茶水表面有层膜,是茶脏了还是茶杯脏了?

2022-04-20 15:33王怡博
电脑报 2022年14期
关键词:碳酸钙黏性流体

王怡博

化学家“铺”好的路

茶杯里,我们有时能看到泛着光泽的茶膜,有时则看不到。而且,如果等一段时间再去喝泡好的茶,会发现茶膜像冰层一样裂开。但如果用肉眼看不到,这层膜就真的不存在吗?膜的碎裂又与什么因素有关?是否可以让膜不发生破裂?

在20世纪90年代,有两位对茶情有独钟的化学家:迈克尔·斯皮罗(Michael Spiro)和德格拉提乌斯·贾甘伊(Deogratius Jaganyi)。他们一共写了14篇有关茶的论文,其中有7篇在解释关于茶膜的化学现象,包括化学组成和影响茶膜形成的多种因素,更重要的是,他们还为“茶杯里有时能看到茶膜,有时则看不到”提供了化学动力学解释。

对科学家来说,实验室是泡茶的绝佳场所——几百毫升的玻璃烧杯是极好的茶杯,而恒温的水浴锅能让他们相对精准地控制“茶”温。斯皮罗和贾甘伊把红茶茶包放进烧杯里,用80℃的水冲泡5分钟,随后将茶包取出,让茶水静置一段时间。

此前,有科学家认为茶膜是在用沸水冲泡茶叶时,茶叶上的蜡质层“浮”到了水的表面。但当斯皮罗和贾甘伊用实验室里的蒸馏水(无机物、有机物等杂质极少)泡茶时,并没有出现茶膜。这说明,只依靠茶叶和较高的水温并不能产生茶膜,水中的某些成分必然起到了关键的作用。他们通过进一步实验证实,钙离子和碳酸氢根离子是诱发茶膜形成的關键,但单单只靠钙离子或碳酸氢根离子都不能让茶膜“现身”,必须是二者的结合。

此外,酸碱性和氧气浓度也会影响茶膜的形成。例如,碱性越大,即水的硬度越高,越容易形成茶膜。而且,如果把空气换成氮气,则很难看到茶膜,因此茶膜的形成必然涉及氧气及氧化反应,这也是茶垢和水垢的区别之一。

与此同时,通过扫描电子显微镜、质谱分析、微量分析等多种测试手段,斯皮罗和贾甘伊进一步分析了茶膜的成分:茶膜其实是由有机物(主要含碳、氢、氧)和无机物(包括碳酸盐和氢氧化物)组成的。其中,几乎所有的钙离子和钠离子都来自水,钾离子、锰离子和铝离子则几乎全部来自茶叶。他们还特别说明,这层膜中的碳酸盐和氢氧化物是以难溶化合物的形式独立存在的,而有机物则为这些难溶的无机物提供了物理支撑——从扫描电子显微镜(SEM)上看,碳酸钙颗粒就“待”在有机物的表面上。

斯皮罗和贾甘伊还试图写出茶膜的分子式。他们推测在静置1小时后,一个“茶膜分子”会由约45个碳原子、50个氢原子、40个氧原子和2.7个二价金属离子构成,摩尔质量甚至能达到1400克左右。

要实现一个化学过程需要跨过多大的能垒,即需要多少能量才能让反应过程顺利地进行下去,是化学家极为关心的问题。通过精确调控静置时的茶温,并根据阿伦尼乌斯方程,斯皮罗和贾甘伊计算出了形成茶膜的活化能:34 kJ/mol。这是一个相对较高的能垒,大于扩散所需的活化能(15.8 kJ/mol,根据斯托克斯-爱因斯坦关系计算得到)。扩散包括离子在溶液中的扩散和气体从空气扩散到溶液中。只有在反应物经扩散后“碰面”并发生碰撞,即发生化学反应,才有可能形成茶膜。

但在用茶杯泡茶时,有时水温很快就降了下来,因此茶膜还没来得及形成,大量热量就散失了。相反,如果用保温较好的陶瓷茶壶泡茶,茶水散热较慢,因此通常能看到茶膜,并会在茶壶内留下更多的茶垢,而这些富含矿物质(如钙离子、镁离子)的茶垢也能诱发下一次茶膜的形成。这一点与贾科明(瑞士苏黎世联邦理工学院卫生科学与技术系的博士生,参与“茶的界面”的科学援救问题)的想法不谋而合。贾科明打趣道,要想在茶杯里能一直看到茶膜,就最好别洗杯子。

米歇尔·弗兰茨尔的实验

通过流变学“看”茶膜

基于上面两位化学家的研究,贾科明想从流变学的角度观察这层膜,并分析这层膜的力学性质,而非化学性质。

早在1678年,罗伯特·胡克(Robert Hooke)就提出了胡克定律——对于固体而言,在一定的压力下,材料中的应力与应变(变形的程度)呈线性关系,这类材料被称为胡克弹性固体。在胡克发表论文9年后,艾萨克·牛顿(Isssac Newton)解决了剪切流体的流动问题,并提出了牛顿黏性定律(也叫作牛顿内摩擦定律)。流体指的是液体或气体,当流体在外力的作用下流动时,内部会产生抵抗外力的应力。牛顿指出流体的剪切应力与其流动速率之间呈线性关系,而符合这种规律的流体就被称作牛顿流体,例如水和酒精。

但事实上,并不是所有材料的运动都能用胡克定律或牛顿黏性定律来解释。有一类材料,在一定条件下表现出胡克固体的特征,如弹性形变(短暂的、能恢复原状的形变),而在其他条件下,则表现得像流体一样,即发生黏性流动(持续的、不能恢复原状的流动)。流变学研究的就是这类怪异的材料。按照美国化学家尤金·宾厄姆(Eugene Bingham)的说法,流变学是一个研究材料变形和流动的新的学科分支。

对于贾科明而言,她既想知道这层膜的弹性,也想知道它的黏性。再加上,这层膜位于水和空气之间,因此她选用的是一种双锥界面流变仪。

值得一提的是,要描述茶膜的力学性质,贾科明得用到“模量”指标。与胡克和牛顿得出的定律类似,模量也是在衡量应力与应变之间的关系。此外,对于茶膜这类复杂材料,对应的模量分别是弹性模量(G′)和黏性模量(G″),也可以叫作储能模量和损耗模量。

为了确定钙离子的作用,贾科明准备了6种不同浓度的碳酸钙溶液(0、10、25、50、100和200 mg/L),里面几乎不含其他金属离子,并用这些溶液代替水来泡茶。令贾科明意外的是,她并没有看到茶膜,但肉眼不可见的膜却被流变仪“看”到了。DFF5C233-4EFE-4C5D-8232-9139762F942A

贾科明发现,当固定剪切应力振幅(0.3%),做动态时间扫描时,对于碳酸钙浓度为50、100和200 mg/L的溶液来说,茶膜的弹性模量大于黏性模量(G′> G″),即呈固体状;而当碳酸钙浓度低于50 mg/L时,茶膜则呈流体状(G″> G′)。也就是说,碳酸钙的浓度越低,越能让茶膜流动起来。另外,与斯皮罗和贾甘伊得到的结果相似的是,当用超纯水(几乎不存在金属离子)泡茶时,不仅看不到茶膜,流变仪也检测不到。

前文中提到,我们往往会看到碎裂的茶膜,因此贾科明就想看看究竟在多大的应力振幅下能让这层膜裂开。如果用“模量”指示膜何时会碎裂(膜的强度),那就是当损耗模量大于储能模量时。在这里,相比于弹性和黏性,用储能和损耗这组词可以让我们更直观地感受到“为什么膜会破裂”。

当碳酸钙浓度较高(100和200 mg/L)时,较低的剪切应力振幅(0.5%)就能让茶膜碎裂,即G″> G′。然而,当碳酸钙浓度降低到50 mg/L时,则需要更高的应力振幅(0.8%)才能让茶膜裂开,因此以储能为主(G′> G″)的茶膜更有韧性而不易碎裂。但对于10和25 mg/L而言,无论应力怎么变化,损耗模量一直大于弹性模量,此时的茶膜就像流体一样,难以成形。

在贾科明眼里,茶膜是一种有光泽且美丽的事物。因此,为了能看到这层茶膜,她在论文最后建议道:“不要洗茶杯。”

通過流变学“看”茶膜

柠檬茶怎么样?

市面上最常见的一种茶当数柠檬茶。这不仅是因为柠檬的风味,其背后还有一定的科学原理。斯皮罗和贾甘伊当时就已经发现柠檬酸能抑制茶膜的形成和生长。这是因为柠檬酸能与钙离子等金属离子发生络合反应,从而降低游离的金属离子的浓度,而钙离子等是形成茶膜的关键。贾科明则发现,额外加入柠檬酸后,尽管看不到茶膜,但流变仪却“表示”茶膜依然存在,不过此时茶膜的模量被降低,即柠檬酸能软化茶膜,让膜更易拉伸,同时还能增加其机械强度。

贾科明表示,这类强度更高的膜在瓶装饮品中扮演着重要的角色。

事实上,我们在瓶装的茶类饮品中,不太可能用肉眼看到上面漂浮的一层膜,这大多是因为里面含有柠檬酸或其他络合物,这能起到抑制茶膜形成的作用。而且,当茶膜不可避免会出现时,例如在奶茶类饮品中,少许柠檬酸也能通过增加茶膜的机械强度来稳定茶膜。

弗兰茨尔是美国布林莫尔学院的化学家,她在一篇题为《化学家的一杯茶》(A chemist's cup of tea)的文章中写道,凉茶表面会漂浮一层膜,这让她难以下口——只好把茶重新加热,或者在泡茶时事先挤一点柠檬汁。弗兰茨尔写道,每当她把柠檬汁挤到红茶里,都会让她再次回到大学基础化学的课堂上,并想起令她心头一颤的期中考试题。当时,她的化学教授雪莉·罗兰(Sherry Rowland)问他们:“柠檬为什么会让茶的颜色变浅?请写出相应的化学方程式。”DFF5C233-4EFE-4C5D-8232-9139762F942A

猜你喜欢
碳酸钙黏性流体
山雨欲来风满楼之流体压强与流速
喻璇流体画
猿与咖啡
蜘蛛为什么不会粘在自己织的网上
简洁水热法制备高结晶度羟基磷灰石(HA)粉末
透析日碳酸钙联合非透析日碳酸镧治疗维持性血液透析非低钙高血磷患者疗效观察
醋酸钙在尿毒症透析23例中的应用
煮面不溢锅
输液能降低血液黏性吗?
黏性食物助您养生