陈 潇 ,徐 敬,2,*
(1. 浙江大学 海洋学院光通信实验室,浙江 舟山 316021;2. 海洋观测成像试验区 浙江省重点实验室,浙江 舟山 316021)
海洋覆盖了地球将近三分之二的面积,与人类的生存和发展息息相关。海洋中蕴藏的自然资源要远远超过陆地,目前还有大量的海洋领域尚未得到开发探索。海洋的发展关系到国家的兴衰,建设海洋强国能够维护国家安全并推动国家经济发展,海洋强国战略已经成为各个国家发展的重中之重。
通过构建海洋观测网络,采用包括卫星、自主式水下航行器(AUV)、遥控式水下航行器(ROV)、深海水下载人深潜器、观测浮标和海底观测站等多种观测设备[1],能够全方位收集海洋信息。空-天-地-海通信场景如图 1所示[2],包含了各种不同类型节点间的数据传输。海面及空中的数据传输可以通过卫星和飞机使用射频(RF)信号或光信号实现全球海面的无缝覆盖,而具有高速率、远距离、低时延且可靠性强的水下无线通信(UWC)技术则亟待深入的研究和开发。
图1 空-天-地-海通信场景[2]Fig.1 Space-air-land-sea communication scenarios
目前,水声通信已经发展成为最为成熟且应用最广的水下无线通信技术[3],其传输距离可以达到几十千米,是水下无线传感器网络中的重要技术。但其有限的带宽也将长距离水声通信的速率限制在 kbps量级,多径效应和多普勒频移等也进一步降低了水声通信系统的性能。由于声音信号在水中的传播速度仅约 1 500 m/s,使得水声通信无法应用于实时的大容量数据传输场景中。射频通信在地面通信中具有不可替代的作用,且射频信号受到海水中的湍流和杂质等因素的影响相对较小[2]。然而,由于海水具有良好的导电性,射频信号在海水中受到极大的衰减,频率越高的信号受到的衰减越严重,频率为30~300 Hz的超低频信号能够实现100多米的传输距离,但收发天线的庞大规模、收发机的高成本和大功耗限制了射频通信在水下的发展[4]。水下无线光通信(UOWC)具有带宽高、时延小、抗电磁干扰能力强、保密性好和功耗低等优点,其通信速率可以达到几十Gbps量级,传输距离可以达到几十米到数百米。
尽管有蓝绿透射窗口的存在,海水的吸收和散射带来的衰减仍是限制UOWC性能的一个重要因素,若能够提高UOWC系统的传输距离,将极大地扩展其应用范围并增强其竞争力。从光电器件等硬件层面上,可以通过研究具有大功率和小发散角的激光器以及具有高探测灵敏度的光电探测器来提高UOWC系统的传输距离,例如发射端采用基于激光泵浦的固态激光器(DPSSL)作为光源,产生大功率且光斑质量好的激光信号[5],接收端采用具有高灵敏度的多像素光子计数器(MPPC)或光电倍增管(PMT)作为探测器[6]。然而,由于目前适用于UOWC的可见光波段光电器件仍处于发展阶段,尚未实现大规模量产,高性能的器件通常也对应着更高的价格,会增加系统的成本。
除了研究先进的光电器件外,数字信号处理(DSP)技术也是提高UOWC系统有效性和可靠性的另一重要途径[7]。DSP技术在射频通信和光纤通信等领域已广泛应用,结合UOWC系统特性,将其应用于UOWC中,可以有效提高系统性能,降低系统对于高性能光电器件的需求。信道编码技术通过添加冗余信息,能够实现纠错,提高接收灵敏度;信道均衡技术能够消除信号受到的码间干扰,增加通信系统的可用带宽,提高系统通信速率;使用高阶调制格式也能够获得更高的通信速率;采用多输入多输出(MIMO)结构,利用分集增益提高系统鲁棒性,降低对准难度,利用复用增益增加信道容量,提高通信速率。
随着水下应用中对于无线通信的需求不断增加,给UOWC系统的通信速率和传输距离提出了更高的挑战,提高通信速率和延长传输距离是目前UOWC领域的一个重要研究方向。此外,由于水下环境中气泡、湍流和载体抖动等因素的存在,会带来光强起伏和光束漂移等问题,降低了收发端间通信链路的可靠性,降低收发端对准难度成为了UOWC领域的另一个研究重点。
提高通信速率和延长传输距离能够有效扩展UOWC的应用范围,是UOWC研究的重要目标。激光二极管(LD)相比于LED具有更小的发散角和更高的调制带宽,成为了高速长距离UOWC系统中常用的光源。针对高速率长距离UOWC系统的研究可以大致分为以下 2种方案:研究硬件设备以实现更高的调制带宽、发射光功率和探测灵敏度;采用数字信号处理技术从软件层面提升系统性能。
从硬件上,通过研究大功率小发散角的光源和高灵敏度的探测器,能够提高系统对于链路损失的容忍度,以延长UOWC系统的传输距离;应用高带宽的光电器件,则能够增大系统的调制带宽,进而提高UOWC系统的通信速率。
英国水下技术公司Sonardyne研发了不同应用场景下的UOWC产品 BlueComm,基于小发散角LED阵列和高灵敏PMT的产品能够在100 m的水下传输距离内保持20 Mbps的通信速率,而基于大发散角 LED阵列和硅基光电探测器的产品则具有较短的传输距离和较低的调制带宽,但能够适应不同的背景光环境[8]。2017年,复旦大学的 LIU等人设计了基于高带宽的绿光LD和PIN的UOWC系统,获得了1.4 GHz的3 dB带宽。应用具有更高灵敏度的雪崩光电二极管(APD),使用非归零(NRZ)开关键控(OOK)信号在34.5 m的传输距离下实现了2.70 Gbps的通信速率。实验测得水的衰减系数为0.44 dB/m,作者通过几何衰减理论推导得出该系统在通信速率为 0.15 Gbps和 1 Gbps时的最大传输距离分别可以达到 90.7 m和62.7 m[9]。KONG等人将660 nm、520 nm和440 nm的红光、绿光和蓝光激光器组成波分复用(WDM)系统,三路不同波长的信号在10 m水下信道中分别实现了4.17 Gbps、4.17 Gbps和1.17 Gbps的通信速率,系统的总通信速率达到了9.51 Gbps[10]。WU等人使用具有高带宽的蓝光LD和PIN探测器达到了1.5 GHz的3 dB带宽,使用16-QAM OFDM信号在1.7 m和10.2 m的水下信道中分别实现了12.4 Gbps和5.6 Gbps的通信速率[11]。浙江大学的CHEN等人使用了3 dB带宽为1 GHz的APD用于探测光信号,采用32-QAM OFDM信号在5 m空气信道和21 m水下信道中达到了5.5 Gbps的通信速率,实现了静态环境下跨空水界面的双工通信系统[12]。2018年,HU等人采用具有高探测灵敏度的光子计数接收器设计实现了长距离 UOWC系统,并通过PPM和信道编码技术进一步提高传输距离,最高实现了35.88个衰减长度的水下传输,且接收性能可达 3.32比特/光子[13]。2019年,中国科学技术大学WANG等人应用了NRZ-OOK信号和非线性均衡器,将光信号在10 m水槽中反射了9次,在衰减系数为0.052 m–1的水质中实现了100 m/500 Mbps的UOWC系统[14]。TSAI等人使用二阶注入锁定将系统3 dB带宽从1.8 GHz提升到8.4 GHz,并通过电域均衡技术将系统3 dB带宽进一步提高到10.8 GHz,使用脉冲幅度调制(PAM)信号实现了30 Gbps的通信速率和12.5 m的传输距离[15]。2020年,ZHAO等人采用3×1光纤合束器对3个1 W光纤激光器进行合束,将总发射光功率提高至2.4 W,合束效率达到80%,使用高灵敏的MPPC作为探测器,在100 m的传输距离(24个衰减长度)下实现了8.39 Mbps的通信速率[16]。
相比于光纤中采用的红外波段的激光器和探测器,UOWC中采用的可见光波段的器件还不够成熟,在现有器件的基础上,信号处理技术是进一步提高系统性能的重要途径。信号处理技术在射频通信和光纤通信等领域得到了广泛应用,在UOWC中也已经得到了初步的使用。高速率长距离UOWC系统中常用的信号处理技术包括调制、信道均衡和信道编码等技术,能够从软件层面上提高通信速率并延长传输距离。
信源产生的信号需要经过调制后才可以用于发送,UOWC中多采用数字调制方式。OOK是最简单且常用的调制格式[17-18],基于 OOK调制的UOWC系统实现相对简单,系统的非线性效应对OOK调制的影响相对较小,信号解调时所需的信噪比较低,常用于实现长距离水下无线光通信链路,但由于其频谱效率较低,在系统带宽受限的情况下无法实现高速通信。PPM也是UOWC系统中常用的调制格式,将信息调制在脉冲位置上,在多个时隙中仅有1个时隙存在脉冲,PPM比OOK具有更高的能量利用率,因此也常用于长距离UOWC系统中[13,19]。多阶PAM信号相比于OOK信号具有更高的频谱效率,可以获得更高的通信速率,且PAM信号为实信号,可以直接用于UOWC系统中,对光信号的强度进行调制,但PAM信号更高的电平数也增大了解调时的信噪比需求[15,20]。QAM信号为复信号,可以看作是两路正交的PAM信号的叠加,在强度调制的UOWC系统中需要先对基带信号进行上变频后方可用于调制光信号。上变频可以在硬件或软件上进行,在使用软件上变频时,QAM 又被称为无载波幅相(CAP)调制[21-22]。OFDM 技术采用多个正交的子载波将高速信号分解为多路低速数据流,通过 Hermitian变换后添加直流偏置即可得到可以直接用于调制激光器的非负实信号,这种方案称为直流偏置光OFDM(DCO-OFDM)方案。在 OFDM信号中添加循环前缀能够有效对抗码间干扰,提高信号带宽,将其与高阶 QAM 技术相结合,能够实现较高的通信速率[23]。星座概率整形技术通过改变不同星座点的概率分布以获取增益,能够使系统容量趋近于香农信道容量,获得更高的通信速率[24]。几何整形技术通过改变星座点的分布位置来增大星座点间的最小欧式距离,从而获得整形增益,几何整形技术还能够对抗系统中存在的非线性效应[25]。综上可知,低阶的调制格式如OOK和PPM的实现较为简单,需要更低的接收信噪比,适用于长距离通信系统中。但低阶调制格式所带来的低频谱效率问题也限制了系统的通信速率,将OFDM与高阶调制技术相结合,则能够有效提高信号带宽,获得更高的通信速率。在高速率长距离的 UOWC研究中,需要同时兼顾系统的带宽和信噪比,选取合适的调制格式和调制阶数,实现通信速率和传输距离的折衷。
UOWC系统中收发器件的成熟度和固有特性都可能导致系统的带宽受限,水下散射和湍流等原因带来的多径效应也进一步限制了系统带宽[26],在有限带宽条件下,高效的信道均衡技术是 UOWC系统中提高通信速率和信道容量的重要方法。时域上最常用的信道均衡方案为基于最小二乘法(LS)或最小均方误差(MMSE)准则的前馈均衡(FFE)算法,采用有限脉冲响应(FIR)滤波器来模拟信道时域冲激响应的逆变换以消除信号受到的码间干扰,但 FFE算法会放大深衰落频段的噪声,造成接收信号的信噪比下降。判决反馈均衡(DFE)算法在 FFE之后添加一个反馈均衡器,将判决信号用于反馈以消除码间干扰,能够降低 FFE带来的噪声放大问题。ZHANG等人在基于 PMT的UOWC系统中应用DFE算法进行均衡,在通信速率为1 Gbps时实现了11.6个衰减长度的传输[27]。CHEN等人将FFE与DFE级联后与RS编码进行有机组合,实现了56 m的传输距离和3.31 Gbps的通信速率[28]。但DFE在噪声较大的情况下也可能出现误差传递现象,导致连续的错误。极大似然序列估计(MLSE)算法不会带来噪声放大问题,在提高信道容量上具有极大的潜力。GAO等人在系统3 dB带宽仅为167 MHz的情况下使用MLSE算法实现了通信速率为1.1 Gbps的OOK传输[29]。但由于 MLSE的计算复杂度随着调制阶数和信道脉冲长度呈指数上升,因此 MLSE 更适用于低阶调制信号中用于消除较短的码间干扰。针对光电器件中存在的非线性效应。LU等人采用了非线性的Volterra均衡器,并通过实验证明了在高通信速率的情况下非线性均衡器的性能要明显优于线性均衡器[30]。由于Volterra均衡器的计算复杂度过高,FEI等人对三阶Volterra均衡器进行了简化,能够在对抗非线性效应的同时不带来过多的计算复杂度提升,实现了15 m的传输距离和7.33 Gbps的通信速率,相比于线性均衡器带来了18%的信道容量提升[31]。浙江大学的 DAI等人提出了一种可变步长广义正交匹配跟踪算法,相比于传统算法能够降低68.6%的复杂度且保持较好的误码率性能,在通信速率为500 Mbps的情况下将传输距离延长到了200 m[32]。ZHAO等人提出了一种基于双分支多层感知机的后向均衡技术,相比于传统的基于多层感知机的后向均衡方案,能够在降低计算复杂度的同时获得较好的误码率性能,将基于单芯 LED的UOWC系统的通信速率提升到了3.2 Gbps[33]。除了在接收端使用的后向均衡以外,也可以在发射端使用预均衡技术对发送信号进行预补偿[11],降低后向均衡带来的噪声放大现象,从而提高信噪比并降低误码率,ZHUANG等人通过线性预均衡技术使用蓝光LED 实现了距离10 m速率400 Mbps的水下传输[34],而预均衡的缺点在于发射端需要提前预知信道的传输特性,且会降低接收信号的信噪比。在长距离UOWC系统中,由于器件的低带宽特性和多径效应的影响,高速信号会受到严重的码间干扰,研究高效率且低复杂度的信道均衡方案是提高系统通信速率的一个重要途径。
香农理论给出了噪声信道的信道容量,采用合适的信道编码方式即可获得接近信道容量的通信速率,在光通信中应用信道编码技术能够有效降低接收信号的误码率并提高接收灵敏度。2001年,OMAR通过仿真对比了 RS(255,239)码、级联RS码和分组Turbo码在水下光缆中的传输性能,发现迭代软解码能够带来10 dB的编码增益[35];2008年,北卡州立大学的 COX等人使用码率接近 1/2的RS(255,129)码和500 kbps归零(RZ)OOK信号在水槽实验中获得了8 dB的编码增益[36];YU等人和 WANG等人都通过仿真证明了 RS码相比于 BCH码具有更好的性能[37-38];RAMAVATH通过实验测试了BCH (31,11)码和交织码在湍流及阻塞环境中的性能,在误码率等于10–3时,交织BCH码在湍流和阻塞条件下分别获得了2.5 dB和3.5 dB的编码增益[39];中国科学技术大学的WANG等人搭建了基于FPGA的实时UOWC系统,对比了RS码、卷积码、级联码和交织级联码的性能,实验结果表明使用交织级联码方案比未编码情况下提高了6 dB的接收灵敏度,能够延长12.5 m的传输距离[40]。传统的信道编码方案所引入的冗余信息带来了信号带宽的增加,在带宽受限的长距离UOWC系统中会导致严重的码间干扰,进而可能造成系统性能的恶化。因此,需要针对长距离UOWC系统的低带宽特性,研究高效的信道编码方案,获得更高的通信速率和传输距离。
海洋环境中的气泡和湍流等导致的光强起伏和光束漂移等现象给收发端的对准带来挑战,造成系统可靠性的下降,对抗气泡和湍流并降低对准难度成为了UOWC领域的另一个研究重点。通过设计收发端的光学系统,可以从硬件上降低对准难度,提高系统的可靠性。
2017年,OUBEI等人测量了不同大小和密度的气泡对通信质量的影响,在发射端对激光进行扩束并在接收端采用透镜进行聚焦,实验表明当气泡直径大于光束直径时,容易造成深衰落或通信中断,而小气泡情况下则不容易出现深衰落,通过发射端和接收端的扩束和聚焦可以引入空间分集来降低气泡的影响[41]。2018年,JAMALI等人在实验室水槽中引入温盐梯度和气泡来制造不同强度的湍流,采用对数正态分布、Gamma分布和K分布等多种模型对接收光强的概率分布进行拟合,作者也通过实验证明了扩束器和聚焦透镜对抗湍流的有效性。此外,实验测得湍流信道的相关时间约为10–3s,意味着上千乃至上百万个连续符号对应着相同的衰减系数,当数据帧的传输时长低于信道相关时间时即可将信道视为时不变信道[42]。VALI等人通过在光束下方放置带有小孔的水管往水池中注入热水来产生湍流,通过控制注入热水的温度和流速以改变湍流强度,实验结果表明传输距离越长、温差越大且热水流速越高时,对应接收信号的闪烁指数越高,实验还证明了湍流会导致平均接收光功率的下降[43]。2019年,HAN等人通过设计自由曲面透镜并将其应用于LED阵列作为UOWC系统的光源,将出射光的发散角增大至 150°的同时将其均匀性提高到 90.08%,这一设计能够降低收发端的对准难度并提高通信链路的稳定性[44]。2021年,TONG等人使用3组LED阵列组成准全向发射端,通过增大光斑的分布范围,降低了收发端的对准难度,在通信速率为29.85 Mbps时实现了40 m范围的准全向通信,为水下移动通信提出了一种新的解决方案[45]。2022年,LI等人将蓝光泵浦的522 nm绿光钙钛矿量子点作为光源,出射光在各个方向上近似均匀分布,并将其与码分多址(CDMA)技术相结合,可以为20 m准全向范围内的4个用户分别提供7.5 Mbps的通信容量[46]。
在UOWC中采用多个发射端和接收端同时进行信号收发,结合空时编码技术,能够利用分集增益抑制气泡和湍流导致的光强起伏和光束漂移等问题,降低系统的对准难度,提高系统可靠性。
2005年,RAZAVI等人提出使用分集接收降低大气湍流对自由空间光通信系统的影响,且通过仿真证明自适应光学技术要优于孔径平均技术和线性合并技术[47]。2013年,刘加林等人将低密度奇偶校验(LDPC) 码与 MIMO技术相结合,并仿真分析了最大比合并(MRC)、等增益合并(EGC)和选择合并(SC)三种分集合并技术在弱湍流单输入多输出(SIMO)系统中的误码性能,仿真证明了MRC的性能最高,而SC的性能最低,且误码率随接收天线数量的增加而降低[48]。2014年,LIU等人使用蒙特卡洛(MC)方法对海水的吸收、散射和湍流进行仿真,比较了在SIMO系统中SC、EGC和MRC算法的性能,仿真结果表明在湍流存在的情况下,误码率等于10–6时具有5个探测器的SIMO系统相比于单输入单输出(SISO)系统最多能够带来15 dB的空间分集增益[49]。2016年,BOUCOUVALAS等人理论推导了在不同收发参数下基于等增益合并的分集接收 UOWC系统的性能,并证明了分集接收方案相比于单个探测器能够显著地提高系统性能[50]。2017年,SONG等人采用LED和10 MHz的PIN组成2×2 MIMO-OFDM系统,对比重复编码(RC)和空时分组码(STBC)2种空时编码方案,在2 m清水信道中实现了27 Mbps的净传输速率,且实验证明了该系统能够有效降低收发端的对准难度[51]。2018年,WANG等人提出使用具有大发散角的LED作为光源,并在接收端采用两个PIN探测器以获得接收分集增益,使用MRC算法在1.2 m的水下传输距离下达到了最高2.175 Gbps的通信速率[52]。2019年,CHEN等人搭建了 2×2 MIMO-UOWC系统,研究了SISO、多输入单输出(MISO)、SIMO 和 MIMO结构在不同气泡尺寸下的性能,利用 MIMO结构带来的空间分集增益,将丢包率从34.6%降低至小于1%,极大提高了链路的可靠性[53]。CHEN等人搭建了基于RC和STBC的2×2 MIMO结构,并使用大发散角的LD和大视场角的PMT,在50 m传输距离下实现了233 Mbps的通信速率,且接收端的最大水平偏移量达到了97.9 cm[54]。
上述UOWC系统引入了空间分集增益,用于对抗气泡和湍流的影响并降低对准难度,能够提高系统可靠性。大部分文献都采用具有大发散角的LED作为光源,以提高光斑的覆盖面积,但由于LED的低带宽特性,使得系统无法获得较高的通信速率,且大发散角也使得系统的传输距离相对较短。保持UOWC系统高可靠性的同时尽可能提高通信速率和传输距离,可使UOWC适用于更加广阔的应用场景。
综上所述,研究高性能的光电器件并设计相应的光学系统是实现高速率长距离和高可靠性UOWC系统的重要手段。采用数字信号处理技术,对抗通信中引入的码间干扰、低信噪比和非线性效应等问题,也能够有效延长传输距离,提高系统的通信速率和可靠性。此外,将数字信号处理技术与廉价的光电器件相结合,能够获得低成本且高性能的UOWC系统,在实际工程中具有重要的应用价值。针对不同应用场景,研制小型化的原理样机或产品,并在真实海域中开展实验,也是UOWC的重要研究方向。