T2 relaxation time and pore radius
为此,选取与实验岩样同层且物性相似的岩样(孔隙度为9.114%,渗透率为0.184 mD),进一步测定了饱和油下核磁共振T2谱曲线和恒速压汞曲线(图9);然后,将从恒速压汞曲线分析获取的孔隙大小分布曲线和核磁共振T2谱曲线绘制在同一半对数坐标系中;接着,将核磁共振最大横向弛豫时间与基于恒速压汞曲线的最大孔隙半径相对应[28],确定核磁共振最大横向弛豫时间与最大孔隙半径,并代入(3)式,计算得到转换系数;最后,用获取的转换系数计算得到实验岩样的孔隙大小及分布曲线,如注伴生气驱、吞吐实验岩样的T2谱曲线及其对应的孔隙半径及分布曲线(图6,图7),结果发现孔隙半径分布为0.001~200 μm,这与铸体薄片观察分析结果一致。
图9 核磁共振T2分布与恒速压汞孔喉半径分布对比Fig.9 Comparison of NMR T2 relaxation time distribution and constant-rate mercury intrusion pore throat radius distribution
同时,分析饱和油状态、含束缚水状态下注伴生气驱油和注伴生气吞吐实验后的T2谱曲线特征发现,弛豫时间为2~10 ms 的孔隙中原油信号幅度在注伴生气驱油后呈略上升的趋势(图6),弛豫时间约为100 ms 孔隙中原油信号幅度在注伴生气吞吐后下降至0(图7)。为此,将实验岩样的T2值以0~2 ms(孔隙半径为0~1.1 μm)、2~10 ms(孔隙半径为1.1~5.6 μm)、10~100 ms(孔隙半径为5.6~56 μm)和大于100 ms(孔隙半径大于56 μm)作为微孔、小孔、中孔和大孔的界限值,这也与以往的孔隙大小划分界限较为一致[30-33]。
分析注伴生气驱油实验岩样在初始状态下不同孔隙中含油量(图10),发现完全饱和油和含束缚水状态下微孔中的含油量差距较小,约为23%;含束缚水状态下岩样小孔、中孔和大孔中的含油量占比分别约为10%,30%和15%,而完全饱和油状态下岩样小孔、中孔和大孔中的含油量占比分别约为15%,40%和21%。分析图6和图10可以发现,岩样在建立束缚水饱和度之后,水分布在小孔、中孔和大孔,尤其以中孔和大孔为主,原因在于此次实验岩样的润湿性为油湿。
图10 注伴生气驱油岩样初始状态下不同孔隙含油量Fig.10 Oil content in different pores in initial state for associated gas-flooding experiments
为了定量分析岩样各级孔隙中原油的采收率及其动用特征,结合注伴生气驱油前后的核磁共振T2谱曲线,本文定义了2 个参数,即各级孔隙的绝对采收率和相对采收率,其计算公式分别为:
在注伴生气驱油后,饱和油岩样的原油相对采收率高于35%,而含束缚水岩样原油采收率低于30%,甚至接近20%(表1,图6,图11a)。此外,从图11a 中可以发现,原油相对采收率最高的是大孔,其次是中孔、微孔;相对于饱和油岩样较高的大孔和中孔原油绝对采收率(分别超过了80%和45%),含束缚水岩样大孔和中孔中原油绝对采收率较低(分别不超过70%和35%);两种状态下微孔中原油绝对采收率都低于10%,但是含束缚水岩样微孔中原油绝对采收率略微高一些。两种状态下绝对采收率表现出这种差异的原因在于实验岩样中的束缚水主要分布于中孔和大孔,这将会引起伴生气(非湿相)驱油过程中出现珠泡效应,增加流体在岩石中的流动阻力,降低伴生气在中孔和大孔中的流动能力,进而导致采收率降低;相对应地,也会一定程度上增加伴生气在微孔中的波及,提高微孔中原油的采收率。
图11 注伴生气驱油下不同孔隙采收率Fig.11 Oil recovery of different pores after associated gas-flooding
进一步分析还发现孔隙非均质性和比表面积也影响实验岩样的注伴生气驱油效率。饱和油岩样S8-6 的原油采收率(42.45%)大于饱和油岩样S6-6 的原油采收率(36.61%),原因在于岩样S8-6的孔隙分选系数和变异系数最小(即孔隙非均质性最弱),其孔隙还偏向于较粗歪度(即微孔含量相对较少)且岩样的中值半径较大(对应较低的中值压力,表1),这使得注伴生气驱油波及面积就会越大,驱油效果就越好。在束缚水状态下,相对于渗透率较低岩样S6-4,渗透率较高岩样S8-8 的注伴生气驱油采收率却较低;对比分析孔隙结构参数(表1)发现,虽然岩样S8-8 和岩样S6-4 的分选系数、变异系数、平均喉道半径相近,但是岩样S8-8 具有更大比表面积,这意味着岩样S8-8中流体与孔隙壁面的接触面积更大,加之岩样润湿性为油湿,这导致岩样孔隙表面与原油间的作用力就更强,伴生气就难以动用附着在孔隙表面的原油,从而导致注伴生气驱油采收率较低。最后,还发现小孔中原油采收率出现了负值的情况,呈现出小孔中原油含量“增加”的结果,其原因可能是在注伴生气驱油过程中岩样中的部分残余油以油膜或者孤立的油滴存在于大孔和中孔中,这部分残余油在核磁共振测试的信号中将表现出相对更短的弛豫时间,使得小孔中核磁共振信号量增加,表现出小孔中原油也增加的假象,这一现象有待于进一步研究论证。
根据注伴生气吞吐实验岩样在初始状态下的T2谱曲线(图7 中的黄色实线)绘制不同孔隙含油量(图12),发现原油主要赋存于中孔和大孔(约为60%),其次是微孔(约25%)和小孔(约15%),这与注伴生气驱油实验中含束缚水岩样初始状态下原油赋存特征一致。
图12 注伴生气吞吐岩样初始状态下不同孔隙含油量Fig.12 Oil content in different pores in initial state for associated gas huff-puff experiments
在注伴生气吞吐过程中,各级孔隙的相对采出程度计算结果见表2。经过4轮注伴生气吞吐后,岩样中各级孔隙的原油都得到了有效的开采,采出的原油主要来自于中孔和大孔(4 轮吞吐后中孔和大孔累积相对采出程度之和超过40%),微孔也有一定程度的贡献(4 轮吞吐后累积相对采出程度甚至超过了5%);4 轮吞吐后总的原油累积相对采出程度超过了44%,甚至高达52.62%。吞吐轮次和吞吐压力影响岩样中原油的采出特征:①第1 轮吞吐原油周期相对采出程度超过30%(占总开采原油的65%以上),且随着吞吐压力的增加而增加,在19 MPa(高于地层压力)的吞吐压力下甚至超过了40%(占总开采原油的80%以上)。②第2轮吞吐原油周期相对采出程度为7%~9%,受吞吐压力的影响较小。③第3 轮吞吐原油周期相对采出程度更低,岩样S8-7 低于2%。④第4 轮吞吐几乎没有原油开采出来;随吞吐轮次的增加,周期相对采出程度呈幂函数下降(图13)。原油的开采主要在第1 轮和第2轮吞吐,且在吞吐压力越大时,前2轮吞吐开采的原油就越多,甚至可以占到总开采原油的95%以上,原因在于随着吞吐压力的增高,在相同的条件下能够注入的气量更多,这不仅使得原油具有更强的弹性能,而且原油的黏度更低、流动性更强,累积产油量会更多,累积采收率会更高,这表明超前高压注伴生气实施吞吐有利于页岩油储层采收率的提高。
图13 伴生气吞吐周期采出程度变化特征Fig.13 Characteristics of oil recovery percent under different huff-puff cycles
在不同的吞吐轮次下,开采出的原油也主要产自于中大孔;在较高的吞吐压力下,第1轮吞吐中大孔原油相对采出程度可超过40%以上,占该阶段总采油量的90%以上。此外,在吞吐的整个过程中,岩样的小孔和部分微孔中的周期相对采出程度在不同吞吐轮次下出现负值,这与注伴生气驱油过程中观察的结果类似,即残余油以油膜或者孤立的油滴存在于大孔和中孔中,这部分残余油在核磁共振测试的信号中将表现出相对更短的弛豫时间,使得小孔中核磁共振信号量增加,表现出小孔中原油也增加的假象。
分析束缚水条件下注伴生气驱油和注伴生气吞吐实验结果(表1和表2),发现在注伴生气吞吐实验中岩样表现出更高的相对采出程度(44.69%~52.62%,平均值为48.55%),其值远大于注伴生气驱油实验中岩样的相对采出程度(21.21%和27.71%,均小于30%)。相比于注伴生气驱油实验岩样,注伴生气吞吐实验岩样的微孔、中大孔的采收率较高(图11a,表2)。注伴生气驱和注伴生气吞吐都能够补充能量,为整个岩样提供弹性能,增大原油的膨胀系数,将部分原油驱替出来,然而相比于注伴生气驱的降黏效果,注伴生气吞吐“吞”入的伴生气能够部分溶于原油,在“闷”的过程中与原油充分接触,更加有效地降低原油的黏度,进而增加原油的流动能力,使得原油(尤其是中孔和微孔中的原油)更容易采出;同时,注入伴生气在“闷”的过程当中,能够有效地进入微孔当中,扩大波及面积,并且能够有效地降低气窜的影响,进而提高注伴生气吞吐的采收率。可见,注伴生气吞吐更利于页岩油储层的开采。
表2 岩样吞吐实验周期采出程度Table2 Oil recovery percent during huff-puff process of rock samples
综上所述,在页岩油注入伴生气吞吐采油实验中,吞吐压力、吞吐周期是影响采收率的主要因素;在相同的条件下,吞吐压力越高,采收率越高。因此,对于西233 区长7 页岩油储层,建议超前实施注伴生气吞吐开发,且吞吐周期控制在2~3个周期。
在注伴生气驱油实验中,完全饱和油岩样的原油相对采收率约为40%,含束缚水岩样的原油相对采收率低于30%;岩石的孔隙非均质性、比表面积以及岩样中存在的束缚水都影响原油相对采收率,且束缚水和比表面积对注伴生气驱油的相对采收率影响更为显著。
在注伴生气吞吐实验中,随吞吐轮次的增加,周期相对采出程度呈幂函数下降;经过4 个吞吐周期,采收率超过40%以上,其中前2个吞吐轮次下的相对采出程度占总的相对采收率的90%左右;随着吞吐压力的增加,岩样原油相对采收率增加;吞吐周期和吞吐压力共同影响页岩油岩样的原油相对采收率。
随着注伴生气吞吐轮次的增加,岩样中大孔原油相对采出程度逐渐降低;在不同吞吐轮次下中大孔原油相对采出程度均较高,微孔原油相对采出程度较低;随着吞吐压力的增加,第1个吞吐轮次下中大孔原油相对采出程度最高,甚至占该阶段总采油量的90%以上。注伴生气吞吐相对采收率优于注伴生气驱相对采收率,建议在西233 区长7 页岩油储层中实施超前补能注气吞吐的开发形式。
符号注释
D——扩散系数,μm2/ms;
Fr——孔隙形状因子;
G——磁场梯度,gauss/cm;
m(T2)1——注伴生气驱油前(或吞吐前)每点幅度值;
m(T2)2——注伴生气驱油后(或吞吐后)每点幅度值;
m(T2)1i——注伴生气驱油前(或吞吐前)第i孔隙区间每点幅度值;
m(T2)2i——注伴生气驱油后(或吞吐后)第i孔隙区间每点幅度值,i=1,2和3分别代表微孔、中孔和大孔;
M——转换系数;
n——幂指数;
r——孔隙半径,μm;
Ri——不同孔隙区间绝对采收率;
RRi——不同孔隙区间相对采收率;
S——孔隙的总表面积,μm2;
T2——横向弛豫时间,ms;
T2B——体弛豫时间,ms;
T2D——扩散弛豫时间,ms;
TE——回波间隔,ms;
T2,imin——孔隙区间起始T2时间,ms;
T2,imax——孔隙区间终止T2时间,ms;
T2S——表面弛豫时间,ms;
V——孔隙体积,μm3;
γ——1H原子核的磁旋比,rad/(s·T);
ρ2——表面弛豫率,μm/ms。