考虑5G基站低碳赋能的主动配电网优化运行

2022-03-29 07:29:36穆宏伟董厚琦
上海交通大学学报 2022年3期
关键词:储能基站配电网

2020年9月22日,国家主席习近平在第七十五届联合国大会上代表我国政府提出了“碳达峰、碳中和”目标.电力行业作为碳排放大户,如何尽可能提高可再生能源(Renewable Energy Source,RES)在终端能源消费中的占比和利用效率,构建以新能源为主体的新型电力系统已成为“双碳”目标下未来我国能源体系建设面临的重要课题.

在配用电侧,近年来主动配电网(Active Distribution Network,ADN)技术的提出为大规模分布式RES并网创造了良好条件.但受当前配电网结构及RES间歇性的固有限制,要在ADN框架下实现对RES充分利用和碳减排目标,必须挖掘大量灵活性资源参与电力系统运行调度,以平抑RES发电大量接入对系统功率平衡造成的影响.

近年来,随着第5代移动通信技术(简称5G通信)在我国的快速普及和推广,5G基站已逐渐发展成为配电网中的一类重要新兴负荷.截至2020年9月,我国已累计建成5G基站69万座,终端连接数超过1.8亿个,未来5G基站的商业化推广和大规模应用成为大势所趋.在运行过程中,通过科学手段对5G基站中的供电和用电设备进行调度管理,可以充分发挥5G基站蕴含的互动响应潜力,为电网提供可观的灵活性支撑,最终达到在降低基站自身用电成本的同时,提高配电网对RES消纳和碳减排的目的.

目前,国内外针对含RES的ADN优化运行问题已取得大量的研究成果.例如,文献[6]考虑风光荷的不确定性导致的运行越限风险,兼顾调度经济性与安全性,提出了一种考虑越限风险的主动配电网日前优化调度运行方法;文献[7]考虑电动汽车的充电需求,建立了含规模化电动汽车接入的ADN优化调度模型;文献[8]研究并提出了一种兼顾不同市场参与主体利益的ADN优化调度方法;文献[9]综合考虑分布式电源(Distributed Generation, DG)有功、无功出力控制、储能设备充放电以及可中断负荷,提出了一种面向促进RES跨区域消纳的ADN多目标运行优化方法.但是,在上述研究中,均未涉及5G基站及其灵活性潜力的影响.

在ADN运行中有效发挥5G基站的低碳赋能潜力,必须深入考虑其信息域属性(如通信服务质量)对5G基站运行的影响,建立面向能量-信息多域耦合下5G基站运行可调节特性的精细化描述模型.除此之外,为确保所得运行方案的有效性,现有研究大多采用随机优化或鲁棒优化方法以考虑ADN中的不确定性(例如RES出力或负荷需求的波动性),如文献[10]以智能软开关、有载分接开关、投切电容器组、储能系统和需求响应为调控手段,提出了一种考虑不确定性的ADN风险规避型随机优化调度方法;文献[11]考虑可再生能源出力的不确定性,建立了ADN分布式鲁棒优化调度模型.而实际应用中,随机优化必须借助大量可靠的历史数据(数据量足够满足统计学中假设检验的要求)才能提炼出关于不确定因素的准确描述,而鲁棒优化一般只关注对系统目标实现最为不利的不确定场景,所得运行策略往往过于保守.因此,上述方法并不能很好地满足以促进RES利用为主要目标的ADN运行决策的需要.

企业文化仅仅追求企业形象设计等外在浅表性特征,职工的个人目标与企业的经营理念、战略目标未能很好的结合在一起,企业文化难以为公司发展战略提供强有力的智力保障和精神支撑,导致我国企业长不大,百年老店较少,走不出周期律的魔咒。

针对上述问题,本文提出一种利用5G基站运行灵活性提升ADN低碳效益的多目标区间优化调度方法.该方法通过综合考虑5G基站的能耗管理及内部储能电池的灵活调度能力,将其灵活性纳入ADN运行调度,并利用区间方法计及RES出力和通信负载不确定性对运行策略的影响,以达到对系统经济与低碳效益的协同优化.相比传统随机或鲁棒优化,区间优化方法只利用变量的上下界建模,无需获得各不确定参数的先验概率分布.此外,区间优化能够有效兼顾决策的最优性与抗风险能力,因此具有更好的工程实用价值.目前,有关区间优化方法及其在工程应用中衍生问题已引起国内外学界的广泛关注.例如,文献[12]基于针对区间参数优化的偏好多面体理论,提出了一种在优化过程中与决策者交互来获得最优解的高效进化算法;文献[13]为解决进化算法需要大量的目标函数评估才能找到有效Pareto前沿的弊端,提出了一种模因算法来解决多目标区间优化问题.上述研究成果表明,区间优化方法在处理含不完全信息的不确定性优化问题中具有独特优势,且在工程推广应用方面具有广阔空间.根据所建模型特点,借助区间序关系和可能度方法将其转化为确定性多目标问题,然后采用NSGA-II算法进行求解.算例仿真结果验证了本文所提方法的有效性.

1 5G基站与配电网协同运行的低碳效益

1.1 5G基站基本构成及站-网互动潜力

图1所示为一个典型5G基站的设备构成,主要由通信装置和供电装置两方面组成.其中,前者主要包括有源天线单元(Active Antenna Unit, AAU)、基带处理单元(Base Band Unit, BBU)和信号传输设备(如光纤),而后者主要包括配电网接入电源和储能电池.

Complexbond JY-5713A环氧树脂、液态芳香胺固化剂,天津福赛科技发展有限公司;带羧基的多壁碳纳米管MWCNTs-COOH(TNMC3,纯度大于98%,外径10 ~ 20 nm),中科时代纳米;丙酮(工业级),扬州市成宇化工厂。

相比4G基站,5G基站无论在功耗方面或是基站数量方面均大幅增加.此外,为确保通信服务的可靠性,5G基站一般还会配置一定容量的储能电池, 以在电网供电中断时作为应急工作电源,上述因素为5G基站参与电网互动提供了广阔的空间.具体来讲, 一方面, 5G基站运营商可通过多种运行控制手段(如安排收发器启停、功率调控等)来实时调整自身功耗,以参与电力需求侧响应;另一方面,5G基站还可利用内部储能电池进行充放电,在保证自身供电和通信服务质量的前提下,参与电网优化运行,提高系统对RES的消纳能力.

1.2 基于系统动力学的5G基站低碳赋能分析

为明确5G基站灵活性对ADN碳减排的作用机制,采用系统动力学(System Dynamics, SD)方法对含5G基站ADN低碳效益的关键影响因素及其相互关系进行分析,以此构建考虑5G基站低碳赋能的ADN多目标优化运行模型.

SD理论认为系统的动态结构及反馈方式决定着其作用模式及特性,系统在内外动力和制约因素的作用下按一定的规律发展演化,由SD方法构建的模型能够有效反映系统各因素之间动态反馈的影响关系.

含5G基站ADN的低碳效益主要体现在5G基站节能、促进电网网损下降、提高RES消纳等,这些方面相互作用、互相影响,故上述作用的形成是一个典型动态反馈系统,具有显著的SD特征.通过将涉及主体成本量化,用函数表示因果关系,建立SD模型,设计的环路图如图2所示,其中,“+”为变量增加(减少)导致变量增加(减少);“-”为变量增加(减少)导致变量减少(增加).

一水平中央泵房排水系统核定能力为16.41万t/a,二水平中央泵房排水系统核定能力为342.97万t/a,三水平中央泵房排水系统核定能力为173.01万t/a,矿井排水能力核定为532万 t/a。

由图2可见,含5G基站ADN的预期碳排放量主要受系统中RES发电量、5G基站能耗、5G基站储能电池充电/放电等内生因素的影响.另外,还与政策、系统运行策略等外在因素紧密相关.上述各因素共同作用,使得5G基站互动响应对ADN的碳减排作用可归结为以下3个方面:

(1) 提升自身能效,降低系统负荷需求.

(2) 改善电网潮流分布,提高电能传输效率.

大规模RES发电并网加剧了配电网中功率和电压的波动.这一方面将影响配电网的网损水平.另一方面,为确保满足电网安全性约束,系统运行者有时不得不采取弃风/弃光,从而降低了RES资源利用率.而通过对5G基站进行电源管理和储能电池灵活充放电,可以显著改变配电网中的潮流/电压分布,不仅能够降低网损、提高电能传输效率,还可以有效缓解线路阻塞,提升配电网对RES发电的并网消纳能力.

(3) 提高电能供需匹配性,促进可再生能源利用.

对于部分RES发电(如风电),其出力在时序性上具有明显的反负荷调节特性.在ADN下,这种电能供需的时序不匹配性将严重阻碍系统对可再生能源的消纳及利用效率.而在运行调度中利用5G基站的互动潜力,通过储能电池使基站在RES出力高峰时段增加从电网的购电,而在RES发电低谷时段降低从电网的购电,可有效提升RES的利用效率,进而促进系统实现碳减排.

2 含5G基站的ADN多目标运行优化模型

2.1 5G基站运行特性建模

..5G基站能耗模型 总体来看,5G基站的能耗包括静态功耗和动态功耗2个方面.其中,静态功耗是指与业务负载和输出传输功率无关的能量需求,主要由电源系统、BBU信号处理和冷却系统的固定损耗组成.而动态功耗指与5G业务负载有关的能量需求,其是5G基站输出传输功率的函数.综上,单个5G基站的总功耗可表示为

(1)

(2)

(3)

∈,∈

在运行过程中,受设备配置容量限制,5G基站内收发器的最大开启数量应满足如下约束条件:

(4)

要求解上述ADN多目标优化调度模型,需要提前确定模型中各参数的数值.对于其中一部分参数,如储能电池折损费用、碳排放系数、煤耗系数等,可借助科学预测方法确定其取值;而对于另一部分参数,如RES发电出力和用户实时通信负载,由于受预测手段和预测精度的限制,决策者往往难以提前获得关于这些参数的准确预测值,所以为模型求解带来了显著的不确定性.

此外,由于5G运营者需要满足在分得的频段带宽内传输信号并符合传输设备标准,5G基站内收发器的数据传输带宽数还应满足如下约束:

(5)

..通信服务质量特性 为确保ADN区域用户的通信服务质量,系统中5G基站所提供的带宽容量需实时满足区域内所有用户所需的吞吐量,其数学表达如下:

(6)

此外,对于单个5G基站而言,还需要确保与其连接的每个用户都能获得满意的通信吞吐量:

(7)

∈,∈

式中:,,表示时段用户是否和基站连接的 0-1 变量.

又如乐善秦腔中表演的秦剧《辕门斩子》,杨延景一、二、三帐的大段唱腔,都是一个演员演唱,而且演员嗓音宏亮,唱腔优美,演出深受群众欢迎。可见,演员唱腔是完全可以作为一门独特的技艺来提升戏曲艺术层次,继而来提升秦腔艺术的内涵和吸引力的。

2.2 运行优化模型构建

鉴于5G基站灵活性及其对未来配电网低碳化发展的潜在贡献,本文在传统ADN运行模式的基础上,深入考虑5G基站参与互动响应对促进分布式RES消纳的作用,将其视为灵活性资源纳入配电网运行调度模型,结合系统供电成本、运行安全性和碳排放等方面因素,确定配电网内分布式电源和5G负荷资源的最优协调运行策略.

对于配电网运营商而言,ADN的优化运行既要尽量降低系统运行的经济成本,还希望尽可能增加对RES的利用,实现系统碳排放降低.在现有技术水平和市场条件下,由于上述经济性与碳减排目标实现之间存在天然矛盾,所以可归纳为一个典型的多目标优化问题.具体模型构建如下.

患者,女,65岁,患者出现了眩晕以及呕吐的症状,病情发作时患者如坐舟船之中,且出现了口苦耳鸣的情况,进食出现困难,舌红苔白,其脉弦滑。选择小柴胡汤加味进行治疗:太子参l0g,柴胡24g,黄芩l0g,半夏l0g,枳壳l0g,竹茹10g,茯苓l5g,白术30g,泽泻30g,焦三仙各l0g,甘草6g,水煎服,每天1剂。患者服用3剂以后,眩晕之症不再出现,再次服用数剂对药效进行巩固,随访数天,未见复发。

..目标函数

(1) 系统运行成本最小化.

含5G基站ADN的运行成本主要包括外部市场的购电成本、从内部分布式发电的购电成本以及5G基站储能损耗成本,具体计算式如下:

(8)

(2) 系统碳排放最小化.

“高校固定资产管理平台”使用后,资产管理部门不再像以前那样只关注某个问题,如以前主要关注验收入账问题,现在可以关注资产从入账、验收、变动、处置到销账等整个周期过程,哪个过程发生改变,可以及时在平台中进行相关操作。从系统管理出发,研究各部分间的联系和规律,完善和加强全周期的系统管理,使资产管理的每个过程协调发展,形成一个“整体”的结构,从而形成互相促进、互相影响、互相监督、互相制约的良性循环。固定资产实施信息化管理,明确和优化了固定资产全周期各个环节中应遵守的要求,建立了动态化、规范化、科学化的固定资产管理模式。

为综合反映5G基站参与需求响应为配电系统带来的碳减排效益,本文以系统碳排放最小作为优化运行模型的另一个目标.其中,系统的碳排放量与发电侧化石燃料消耗直接相关,运行调度周期内CO排放量等于其从外部市场购电量乘以单位发电煤耗系数及发电侧碳排放系数,具体如下:

发酵床垫料管理作为异位发酵床管理工作的核心部分,其主要是通过翻堆机进行垫料的翻堆处理。影响垫料发酵的粪污添加量也是影响发酵效果的一个重要因素,主要是由于缺乏与垫料处理能力相适应的粪污添加量控制体系,且经常性出现过量添加等问题,导致发酵床变成过滤床,其发酵功能无法得到充分发挥。因此,生猪养殖人员还需要进行异位发酵床管理规程的合理制定,并需要在此基础上进行发酵床垫料的严格管理,以获得良好的粪污处理效果[4]。

(9)

式中:为单位煤耗发电量对应的碳排放;为外部电网中单位发电量对应的煤耗系数.

..约束条件 本文优化模型的约束条件主要包括5G基站运行特性约束、RES发电出力约束、系统潮流约束和运行安全性约束等4个方面.

(1) 5G基站运行约束.

本文研究的5G基站运行约束主要包括基站自身能耗特性、通信特性和其内部储能电池的运行约束.关于5G基站能耗及通信特性的模型已在上一节给出,故本节主要对5G基站储能电池模型进行说明.

3.1.1 器官捐献者是否应得到经济补偿 表2显示,61.26%的护士认为器官捐献者应该得到一定的经济补偿,高于李超[5]等人的研究(29.70%)。经济补偿目前还存在较多争议。在护士看来,这种经济补偿是对器官捐献的一种激励方式,但由于相关法律对补偿金额没有明确规定,导致公众或患者误将经济补偿等同于器官买卖。提示我们为使公众尽快接受器官捐献,除了知识宣传外,更重要的是完善、细化法律对器官捐献的激励机制。

首先,在实际运行中,同一时段5G基站内的储能电池不能同时进行充放电过程,故有:

(10)

受储能电池技术限制,其运行过程中充、放电功率需满足如下约束:

这42个实例分批提交给神经网络模型进行训练,第一批是相应于所有地震记录的无损与50%损坏的频谱;第二批是相应于75%损坏的频谱。通过1200~1400 周期(epoch,是对所有输入进行一次完整的前馈与误差反传所作运算)迭代而收敛。其中采用了0.2的学习率和10%的最大允许误差。这个用于构件损坏评估的单隐层BP模型的训练,其输出PE活性值的结果与期望的活性值之间应符合得相当好。

(11)

式中:为储能电池的最大充放电功率.

另外,在运行调度周期内,5G基站中储能设备在当前时段的存储电量与前序电量状态及充放电功率的变化关系表示如下:

(12)

∈,∈

式中:,为节点基站储能电池在时段的蓄电量;、分别为储能装置的充电、放电效率.

为确保储能电池的运行寿命,防止过度充放电,针对储能荷电状态(State of Charge,SOC)还需设置如下约束:

(13)

∈,∈

海量5G基站运行产生的巨大用电将显著增加配电系统总体的负荷需求,进而造成发电侧碳排放量增加.而5G基站可通过基站休眠、收发器关断、下行功率控制等技术管理手段,在保证通信服务质量的条件下,降低自身用电需求,提高系统能效,从而间接减少了发电侧碳排放.

此外,5G基站作为ADN系统中的能源供给/消费节点,其内部需要满足功率平衡约束:

(14)

(15)

(2) RES发电出力约束.

各时段RES发电的实际调用功率不能超过该时段最大可发功率,故有如下约束:

(16)

此外,参考当前国内外分布式电源的典型运行方式,本文假设RES发电始终工作在恒定功率因数下,故有:

《洪范五行传》灾异思想析论—以战国秦汉五行及时月令文献为背景……………………………………程苏东(184)

(17)

(3) 配电网潮流约束.

在完成6点部位的连弧焊操作后,到达5点和7点位置,为了减少熔池过渡坠瘤,改为断弧焊工艺。由于镍基材料熔池流动性差、冷却速度快等特点,因此断弧打底时的频率要快,再起弧的位置要准,通常在上一熔池冷却到二分之一时,进行下一弧的引燃,并在熔池温度最高的地方再起弧(即熔池最亮的地方)。打底时熔池易往焊缝中间聚集、两侧易夹沟,因此焊条要做左右摆动,使熔池能够到达焊缝坡口的两侧,分散熔池中间的温度,确保背面焊缝两侧熔合良好。

与传统配电网相似,含5G基站的配电系统运行也应满足有功/无功潮流约束.其潮流约束为

(18)

,∈,∈

(4) 系统运行安全性约束.

为确保含5G基站ADN的运行安全性,需考虑如下约束.

节点有功/无功功率平衡约束为

(19)

,,∈,∈

为保证用户的电压质量符合国家规定,需要对系统节点电压偏移做出限制,故有:

(20)

系统中各线路流过的有功和无功功率均不能超过线路的容量上限,故有线路载流量约束为

(21)

∈,∈

(22)

∈,∈

与上级电网之间功率约束为

(23)

要求:(1)标志设计需简明(最少线条)、清楚(表意清晰)、形象(一目了然);(2)可以设计成走路礼让、保持安静、不许乱扔纸屑、不准吸烟等内容;(3)请说明设计想法。

一般情况下,项目总体是由技术队长、专册循序渐进成长的。根据铁路项目实践,可研究将学历、资历等静态指标转变为能力、个性等动态评价标准,作为总体人才的选取原则(见表3)。

2.3 优化变量

2.4 不确定性分析

当前处理含不确定性参数优化问题最为常用的两种方法是随机优化和鲁棒优化.其中,随机优化是在大量历史数据基础上,利用统计学方法提炼出关于不确定性因素的特征分布,并据此通过生成一系列确定性场景集合表征不确定因素对系统决策的影响.但对于本文研究而言,含5G基站ADN运行将同时涉及电力流和通信流两方面的调度控制.相较于电力需求,用户的数据使用行为无论在时间或空间方面均具有更为显著的随机性,此外还表现出高度异质、随时间动态演化等复杂特性,系统运营商通常难以获得关于数据需求参数的准确概率分布,上述原因使得随机优化方法在本文研究中面临极大障碍.而鲁棒优化方法主要考虑的是对系统目标实现最为不利的不确定性场景,所得结果通常较为保守,因而难以充分挖掘5G基站资源的低碳赋能潜力.

针对上述问题,本文采用区间方法对系统运行中的各不确定性因素,即RES发电出力及通信负载进行建模.相比随机优化和鲁棒优化,区间优化方法不用提前获取关于不确定性参数的精确概率分布函数,只需根据波动区间的上下限信息即可实现对不确定性影响的描述.

3 求解方法

由于上述所建优化模型中含有区间型参数,所以难以通过求解器或现成算法对其直接计算求解.本文首先对含区间变量的目标函数和约束条件进行预处理,采用区间序关系和区间可能度方法使原有问题转化为确定性多目标优化问题.然后,采用 NSGA-II 算法求解Pareto非支配解集.

3.1 模型转化

(24)

(25)

(26)

式中:、分别为体现决策者对各优化目标期望和波动性偏好的权重系数.

(27)

根据区间可能度法,可将上述含不确定性的约束条件转化为如下确定性约束:

(28)

通过上述处理,原始多目标区间优化模型即转化为常规确定性多目标优化问题.

3.2 算法流程

4 算例分析

4.1 参数设置

本文以修改的IEEE-33节点配电网为例,通过仿真分析验证所提方法的有效性,如图4所示,修改的IEEE-33节点配电网包括33个负荷节点,S为与上级电网连接的变电站.

由图4可见,为适应本文研究需要,假设在节点4、10、13、29接入风力发电机组,且各节点装机容量均为800 kW.风力发电的日出力预测曲线根据文献[26]确定,且预测误差为±20%.另外,假设在节点6、8、15、31接入含储能的5G基站群,每个基站群的基站个数均为100,并将其命名为基站群1、2、3、4.单个基站的基本参数如表2所示.基站储能电池的额定容量为18 kW·h,最大充电、放电功率为 3 kW,最大、最小荷电状态分别为90%和10%,充放电效率设为0.85.

针对日前调度,根据文献[27-28],系统中通信负荷和用电负荷的日变化情况如图5所示,且预测误差分别设为±10%和±15%.图中:为通信负载量,为用电负荷量.假设外部市场中的发电煤耗系数为310 g/(kW·h),单位标准煤的CO排放因子为2.62 kgCO/kg,ADN从外部市场的购电价格为0.38元/(kW·h),从风电运营商购电价格为0.8元/(kW·h).在优化过程中,取系统运行仿真周期为1 d(即24个时段),且=1 h.

基于前期测试,NSGA-II的参数选择如下:种群规模为100,最大进化代数为300,变异因子为0.2,交叉因子为0.6.

4.2 计算结果分析

..Pareto最优解 基于本文多目标区间优化模型得到的Pareto前沿集如图6所示.

由图6可见,所形成的优化解分布均匀且涉及范围较广,可以为ADN运行策略制定提供重要的参考依据.进一步可见,ADN的运行成本与碳排放量之间的存在紧密关联.伴随系统运行经济性的提升,系统的环境效益会下降.相反,当ADN运行者追求低碳效益最优时,系统对应的运行成本则会增加.这说明为促进RES利用和降低碳排放而开发利用5G基站的灵活性响应潜力,将不可避免地导致储能电池损耗和运行管理成本增加,从而造成系统运行的经济性下降.因此,在实际运行中,需根据决策者的需求,综合考虑上述两方面因素,得出符合实际要求的科学运行方案.同时,上述结果也证明了本文多目标优化方法在考虑5G基站低碳赋能ADN调度研究中的适用性.

..5G基站灵活性对电网运行效益的影响分析 为揭示5G基站参与互动响应对ADN效益的影响,本节分别对有无5G基站参与需求响应情况下所得调度方案进行对比分析.其中,无需求响应场景是指在系统调度时基站未参与电网互动,仅从自身用能角度对用电设备进行功耗管理.针对各场景下的Pareto前沿,假设决策者对经济性和低碳目标具有相同的偏好,并采用逼近理想解排序法确定唯一的折中方案.相关指标计算结果见表3.

可见,当5G基站参与电网优化调度时,虽然系统运行成本有所上升,但系统对RES消纳量提升了49.22%.由于利用灵活通信响应和储能设备促进了RES消纳,间接减少了ADN从主网的购电量,因此系统的碳排放总量降低.

两种场景下系统功率平衡图和弃风功率情况分别如图7、8所示,图中:为功率.由图可知,相比未参与需求响应情况,5G基站参与互动能有效改善系统负荷曲线,起到削峰填谷的作用,改善负荷高峰和低谷时段的电能供需矛盾情况.同时,5G基站的灵活互动使得弃风功率显著降低,在风电高发时段的风电并网量大幅提高.

产生上述现象主要因为5G基站通过改变自身通信设备进行能耗管控,在用电负荷高峰时段降低自身用能,利用基站储能在负荷高峰放电、低谷充电,提升RES消纳,降低主网购电,同时灵活互动还对线路潮流起到了平衡作用,降低了网损.为此,图9、10分别给出了5G基站参与需求响应前后的运行结果,图中为收发器开启个数.

由图可知,5G基站未参与需求响应时,可视为普通用电负荷.5G基站参与互动后,储能电池在风力发电高发时段充电,尽可能增加系统对RES的消纳.在风力发电的低发时段,通过储能电池向基站或者电网送电,可以降低ADN从外部市场的购电量,进而减少发电侧碳排放.由图10可知,在电力负荷高峰时段,基站在满足通信服务质量的前提下,管控收发器数量使得5G基站的功耗显著降低,加之储能放电,各5G基站群总用能大幅降低,与系统总负荷曲线呈反相关,从而起到削峰效果,减少主网购电,提升运行效益.

分析5G基站参与响应对改善系统潮流分布的影响效果,图11所示为有无响应情况下配电网各线路负载率的日变化情况.图中:为线路编号,为线路载流量.可见,在未参与互动情况下,线路1~5、10~11、13~14、29~30载流量处于重载状态,线路15~17、18~21、31~32载流量处于轻载状态.上述潮流分布的不均匀性一方面对RES发电消纳造成不利影响,另一方面使得系统平均线损率较高(由重载线路导致).由图11(b)可见,在5G基站参与电网调度后,线路1~5的负载率下降,同时风电机组接入节点的临近线路的载流量也得以下降,系统各线路潮流分布均匀化,因而系统网损降低.

..区间不确定性分析方法的适用性 为验证所提区间优化模型较传统方法的优势,对本文方案与确定性优化和鲁棒优化方案在实际运行下的预期效益进行对比分析.其中,确定性优化是在假设系统各不确定元素均固定为中值时得到的最优方案,而鲁棒优化是指以不确定性下系统最悲观场景作为优化目标下得到的方案.两种对比场景对应的具体数学模型可参见文献[31].此外,其他参数设置与前节相同,优化目标的权重保持不变.

分别假设各不确定参数以预测值的 ±5%、±15%、±25% 作为变化区间,且符合均匀分布.采用蒙特卡洛模拟法随机抽样得到各不确定变量的样本序列,并以此为基础计算3种情况下运行方案在上述环境下的系统运行成本和碳排放量,所得结果如图12所示,图中:′为波动范围.

由图可知,采用确定性优化得出的结果具有更低的预期成本和较小的预期碳排放量.但该方案没有考虑不确定性因素的作用.结合图中实际成本与碳排放量随不确定性变化的情况可知,确定性优化方案所得优化目标要低于实际目标值,且随着不确定性波动程度的增加其差距加大.而区间和鲁棒优化方法则是考虑了运行中的不确定性因素影响,鲁棒优化方案考虑的是运行中的最劣场景,其预期成本和碳排放量较实际情况偏高,优化结果比较保守,不利于RES消纳.而区间优化方法选取不确定参数的中值进行运算,兼顾了悲观场景和乐观场景,此优化方案更加合理.

5 结论

为推动ADN下对RES资源的高效消纳、实现配网侧碳减排,本文以5G基站参与电网侧互动响应促进RES利用效率提升作为切入点,提出了一种考虑5G基站低碳赋能的ADN多目标区间优化运行方法.相比现有研究,本文综合计及了RES出力以及5G通信负载两方面不确定性的影响,通过对系统中分布式电源以及5G基站设备启停计划和储能电池的协同调度,从而达到对ADN运行经济性与低碳效益的同时趋优.通过算例分析,所得结论如下:

(1) 在现有发电结构下,含5G基站的ADN在运行经济成本与碳排放量之间存在着特定的矛盾,通过利用5G基站的灵活响应能力参与电网侧调度能够有助于电力系统提高可再生能源消纳和利用效率,从而带来可观的低碳效益.

(2) 5G基站的响应特性受到基站收发器开启数量、储能电池运行参数等多方面因素的影响,在满足用户通信服务质量的前提下,通过对基站设备及储能电池运行状态进行联合优化,能够改善ADN潮流分布,减少网损,扩大电网对RES的消纳空间.

(3) 区间优化方法能够在充分尊重决策者主观偏好的基础上,使所得决策方案灵活兼具最优性和抗风险能力,具有良好的工程价值.

猜你喜欢
储能基站配电网
相变储能材料的应用
煤气与热力(2021年6期)2021-07-28 07:21:24
配电网自动化的应用与发展趋势
储能技术在电力系统中的应用
储能真要起飞了?
能源(2017年12期)2018-01-31 01:42:59
可恶的“伪基站”
探索科学(2017年4期)2017-05-04 04:09:47
基于GSM基站ID的高速公路路径识别系统
基于IEC61850的配电网数据传输保护机制
电测与仪表(2016年5期)2016-04-22 01:14:14
直流储能型准Z源光伏并网逆变器
电源技术(2016年2期)2016-02-27 09:05:08
配电网不止一步的跨越
河南电力(2016年5期)2016-02-06 02:11:24
小基站助力“提速降费”
移动通信(2015年17期)2015-08-24 08:13:10