李济远 李玉宏 胡少华 周俊林 陈高潮 张尚清
摘要:氦氣是重要的稀有战略资源,目前认为氦源岩主要与酸性岩(花岗岩)相关,在岩体不发育的晋中盆地发现了高体积分数氦气显示。为认识晋中盆地氦气富集模式,通过文献调研和综合研究,石炭系本溪组铝土岩系铀、钍含量高,生氦能力好,是优质氦源岩,铝土岩系之上的晚古生代煤系地层是良好的烃源岩,可为氦气富集提供载体气。铝土岩系及下伏奥陶系碳酸盐岩风化带裂隙发育,是天然气良好储集层,铝土岩系之上的煤系地层是封盖层。晋中盆地周缘断裂发育,形成多级断阶构造,向盆地内断块逐级下降,使盆内烃源岩生成的天然气沿断裂向上运移到断块的铝土岩系及下伏碳酸盐岩风化带裂隙中聚集,形成载体气藏,盆缘铝土岩储层生成的氦气及盆内氦源岩生成的氦气沿断裂向上运移,持续进入前述载体气藏,不断积累形成富氦天然气藏。本溪组铝土岩系是“山西式铁矿”和铝土矿的赋存层位,也是“山西式氦气”的重要氦源岩和储集层系。“山西式”铝土岩系氦源岩的发现及氦气成藏模式,拓展了氦气勘探新领域,在中国华北乃至全世界的铝土岩系发育区具有重要推广意义。
关键词:铝土岩系;“山西式”;晋中盆地;氦气藏
中图分类号:TE 121文献标志码:A
文章编号:1672-9315(2022)03-0529-08
DOI:10.13800/j.cnki.xakjdxxb.2022.0316开放科学(资源服务)标识码(OSID):
“Shanxi-type” helium accumulation model and its essentiality
LI Jiyuan LI Yuhong HU Shaohua ZHOU Junlin CHEN Gaochao ZHANG Shangqing
(1.College of Geoscience and Surveying Engineering,China University of Mining & Technology(Beijing),Beijing 100083,China;
2.Xi’an Geological Survey Center,China Geological Survey,Xi’an 710061,China;
3.Shanxi Provincial Third Institute of geological engineering investigation,Jinzhong 030620,China)Abstract:Helium is an important rare strategic resource.At present,it is believed that helium source rocks are mainly related to acid rocks(granite).However,high volume fraction helium was found in Jinzhong Basin where the rock mass was not developed.To understand the helium enrichment model in Jinzhong Basin,a literature survey and comprehensive research have been conducted to find out that the Carboniferous Benxi Formation bauxite rock has high uranium and thorium contents,which is strong in helium generation ability.It is a high-quality helium source rock above the bauxite rock.The coal-measure strata is a good source rock,which can provide carrier gas for helium enrichment.The bauxite series and its underlying Ordovician carbonate weathering zone have developed fissures,a good natural gas reservoir.The coal strata above the bauxite series are its capping layer.The marginal faults of Jinzhong Basin are developed,forming multi-level fault-step structures,which are descending step by step to the fault blocks in the basin so that the natural gas generated from the source rocks in the basin migrates upwards along the faults to the bauxite series and the underlying carbon of the fault blocks.The acid rock weathering zone accumulates in the fissures to form carrier gas reservoirs.The helium from the bauxite reservoirs at the edge of the basin and the helium generated from the helium source rocks in the basin continue to enter the aforementioned carrier gas reservoirs an accumulating process to form helium-rich natural gas reservoirs.The Benxi Formation bauxite series are the storage horizons of “Shanxi-style iron ore” and bauxite,and it is also an important helium source rock and reservoir system of “Shanxi helium mine”.The discovery of helium source rocks in the “Shanxi-style” bauxite series and the realization of helium gas accumulation models have expanded new areas of helium gas exploration,which has an important promotion significance to the bauxite series in North China,or even around the country and around the world.
Key words:bauxite;Shanxi helium mine;Jinzhong Basin;helium gas accumulation
0引言
氦气是国家安全和高新技术产业发展的重要稀有战略资源,在航天、国防和高端能源系统(四代氦冷却核反应堆)、半导体和光纤制造等工业领域、医学成像与深潜水等民生领域运用广泛且不可替代[1-2]。中国氦气供应严重依赖进口,资源安全形势严峻,渭河盆地地热井伴生壳源氦气显示十分普遍,含量之高世界罕见,同时也是中国氦气资源少有的研究程度较高地区[3-7],因此有望在渭河盆地及周缘取得突破。柴达木盆地北缘、塔里木盆地麦盖提斜坡等也发现富氦天然气藏[8-13],为中国氦气资源保障带来了希望。渭河、柴达木和塔里木盆地氦气资源与世界普遍发现的氦气资源一样,源岩主要与花岗岩类及其变质岩相关。
受渭河盆地氦气调查研究成果的启发,山西省第三地质工程勘察院在西安地质调查中心指导下,开展山西省氦气资源调查取得良好成果,晋中盆地的“晋热1号井”20件井口气体样品氦气含量高达8.50%~18.86%(体积分数,下同),平均为13.40%,氦气含量之高为世界少有。氦同位素是鉴别氦气来源的重要手段,晋中盆地R/Ra值在0.02左右,为典型的壳源氦。
1晋中盆地构造特征
晋中盆地属汾渭地堑,发育于晋中-灵石向斜之上,周缘次级高角度正断层发育,盆地西侧大范围出露晚古生代-三叠纪地层,东侧大范围出露三叠纪地层,并有小范围侏罗纪地层分布,在太谷县东可见新近纪不整合于三叠纪地层之上[14]。晋中盆地周缘分别以何庄断裂、山畛断裂、柴村断裂、清徐-交城断裂、三泉断裂、榆次断裂、洪山-范村断裂为界,内部以司马断裂、太谷-平遥-介休断裂划分为太原断阶、清徐坳陷、孝义断阶和阳邑-北贾断阶,盆地北西侧深、东南侧浅(图1)[15-16]。富氦天然气发现地位于阳邑-北贾断阶北部,榆次断裂和北田断裂交汇处。
2晋中盆地石炭系-二叠系烃源岩
晋中盆地属古生代华北克拉通、三叠纪大鄂尔多斯盆地的一部分,从区域构造演化特征来看[15,17-18],晋中盆地前新生代基底普遍发育晚古生代煤系地层,主要证据为:①盆地东西两侧大面积分布晚古生代-三叠纪地层[19],发育晚石炭世至中三叠世海相-海陆交互相-陆相沉积,并且地层沉积连续,上新统不整合于中生界之上;②盆地内部钻孔新生界之下钻遇三叠系,未穿;③晚古生代-三叠纪华北地区是一个统一的盆地,晋中盆地是新生代才开始形成的断陷盆地,叠合于前期盆地之上;④盆地周缘地层与盆地内钻井剖面对比(图2),前新生代盆地基底最高层位为三叠系延长组。
本溪组烃源岩主要为暗色泥岩、煤层和灰岩,厚度0.6~30.2 m。泥岩TOC含量0.33%~ 5.40%,煤层TOC含量44.4%,灰岩TOC含量0.44%;Ro为1.11%~1.84%;干酪根类型Ⅲ型,有机质热演化程度高。太原组烃源岩主要为暗色泥岩、煤层和灰岩,厚度16.54~83.8 m。碳质泥岩TOC含量8.96%~44.8%,泥岩TOC含量0.52%~7.80%,煤层TOC含量41.8%~57.3%,灰岩TOC含量0.51%~0.56%;Ro为1.02%~2.58%;干酪根类型以III型为主,有机质热演化程度高。山西组烃源岩类型主要为暗色泥岩、(含)碳质泥岩,厚度4.6~85.2 m。泥岩TOC含量0.59%~8.44%,煤层TOC含量54.3%~62.2%,(含)碳质泥岩TOC含量10.60%~25.70%;干酪根类型为III型,热演化程度高[20]。
晋中盆地石炭系-二叠系发育良好的煤系烃源岩,有机碳丰度高,干酪根类型为III型,有机质热演化程度高,具有良好生气能力。
3氦源岩
目前工业利用的氦气资源主要为铀钍元素的放射性衰变形成的壳源氦。放射性衰变生成过程
不同于烃类气,烃源岩在温度压力的演化作用下达到生油气门限后进入生油气高峰大量生成油气,从而能集中产气。烃源岩在热成熟的条件下能生成足够的烃类气体,不仅使岩石的孔隙和表面饱和,甚至其产生的压力能超过产气层的静水压力,使地层水中烃类气体饱和从而以游离态聚集成藏。在各类岩石中,烃源岩U,Th含量最高,是生氦效率最高的岩类(图3),但其生烃能力太强,根据计算,生烃潜量为2 mg HC/g的有机质页岩成熟后产生的甲烷气体是其10亿年产生氦气的3 000倍,烃源岩生成的氦气被大大稀释,无法富集[21],而形成富氦天然气需要有富U,Th岩而贫有机质的岩类作为氦源岩,以避免氦气被过度稀释。目前花岗岩等酸性岩是较为公认的氦源岩,与花岗岩类相关的变质基底也是氦的贡献者之一[1,22]。
晋中盆地磁场总体呈负异常(图4),反映盆地火成岩不发育,变质基底埋藏深,花岗岩类等传统氦源岩不足。然而,研究区赋存着如此高丰度富氦天然气,必然存在其他类型优质氦源岩。
前人研究表明华北地区本溪组(C2b)底部广泛发育黄褐色铁质结核透镜体及灰白色铝土质黏土岩,即铁铝岩段,其上为深灰色砂质泥岩、泥岩夹煤线,与下伏奥陶纪碳酸盐岩地层呈平行不整合接触。本溪组铝土岩系沉积厚度主要受古地貌控制,低洼处沉积较厚[23-24],区内本溪组“山西式”铁矿、铝土矿和硬质黏土岩发育,构成了分布广泛的铝土岩系。
本溪组铝土岩系在测井曲线上表现为高自然伽马,显示放射性元素含量高(图5)。晋中盆地孝义铝土矿区数据表明[25],本溪组铁铝岩段高自然伽马主要与U,Th元素相关。根据河南偃龙地区ZK4704钻孔[26]、陕西铜川野外露头及山西晋中盆地钻孔样品分析数据(表1),河南偃龍ZK4704钻孔样品U,Th含量分别为18.09×10和53.24×10,陕西铜川野外露头样品U,Th含量分别为14.6×10和34.2×10,晋中盆地钻孔样品U,Th含量分别为32.9×10和58.4×10。露头样品因风化U,Th有流失,本溪组铝土岩系U,Th含量取井下样品平均值25×10-6和56×10,明显好于花岗岩(表2),生氦速率仅次于烃源岩(图3)。而地壳中氦气的生成主要是来自于铀、钍元素的放射性衰变,衰变产量不仅与元素丰度有关,还与时间有关。由于本溪组时代较渭河盆地花岗岩中生界和鄂尔多斯盆地三叠系油页岩更老,生氦量更大。河南偃龙铝土岩累计生氦2.43 L/m,晋中盆地铝土岩累计生氦3.69 L/m,生氦能力均好于U,Th含量分别为5.3×10和19×10[1]的渭河盆地花岗岩及U,Th含量分别为35.5×10和13.6ppm×10[27]的鄂尔多斯盆地延长组长7油页岩(表3)。可见,铝土岩系是优质氦源岩,其分布较广,厚度数米—数十米,一般十余米[26,28],是该区重要的氦源岩,其地质特征及对区内氦气富集的作用,与鄂尔多斯盆地长7烃源岩对其中生界油气的作用类似。而铝土岩中的铝土矿层更是高度富集U和Th,孝义地区中铝土矿样品的铀和钍丰度分别为58.28×10和66.76×10[25],生氦强度更高。良好的铝土矿成矿条件也有助于氦气保存,有利于溶液在酸性条件下对黏土矿物的改造,从而促进铝土矿的富集;铝土矿中的氦源元素富集将提升生氦强度,良好的封闭条件使生成的氦能够留存在地层中。
4成藏模式
气体在水中的溶解度受温度、压力、气体体积分数和气体种类的影响。在这4个参数中,压力和气体体积分数决定气体的分压,对气体的溶解度具有决定性地影响。孔隙水中He浓度高,与水相互作用的气体体积小,与水相互作用的孔隙压力小,有利于气体中He浓度升高[21]。研究表明,由于壳源氦气的“弱源气”性质,氦气难以独立成藏,有效氦源岩、高效运移通道(断裂、不整合)、载体气藏是氦气成藏的基本条件。弱源氦气主要以地下水中溶解态,通过高效运移通道,疏导至载体气藏,在气藏气水界面因分压降低,脱溶充注,一旦氦被吸入气体中,它就会同其他气体一起向圈闭中迁移,积累形成富氦天然气藏[1,29-30]。
鄂尔多斯盆地天然气勘探中,铝土岩系一直被当做风化壳气藏的区域盖层[31-32]。前人曾认为大牛地气田本溪组铝土质泥岩微裂缝和溶孔发育,具有较好的孔隙网络,可成为潜在储层[33]。2020年鄂尔多斯盆地南缘宁古3井铝岩系天然气勘探的突破,铝土岩系成为了鄂尔多斯盆地天然气勘探新领域[34]。
晋中地区在古生代与现鄂尔多斯盆地所在地区同属华北克拉通,二者地质背景及地层发育于特征相近。区内石炭系本溪组铝土岩系之上的煤系地层是良好的烃源岩,有机碳丰度高,为III型干酪根类型,有机质热演化程度高,具有良好生气能力,可为氦气富集提供载体气。铝土岩系及其下伏碳酸盐岩风化带裂隙发育,是天然气良好储集层,铝土岩系及其之上的煤系地层是其封盖层。铝土岩系的强非均质性使其在孔缝发育时成为储集层,而缺乏孔缝时又可以做盖层。
新生代以来,晋中盆地周缘断裂发育,形成多级断阶构造,向盆地内断块逐级下降,使盆内烃源岩生成的天然气沿断裂向上运移到断块的铝土岩系及其下伏碳酸盐岩风化带裂隙中聚集,形成载体气藏;盆缘铝土岩系储层生成的氦气可直接进入气藏,盆内铝土岩系氦源岩生成的氦气与地下流体一起沿断裂向上运移,在气水界面持续脱溶进入载体气藏,不断积累形成富氦天然气藏;同时基底等其他地层中生成的氦气亦可通过断裂与地下流体一起疏导至气藏附近,脱气进入气藏成为铝土岩系氦气的补充气源(图6),形成更高丰度的富氦天然气。位于晋中盆地阳邑-北贾断阶北部、榆次断裂和北田断裂交汇处的“晋氦1井”等富氦天然气的发现,初步验证了上述成藏模式。与“山西式”铁矿、铝土矿密切相关的上述成藏模式可成为“山西式”氦气成藏模式,以有别于与花岗岩类相关的氦气成藏模式。石炭纪-二叠纪煤系地层作为烃类载体气气源、本溪组铝土岩系是优质氦源岩和储集层系、断阶构造形成上下地层“错位”是“山西式”氦气成藏的3个要素。
古喀斯特型铝土矿是中国铝土矿的主要类型,产于碳酸盐岩侵蚀面上的一水硬铝石型铝土矿约占全国总储量的75%,广泛分布于山西、河南等华北大地区[35]。铝土岩系上覆煤系地层组合在鄂尔多斯盆地及周缘油气区广泛发育[36],良好的煤成气气藏[37]与铝土岩氦气资源有效组合,为形成富氦天然气藏创造了得天独厚的条件。可见,以晋中盆地为代表的“山西式”氦气成藏模式值得深入研究。
5结论
1)晋中盆地石炭-二叠纪煤系地层广泛发育,可为烃类载体气提供气源;本溪组铝土岩系是是“山西式氦气”的重要优质氦源岩和储集层系,断阶构造可使石炭-二叠纪煤系地层构造位置低于本溪组铝土岩系,有利于烃类气沿断裂进入构造高部位本溪组铝土岩中形成载体气藏。
2)“山西式”铝土岩系优质氦源岩的发现及氦气成藏模式的建立,创新了氦源岩主要为与酸性岩(花岗岩)相关的地质体为主的认识,增加了品质更好、分布广泛的新型氦源岩,拓展了氦气勘探新领域。
3)古喀斯特风化壳沉积型铝土岩系在中国分布广泛,其中铝土岩系及其上覆煤系地层组合,与断阶构造配合形成的“山西式”富氦天然气成藏模式,在华北地区与世界其他区域具有重要借鉴意义。
参考文献(References):
[1]李玉宏,周俊林,张文,等.渭河盆地氦气成藏条件及资源前景[M].北京:地质出版社,2018.
[2]秦胜飞,李济远.氦气到底有什么用?[J].石油知识,2021(4):44-45.QIN Shengfei,LI Jiyuan.What’s the use of helium?[J].Petroleum Knowledge,2021(4):44-45.
[3]ZHANG W,LI Y,ZHAO F,et al.Using noble gases to trace groundwater evolution and assess helium accumulation in Weihe Basin,central China[J].Geochimica Et Cosmochimica Acta,2019,251:229-246.
[4]張文,李玉宏,王利,等.渭河盆地氦气成藏条件分析及资源量预测[J].天然气地球科学,2018,29(2):236-244.ZHANG Wen,LI Yuhong,WANG Li,et al.The analysis of helium accumulation conditions and prediction of helium resource in Weihe Basin[J].Natural Gas Geoscienc,2018,29(2):236-244.
[5]李玉宏,王行运,韩伟.渭河盆地氦气资源远景调查进展与成果[J].中国地质调查,2015,2(6):1-6.LI Yuhong,WANG Xingyun,HAN Wei.Progress and Achievements of Helium Gas Resources Survey in Weihe Basin[J].Geological Survey of China,2015,2(6):1-6.
[6]李玉宏,盧进才,李金超,等.渭河盆地天然气成因特征及其意义[J].西安石油大学学报(自然科学版),2011,26(5):11-16.LI Yuhong,LU Jincai,LI Jinchao,et al.Genetic characteristics of the natural gas in Weihe Basin and its signficance[J].Journal of Xi’an Shiyou University(Natural Science Edition),2011,26(5):11-16.
[7]李玉宏,王行运,韩伟.陕西渭河盆地氦气资源赋存状态及其意义[J].地质通报,2016,35(Z1):372-378.LI Yuhong,WANG Xingyun,HAN Wei.et al.Mode of occurrence of helium in Weihe Basin,Shaanxi Province and its significance[J].Geological Bulletin of China,2016,35(Z1):372-378.
[8]张云鹏,李玉宏,卢进才,等.柴达木盆地北缘富氦天然气的发现——兼议成藏地质条件[J].地质通报,2016,35(Z1):364-371.ZHANG Yunpeng,LI Yuhong,LU Jincai,et al.The discovery and origin of helium:rich gas on the northern margin of the Qaidam Basin[J].Geological Bulletin of China,2016,35(Z1):364-371.
[9]ZHANG W,LI Y,ZHAO F,et al.Quantifying the helium and hydrocarbon accumulation processes using noble gases in the North Qaidam Basin,China[J].Chemical Geology,2019,525:368-379.
[10]韩伟,刘文进,李玉宏,等.柴达木盆地北缘稀有气体同位素特征及氦气富集主控因素[J].天然气地球科学,2020,31(3):385-392.HAN Wei,LIU Wenjin,LI Yuhong,et al.Characteristics of rare gas isotopes and main controlling factors of radon enrichment in the northern margin of Qaidam Basin[J].Natural Gas Geoscience,2020,31(3):385-392.
[11]杨振宁,李永红,刘文进,等.柴达木盆地北缘全吉山地区氦气形成地质条件及资源远景分析[J].中国煤炭地质,2018,30(6):64-70.YANG Zhenning,LI Yonghong,LIU Wenjin,et al.Geological conditions of helium formation and resource prospect analysis in Quanjishan area,northern Qaidam Basin[J].Coal Geology of China,2018,30(6):64-70.
[12]张晓宝,周飞,曹占元,等.柴达木盆地东坪氦工业气田发现及氦气来源和勘探前景[J].天然气地球科学,2020,31(11):1585-1592.ZHANG Xiaobao,ZHOU Fei,CAO Zhanyuan,et al.Finding of the Dongping economic Helium gas field in the Qaidam Basin,and Helium source and exploration prospect[J].Natural Gas Geoscience,2020,31(11):1585-1592.
[13]陶小晚,李建忠,赵力彬,等.我国氦气资源现状及首个特大型富氦储量的发现:和田河气田[J].地球科学,2019,44(3):1024-1041.TAO Xiaowan,LI Jianzhong,ZHAO Libin,et al.Helium resources and discovery of first super giant helium reserve in China:Hetianhe Gas Field[J].Earth Science,2019,44(3):1024-1041.
[14]山西省质矿产局.山西省区域地质志[M].北京:地质出版社,1989.
[15]杨浩,常泽光,陈鹏.晋中盆地海陆交互相地层页岩气成藏地质条件及勘探前景[J].煤炭技术,2016,35(10):126-128.YANG Hao,CHANG Zeguang,CHEN Peng.Shale gas reservoir-forming conditions and exploration prospect in marine-terrigenous formation of Jinzhong Basin[J].Coal Technology,2016,35(10):126-128.
[16]张士亚.晋中断陷石油普查评价报告[R].太原:山西省地质局石油普查勘探队,1979.ZHANG Shiya.The evaluation report of the general survey of petroleum in Shanxi intervals[R].Taiyuan:Shanxi Provincial Geological Bureau Petroleum Survey Exploration Team,1979.
[17]杨华,田景春,王峰.鄂尔多斯盆地三叠纪延长组沉积期湖盆边界与底形及事件沉积研究[M].北京:地质出版社,2009.
[18]彭兆蒙,吴智平.华北地区三叠纪地层发育特征及原始沉积格局分析[J].高校地质学报,2006(3):343-352.PENG Zhaomeng,WU Zhiping.Development features of triassic strata and analysis of original sedimentary pattern in north China[J].Geological Journal of China Universitie,2006(3):343-352.
[19]DANABALAN D,GLUYAS J G,MACPHERSON C G,et al.The Principles of Helium Exploration[J].Petroleum Geoscience,2022,28(2):1-13.
[20]李玉宏,陈高潮,韩伟,等.鄂尔多斯及周缘盆地群油气基础地质调查成果报告[R].中国地质调查局西安地质调查中心,2019.LI Yuhong,CHEN Gaochao,HAN Wei,et al.Report on the results of basic geological survey of petroleum and gas in Ordos and surrounding basins[R].Xi’an Geological Survey Center,China Geological Survey,2019.
[21]DANABALAN D.Helium:exploration methodology for a strategic resource[D].Durham:Durham University,2017.
[22]ZHANG W,LI Y,ZHAO F,et al.Granite is an effective helium source rock:insights from the helium generation and release characteristics in granites from the north Qinling orogen,China[J].Acta Geologica Sinica-English Edition,2020,94(1):114-125.
[23]王銀川,李昭坤,翟自峰,等.山西本溪组铝土矿成矿条件及成矿规律探讨[J].西北地质,2011,44(4):82-88.WANG Yinchuan,LI Zhaokun,ZHAI Zifeng,et al.Benxi formation bauxite mineralizatin condition and rule in Shanxi Province[J].Northwestern Geology,2011,44(4):82-88.
[24]王庆飞,邓军,刘学飞,等.铝土矿地质与成因研究进展[J].地质与勘探,2012,48(3):430-448.WANG Qingfei,DENG Jun,LIU Xuefei,et al.Review on research of bauxite geology and genesis in China[J].Geology and Exploration,2012,48(3):430-448.
[25]ZHANG S Q,LIU X F,ZHAO F H,et al.Geological and geochemical characteristics of karst bauxite-bearing sequences in Xiabu area,central Shanxi Province,north China[J].Journal of Geochemical Exploration,2021,230:106849.
[26] 曹高社,杜欣,刘国印,等.华北陆块本溪组含铝岩系形成机理[M].北京:科学出版社,2020.
[27]李玉宏,张文,武富礼,等.陕西省铜川-黄陵地区延长组长7油页岩特征及资源潜力[J].西安科技大学学报,2016,36(5):647-656.LI Yuhong,ZHANG Wen,WU Fuli,et al.Characteristics and resource potential of oil shale in Chang 7 of Yanchang Formation in Tongchuan-Huangling area,Shaanxi provinces[J].Journal of Xi’an University of Science and Technology,2016,36(5):647-656.
[28]姬果,李宁,杨骁,等.河南省铝土矿床地质特征及成矿规律[J].金属矿山,2021(5):140-148.JI Guo,LI Ning,YANG Xiao,et al.Geological characteristics and metallogenic regularity of bauxite deposits in Henan Province[J].Metal Mine,2021(5):140-148.
[29]李玉宏,张文,王利,等.亨利定律与壳源氦气弱源成藏——以渭河盆地为例[J].天然气地球科学,2017,28(4):495-501.LI Yuhong,ZHANG Wen,WANG Li,et al.Henry’s law and accumulation of crust-derived helium:a case form Weihe basin,China[J].Natural Gas Geoscience,2017,28(4):495-501.
[30]李玉宏,张文,王利,等.壳源氦气成藏问题及成藏模式[J].西安科技大学学报,2017,37(4):565-572.LI Yuhong,ZHANG Wen,WANG Li,et al.Several issues in the accumulation of crust-derived helium and the accumulation model[J].Journal of Xi’an University of Science and Technology,2017,37(4):565-572.
[31]程付启,金强,刘文汇,等.鄂尔多斯盆地中部气田奥陶系风化壳混源气成藏分析[J].石油学报,2007,28(1):38-42.CHENG Fuqi,JIN Qiang,LIU Wenhui,et al.Formation of source-mixed gas reservoir in Ordovician weathering crust in the central gas-field of Ordos Basin[J].Acta Petrolei Sinica,2007,28(1):38-42.
[32]戴金星,夏新宇.长庆气田奥陶系风化壳气藏、气源研究[J].地学前缘,1999(S6):195-203.DAI Jinxing,XIA Xinyu.Research on source rock correlation of the ordovician reservoir,Changqing gas field[J].Earth Science Frontiers,1999(S6):195-203.
[33]刘文辉,潘和平,李健伟,等.鄂尔多斯盆地大牛地气田铝土质泥岩储层的测井评价[J].天然气工业,2015,35(5):24-30.LIU Wenhui,PAN Heping,LI Jianwei,et al.Well logging evaluation on bauxitic mudstone reservoirs in the Daniudi gas field,Ordos Basin[J].Natural Gas Industry,2015,35(5):24-30.
[34]孟卫工,李晓光,吴炳伟,等.鄂尔多斯盆地宁古3井太原组含铝岩系天然气成藏特征及地质意义[J].中国石油勘探,2021,26(3):79-87.MENG Weigong,LI Xiaoguang,WU Bingwei,et al.Research on gas accumulation characteristics of aluminiferous rock series of Taiyuan Formation in Well Ninggu 3 and its geological significance,Ordos Basin[J].China Petroleum Exploration,2021,26(3):79-87.
[35]高兰,王登红,熊晓云,等.中国铝土矿资源特征及潜力分析[J].中国地质,2015,42(4):853-863.GAO Lan,WANG Denghong,XIONG Xiaoyun,et al.Miner ogenetic characteristics and resource potential analysis of bauxite in China[J].Geology in China,2015,42(4):853-863.
[36]袁珍,武富禮,封蓉.鄂尔多斯延长气田铝土岩分布规律及其地质意义[J].西安科技大学学报,2016,36(6):843-848.YUAN Zhen,WU Fuli,FENG Rong.The distribution rule and its geological significance of Bauxite in Yanchang gas field of Ordos Basin[J].Journal of Xi’an University of Science and Technology,2016,36(6):843-848.
[37]解东宁,陈玉良,张文卿,等.鄂尔多斯盆地东部临县——兴县地区山西组煤成气勘探潜力分析[J].西安科技大学学报,2013,33(2):149-154.XIE Dongning,CHEN Yuliang,ZHANG Wenqing,et al.Coal-derived gas exploration potential analysis of Shanxi Formation in Lin-Xing County of eastern Ordos Basin[J].Journal of Xi’an University of Science and Technology,2013,33(2):149-154.