付孟,李艳
综 述
家马的起源历史与品种驯化特征
付孟,李艳
省部共建云南生物资源保护与利用国家重点实验室,云南大学生命科学学院,昆明 650091
在家犬()、牛()、猪()、绵羊()、山羊()等家养动物之后,家马()才被人类成功驯化。虽然驯化历史很短,但其对人类社会文明发展变革的影响却最大。家马出色的负重移动能力使人类社会由固定的农耕模式向移动分享模式过渡,使历史发展进入了快车道,因此其起源驯化历史一直备受关注。然而由于家马直系同源野生种早已灭绝,加之现代品种化培育引起遗传多样性骤减,使得相关研究长期争议不断。随着测序技术的不断发展和古代样品的逐步丰富,目前对家马起源驯化过程、群体遗传结构等方面的研究越来越深入。本文从核基因、mtDNA、Y染色体、古DNA等不同层面综述了家马起源与驯化历史方面的研究进展,从品种分化状况、群体演化特征等方面讨论了现代家马品种的群体遗传结构,最后总结了马匹毛色、速度、体型等重要表型性状的遗传基础,以期为今后家马的起源驯化研究、种质资源保护与开发、品种优化方向、现代马业发展等方面提供参考。
家马;驯化;起源;表型性状
家马属于脊椎动物亚门(Vertebrata)、哺乳纲(Mammalia)、奇蹄目(Perissodactyla)、马科(Equidae)、马属()、马()。据联合国粮食及农业组织(Food and Agriculture Organization,FAO)统计,截止到2021年,世界上现存有696个家马品种(Source: DAD-IS accessed, http://www.fao.org/dad- is/risk-status-of-animal-genetic-resources/en/)。
马属动物的祖先大约在5500万年前出现,并且经过持续的进化形成现今的马、驴()和斑马()等,统称马属动物[1]。马作为家畜中的重要一员,起初以食物来源的形式为人类提供肉及奶,后逐渐演变成为人类最主要的交通工具及劳动力,可以骑乘、挽车、载重、耕种,是推动人类文明发展的重要载体,在人类社会发展史上发挥了其他家养动物无法比拟的作用。家马出色的迁移速度和运载能力满足了人类活动不断扩张的需要,使人类社会由固定的农耕生活方式向更频繁的迁徙、贸易生活方式过渡,促进了经济繁荣,加速了社会变革和民族交融,使历史发展进入了快车道。因此,阐明家马的起源驯化历史,不仅有助于合理保护和科学利用家畜遗传资源,还将加深理解和认识早期人类社会的文明进程,为动物流行性疾病的扩散及预防等提供重要的科学线索。
现代马业的蓬勃兴起与迅猛发展,更对深入认识家马的种质资源及性状进化遗传基础提出了迫切需求。因此,随着基因组测序技术的发展,不同品种家马的遗传特征成为了研究的热点。本文综述了家马起源驯化历史、品种遗传结构、性状遗传基础等方面的研究进展,以期为家马的驯化研究提供参考。
动物考古学家通过对古代样本的骨骼、牙齿、组织进行测量,分析样本的年龄、性别来判断动物骨骼的相关起源与驯化问题。通过对马掌骨的测量分析,以及缰绳和马奶加工工具等物品的考古发现,科学家们证实5500年前在中亚博泰(Botai)地区的野马已被成功驯化为家马[2],但是这些Botai家马并不是现代家马的祖先(它们的后代反野数千年后形成了现在的普氏野马()[3])。然而由于骨骼形态在不同发育时期差异较大,且驯化初期个体与野生个体间差异较小,加之个体本身存在的差异,导致依靠骨骼等形态特征得到的结论可能有较大的误差。马匹考古遗骸的保存和收集,提供了仅次于人类的涵盖多个时间尺度的最大古代基因组数据,开启了在种群规模上分析古代基因组特征的大门[4]。古代基因组数据能够提供直接且有力的证据,但可能因古代样本数量稀有,使得家马驯化过程背后的遗传机制研究不够充分[5~8]。分子遗传学家通过现代分子技术,结合古代基因组数据,探讨了家马和普氏野马之间的关系,揭示了包括起源时间、驯化中心、规模、马匹品种之间的关系和多样性在内的家马起源驯化历史等相关问题,加深了对家马驯化过程、相关性状变化遗传机制的了解[9~12]。
利用核基因分析系统发育关系的研究工作开始较早。1995年,马和驴的促黄体激素(luteinizing hormone,LH)β-亚基被克隆出来,二者的同源度非常高(相似度:核苷酸为97%;氨基酸为93%),证实马和驴存在较近的亲缘关系[13]。2003年,通过PCR扩增和单向测序,获得了家马、普氏野马、驴、斑马的β2-微球蛋白序列,经对比发现,马属动物在核苷酸水平和氨基酸水平存在较高的同源性(核苷酸>98%,氨基酸为95%)[14]。2009年,Wade等[15]率先完成了第一个家马基因组的组装,揭示马染色体与人类染色体的共线性保守程度达53%。马DNA杂交微阵列芯片技术也随之飞速发展,第一张家马DNA芯片于2012年由多个发达国家的研究机构共同研发,该芯片上有超过5万多个单核苷酸多态性(single nucleotide polymorphism, SNP)位点,可以快速实现大规模个体的遗传差异研究[16]。随后马芯片检测的SNP数量快速扩展到了670K,并完成了包括24个品种在内的153匹马的全基因组关联研究[17]。与此同时,奎特马(Quarter horse)基因组也顺利组装完成,并通过重测序技术获得了大量群体基因组数据,筛选得到310万个SNP和282个拷贝数变异(copy number variation, CNV),揭示了家马基因组在感觉、免疫等方面的遗传变异[18]。除了遗传变异研究外,Warmuth等[19]通过模型分析横跨欧亚大陆的300多匹家马常染色体微卫星分子标记,从核基因角度提出马匹的驯化可能始于欧亚大草原西部,野生群体在此过程中有遗传贡献。
线粒体能够提供母系遗传的直接证据。mtDNA插入核基因组会产生线粒体假基因(numts),即线粒体起源的核序列。马参考基因组中鉴定出82个numts片段,表明该物种可能处于快速进化的阶段[20]。为探究家马驯化的地点和时间,2002年Jansen等[21]分析了25个品种318匹家马的线粒体D-loop环,将93个不同的单倍型划分为17个系统发育类群,提示家马由欧亚大陆的多个野马种群驯化而来。Achilli等[22]分析了亚洲、欧洲、中东和美洲的83个现代马的mtDNA,划分了18个(A-R)主要的单倍群,表明现代家马具有丰富的mtDNA遗传度。McGahern等[23]利用AMOVA分析了118匹东方马群体mtDNA的系统地理格局,发现F单倍群的地理关联性非常显著,是欧亚大陆东部家马群体的主要地理分布类型,这是第一次在马mtDNA序列中检测到明显的地理分布格局。此后,Lei等[24]对来自中国各地的182匹现代马247 bp线粒体D-loop序列进行多样性分析,发现可以划分为7个(A-G)单倍群,提示中国家马具有复杂的起源驯化过程。
Y染色体遵循父系遗传,是追溯父系遗传历史的最佳分子标记。然而迄今为止,马Y染色体测序工作还未完全完成。通过RDA分析(representational difference analysis)以及BAC(bacterial artificial chromosome)文库筛选,2004年首次确认了6个Y染色体微卫星标记[25],由此开始了对马Y染色体变异特征的探究。随着高通量测序技术的兴起,2013年利用重测序数据定位了Y染色体的SNP分子标记,发现绝大部分现代马都来自6个单倍型,属于单系起源[26]。通过从头组装家马雄性特异性区域(male- specific region, MSY),并扫描21个主要的欧美品种52匹马的单倍型,进一步提示这些现代品种的父系遗传信息单系起源于近东地区[12]。然而上述研究主要关注的是现代品种马,对本地土著马匹Y染色体的研究揭示了更复杂的驯化历史:Ling等[27]通过在中国地区573个雄性个体中扫描上述6个Y染色体特异微卫星标记,发现中国家马至少存在两个父系起源;另外在日本的马群中也发现了丰富的马Y染色体位点突变,揭示了马Y染色体具有一定的遗传多样性,这是对应于线粒体丰富遗传多样性的又一补充[28]。
2011年,Orlando等[5]对一块来自更新世的马骨进行研究,研发了“单分子DNA测序”(true single- molecule sequencing, tSMS)技术,由此开启了利用二代测序技术研究家马古代基因组的篇章。2013年,Orlando等[6]获取了一个非常古老基因组—一块来自于中更新世早期大约距今56~78万年前的马骨骼,该研究使得古基因组学的时间框架极大地向前推进,使人们得以重新审视家马起源与驯化的相关问题。例如通过获取4.3万年前晚更新世马的DNA序列,发现马属动物共同祖先可追溯至400~450万年前,普氏野马和家马约在3.8~7.2万年前分化,普氏野马可能是最后幸存的野马种群。2014年,Schuber等[7]获取了俄罗斯Taymyr两匹来自晚更新世的古马基因组数据,结果表明现代家马可能起源于欧亚大陆的古代种群。2017年,Cantalapiedra等[8]分析138匹新近纪–第四纪的古马,通过最小二乘(phylogenetic generalized least squares,PGLS)回归检验,发现中新世马群体辐射扩散与气候变化相关,揭示了生态极限对动植物的影响。2018年,Gaunitz等[3]通过42个古马基因组梳理了普氏野马和家马的系统发育关系,发现普氏野马是博泰(Botai)马的后代,现存家马仅有2.7%的Botai马血统,表明现代马群的扩张可能与大规模基因组转换有关,这一现象同青铜器时代人口不断扩张相吻合。2019年,Fages等[4]从278个马遗骸中提取了DNA,其中大多跨越近6000年,研究证实伊比利亚和西伯利亚灭绝家马世系的存在。2021年,Librado等[29]分析了生活在公元前5万年到公元前200年间的273匹古代马基因组,发现尽管欧亚大陆曾经分布有遗传背景完全不同的马群,但在公元前2200到公元前2000年间发生了巨大变化:一支生活在北高加索地区大草原的群体,凭借温顺和更强壮脊椎骨两个优势,快速取代了从大西洋到蒙古草原上的所有野马种群,成为现代家马的祖先。
马匹主要根据其外部形态特征(体型、体重、毛色、头、额宽、眼、耳、鼻、蹄、颈、胸、腹等)、育用性能指标(繁殖生育、负载能力、挽曳能力等)、生理指标(体温指标、呼吸特征、血液等)特征进行区分[30]。现有的家马品种主要包括身材矮小的品种(小马品种)、体型与体重较大的选育马品种、一些稀有品种和缺乏管理的地方品种等。部分品种(例如纯血马、阿拉伯马)经过几百年的人工选择,也有在最近培育出来的现代马品种,如奎特马、花马和田纳西走马。不同品种由于表型用途、起源地点、扩散历史及培育历史等方面的不同,可以通过芯片扫描群体的遗传特征,将其清晰地区分[16]。Kader等[30]通过扫描816匹现代家马个体基因组,发现最主要的差异(主成分1)来源于品种形成过程中是否有阿拉伯马血统的参与,次要差异(主成分2)则来源于品种的肩高差异。而具有相似表型性状特征的不同品种,也可以通过芯片扫描受选择的一致位点,推测其表型特性的遗传基础[31]。即便是分化历史非常短的品种,例如莱茵德国挽马(Rhenish German Draught horse)、东德亚群梅克伦堡马(East German subpopulations Mecklenburg horse)和撒克逊图林加冷血马(Saxon Thuringa Coldblood horse),也可以通过少量的微卫星分子标记进行遗传划分和鉴定[9]。
不同品种遗传结构的差异不仅能清晰地辨别品种来源,还能反映地理分布格局、驯化历史和品种特征。例如地理分布格局相近的东亚品种雅库特马(Yakutian horse)、蒙古马(Mongolian horse)和济州岛马(Jeju Island horse)亲缘关系较近;分布在斯堪的纳维亚地区的冰岛马(Icelandic horse)、设得兰马(Shetland horse)和挪威马(Norwegian Fjord horse)也因地域接近而关系紧密[32]。中国的地方家马品种同样表现出典型的地理分布格局:根据微卫星分子标记可以聚类为五大类群[33],分别对应蒙古高原、新疆、东北地区、西南山地、黄河上游流域–青藏高原腹地等地域特征[34]。培育过程中均有阿拉伯马(Arabian horse)参与的花马(Paint horse)、奎特马(Quarter horse)、瑞士温血马(Swiss Warmblood horse)、汉诺威马(Hanoverian horse)、玛雷曼纳马(Maremmano horse)、法国走步马(French Trotter horse)和纯血马(Thoroughbred horse)等具有较近的遗传距离[32]。在品种特征方面,具有重型马特征的夏尔马(Shire horse)、克莱兹代尔马(Clydesdale horse)与佩尔什马(Percheron horse)、比利时马(Belgian horse)表现出较近的亲缘关系[32]。
2.2.1 群体历史特征
家马的群体遗传特征在过去的几千年里发生了巨大的改变。基于44个品种的59匹家马和1匹普氏野马的线粒体全基因组,Lippold等[35]认为家马的种群数量在6000~8000年前出现了显著的扩张,并延续至今。然而基于古代马、普氏野马和现代品种的核基因组研究却认为,虽然在驯化过程中,家马相比于野马普遍出现了遗传多样度的下降及近交系数的升高[36],但在过去的数千年里,家马的遗传多样度并没有太大变化,直到近200年才急剧下降[4]。而Y染色体遗传多样度的降低发生得更早,大概始于2000年以前,文艺复兴后特定种马品系的雄性偏好选择逐渐增强,导致Y染色体多样性下降了3.8~ 10.0倍[4,12],杂合度也随着多样度的降低而降低[4]。虽然品种马的近交系数普遍较高,例如纯血马、标准种马(Standardbred horse)等,但那些最近或正在进行混合的品种,如奎特马、汉诺威马、瑞士温血马等,仍表现出中等偏下水平的近交系数[16]。
值得注意的是,无论是欧洲家马还是亚洲家马,其遗传组成一直在动态更替:公元前2200~公元前2000年,一支生活在北高加索地区大草原的群体,凭借温顺和更强壮脊椎骨两个优势,快速取代了从大西洋到蒙古草原上的所有野马种群,成为现代家马的祖先[29]。2000年后,在公元7~9世纪阿拉伯帝国扩张的鼎盛时期,波斯地区的家马扩散到欧洲大陆南部并影响了欧洲品种的遗传构成;在相近的时间段内,哈萨克斯坦地区的家马也逐渐取代了古代西伯利亚和匈奴地区家马的遗传贡献,成为中亚及蒙古地区家马的主要遗传构成[4]。
2.2.2 驯化代价
近期快速的多样度和杂合度的下降,表明家马群体在过去的几百年间经历了严重的瓶颈效应。在这个过程中,由于自然选择压力放松,人工选择压力增大,加之搭乘效应和建群者效应等诸多因素的共同影响,积累了大量的突变,其中就包含了很多有害突变,驯化代价随之产生[4,36]。家马在驯化过程中,许多性状如马匹体型、运动能力、马匹毛色等均发生了较大改变,遗传负荷相比于古代野马有显著增加[36],在近200年出现了快速积累[3,4]。在19世纪的普氏野马样本中,也观察到与古代家马、驯化的Botai马相当的遗传负荷水平[3],进一步佐证了普氏野马来源于已被驯化的马。随着普氏野马在20世纪中叶经历了野外灭绝[37]、种群数量骤减、严重的瓶颈效应使得现代普氏野马的遗传负荷普遍高于现代家马的平均程度[3,37]。驯化代价在其他驯化物种中也有报道,例如狗()[38]、水稻()[39]、西红柿()[40]等。家马在品种化培育过程中,遗传负荷进一步加剧,导致马匹品种选育的负面效应不断加大。例如在挽马品种中,奎特马患遗传性肌肉疾病的概率 较高,就是由于发生变异所引起的[41];一些拥有柔和毛色的马匹易患可致死的神经障碍疾病,则是由于毛色淡化致死因子()的隐形纯合导致[42]。
家马的毛色在驯化过程中表现出惊人的变化,从骝毛(bay)、褐骝毛(seal brown)野生型表型,发展出基本颜色如栗色和黑色,以及淡化(如奶油和银色)、斑点图案(如豹复合体)等多种表型[43,44]。基础毛色由两个主效基因和相互作用影响黑色素细胞功能产生[45,46],另外还有4个主效基因[47]、[48]、[49]和[50]影响常见的淡化毛色。此外,还有大量基因被证实与白斑及褪色表型性状有关[51]。
家马的步态和速度在驯化过程中也发生改变。多样的步态形式可以提高马匹运动速度、增加骑手的舒适感。因此,马匹品种的步态由步行(walk)、小跑(trot)、疾驰(gaiped)等自然步态逐渐衍生出交替步态(侧步、四拍慢步、斜线慢步等)[52]。通过不同步态冰岛马的基因组关联分析,发现基因中单碱基突变导致的提前终止子影响了马的步态和节奏[53],该基因对步态的影响在其他步态马品种中也得到验证[52]。Hill等[54]在纯血马中发现基因与马匹运动速度显著相关。基因型的不同对马匹运动能力也有着较大的影响,如基因纯合子在短距离快跑和长距离赛跑中表现较好,而杂合子在中长跑中表现较好[55]。汉诺威温血马中参与肌肉结构、发育和新陈代谢等功能的基因如和,与马匹跳跃表演能力显著相关[56]。基因中的错义突变使藏马能够很好地适应高海拔缺氧的极端环境,保障了藏马在缺氧环境下运动的血液循环、氧气运输和消耗[57]。此外,Fages等[4]还证实运动能力基因和在过去的600~1100年内等位基因频率上升,表明马的运动模式受到人类的强烈选择。
马匹体型相关遗传基础研究同样采用全基因关联扫描法,筛选与马匹体型有密切关系的位点(图1)。Makvandi-Nejad等[58]通过扫描17个品种马发现仅仅和这4个位点基因就可以解释83%的体型变异。不过,不同的品种也可能受不同变异类型的影响从而形成各自的体型特征。例如Orr等[59]在弗里斯矮马(Friesian dwarf)中通过对34,429个SNP进行基因组关联,发现了一个矮化基因;通过比较群体基因组学分析则发现德保矮马(Debao pony)的小体型与基因[60]和[30]有关;而与体型大小相关的明星基因仅在弗朗什–蒙塔涅斯马(Franches- Montagnes, FM)中出现特异的基因型变化[31]。在家马中,体型性状往往由少数基因发挥主效作用,这与其他家养动物的体型差异遗传基础相似[61],却有别于控制人类身高的多基因微效机制[62]。与家马体型相关的候选基因往往也在其他物种中控制体型变化,例如和与家犬体型有关[61,63],/位点则影响牛的体型[64],这提示不同物种间存在广泛的趋同进化。另外,相同基因的不同变异也可能影响家马不同性状的进化。例如基因影响dun毛色性状的同时[50],也影响中国德保矮马的矮小体型[30]。
图1 影响家马体高的相关候选基因
体高指由肩隆最高点到地面的距离。体型差异与、/、和等4个基因座相关的品种有:阿克哈–塔克马(Akhal-teke horse)、美国迷你马(America Miniature horse)、安达卢西亚马(Andalusian horse)、阿拉伯马(Arabian horse)、阿登纳斯马(Ardennais horse)、比利时马(Belgian horse)、布拉班特马(Braban horse)、里海马(Caspian horse)、克莱兹代尔马(Clydesdale horse)、埃克斯穆尔马(Exmoor horse)、法拉贝拉马(Falabella horse)、费尔矮马(Fell pony)、芬兰马(Finnish horse)、弗朗什–蒙塔涅斯马(Franches-Montagne horse)、法国快步马(French Trotter horse)、荷兰马(Friesian horse)、汉诺威马(Hanoverian horse)、冰岛马(Icelandic horse)、巴西马(Mangalarga Paulista horse)、新福里斯特小型马(New Forest pony)、北方瑞典马(North Swedish horse)、挪威峡湾马(Norwegian Fjord horse)、花马(Paint horse)、佩尔什马(Percheron horse)、秘鲁马(Peruvian Paso horse)、波多黎各小马(Puerto Rican Paso pony horse)、夸特马(Quarter horse)、(Saddlebred horse)、设德兰矮马(Shetland pony)、希尔马(Shire horse)、标准马(Standardbred horse)、萨福克矮马(Suffolk punck horse)、瑞士温血马(Swiss warmblood horse)、田纳西走马(Tennessee walking horse)、纯血马(Thoroughbred horse)、图瓦马(Tuva horse)、威尔士山地小型马(Welsh mountain pony horse)、威尔小马(Welsh pony horse)等。根据参考文献[30, 31, 58~60]绘制。
对马的品种分类,一般采用的方法包括生物学分类法、畜牧学分类法和冷热血统分类法等[65](表1)。生物学分类将马匹分为草原种、沙漠种、山地种和森林种;畜牧学分类按马匹的具体用途分为挽用型、乘用型和兼用型;冷热血统分类按选育程度和气质类型分为冷血统、热血统和温血统。按不同的分类方法,可对马匹进行划分。针对常见受欢迎马匹品种分别介绍了14种现代马匹的别称、体型、毛色、地理起源、外形主要特点、分布范围,具体内容见表2。
表1 马的品种分类方法
选自甘肃农业大学主编的《养马学》教材[65]。
表2 现代马主要品种介绍
续表
尽管关于家马起源与进化方面的研究已经有了一定的进展,进化关系和驯化背景、迁徙路线等方面的过程越来越清晰,但具体的起源时间和地址(如相比现在发现,是否存在不同或者更多的起源地址)等还没有确切的答案。对家马遗传结构的解析,有助于筛选更多与马匹毛色、运动、体型相关基因,指导家马品种的性状改良与优化,促进现代马业的发展。在当今社会,许多家马品种濒危,通过比较不同时间、空间尺度下的家马基因组,有助于人们在相关保护生物学领域采取更多的措施和手段保护马匹种质资源。
随着测序技术和考古技术的发展,有望在家马驯化溯源方面获得突破性进展。作为世界上马匹存栏数最多的国家,我国很有必要加强对中国地方家马品种基因组,特别是古代样品基因组的研究工作,填补中国家马起源历史研究方面的空白,为解析世界家马的起源历史提供重要的线索和翔实的证据。同时,在许多地方家马种质资源衰退的大环境下,通过对地方家马品种基因组的研究,结合不同时间、空间尺度下的群体遗传结构比较,将会大力推进地方特色种质资源DNA指纹图谱的构建、调控特色表型性状分子标记的挖掘鉴定和积极推动地方种质资源的保护及特色性状的改良优化,为采取更丰富灵活的科学措施和手段提供客观的科学依据,对保障我国生物战略资源安全具有重要意义。
[1] Wang YX, eds. A Complete Checklist of Mammal Species and Subspecies in China— A Taxonomic and Geographic Reference. Beijing: China Forestry Publishing House, 2003.
王应祥著. 中国哺乳动物种和亚种分类名录与分布大全. 北京: 中国林业出版社, 2003.
[2] Outram AK, Stear NA, Bendrey R, Olsen S, Kasparov A, Zaibert V, Thorpe N, Evershed RP. The earliest horse harnessing and milking., 2009, 323(5919): 1332– 1335.
[3] Gaunitz C, Fages A, Hanghøj K, Albrechtsen A, Khan N, Schubert M, Seguin-Orlando A, Owens IJ, Felkel S, Bignon-Lau O, de Barros Damgaard P, Mittnik A, Mohaseb AF, Davoudi H, Alquraishi S, Alfarhan AH, Al-Rasheid KAS, Crubézy E, Benecke N, Olsen S, Brown D, Anthony D, Massy K, Pitulko V, Kasparov A, Brem G, Hofreiter M, Mukhtarova G, Baimukhanov N, Lõugas L, Onar V, Stockhammer PW, Krause J, Boldgiv B, Undrakhbold S, Erdenebaatar D, Lepetz S, Mashkour M, Ludwig A, Wallner B, Merz V, Merz I, Zaibert V, Willerslev E, Librado P, Outram AK, Orlando L. Ancient genomes revisit the ancestry of domestic and Przewalski's horses., 2018, 360(6384): 111–114.
[4] Fages A, Hanghøj K, Khan N, Gaunitz C, Seguin-Orlando A, Leonardi M, McCrory Constantz C, Gamba C, Al-Rasheid KAS, Albizuri S, Alfarhan AH, Allentoft M, Alquraishi S, Anthony D, Baimukhanov N, Barrett JH, Bayarsaikhan J, Benecke N, Bernáldez-Sánchez E, Berrocal-Rangel L, Biglari F, Boessenkool S, Boldgiv B, Brem G, Brown D, Burger J, Crubézy E, Daugnora L, Davoudi H, de Barros Damgaard P, de Los Ángeles de Chorro Y de Villa-Ceballos M, Deschler-Erb S, Detry C, Dill N, do Mar Oom M, Dohr A, Ellingvåg S, Erdenebaatar D, Fathi H, Felkel S, Fernández-Rodríguez C, García-Viñas E, Germonpré M, Granado JD, Hallsson JH, Hemmer H, Hofreiter M, Kasparov A, Khasanov M, Khazaeli R, Kosintsev P, Kristiansen K, Kubatbek T, Kuderna L, Kuznetsov P, Laleh H, Leonard JA, Lhuillier J, von Lettow-Vorbeck CL, Logvin A, Lõugas L, Ludwig A, Luis C, Arruda AM, Marques-Bonet T, Matoso Silva R, Merz V, Mijiddorj E, Miller BK, Monchalov O, Mohaseb FA, Morales A, Nieto-Espinet A, Nistelberger H, Onar V, Pálsdóttir AH, Pitulko V, Pitskhelauri K, Pruvost M, Rajic Sikanjic P, Rapan Papeša A, Roslyakova N, Sardari A, Sauer E, Schafberg R, Scheu A, Schibler J, Schlumbaum A, Serrand N, Serres-Armero A, Shapiro B, Sheikhi Seno S, Shevnina I, Shidrang S, Southon J, Star B, Sykes N, Taheri K, Taylor W, Teegen WR, Trbojević Vukičević T, Trixl S, Tumen D, Undrakhbold S, Usmanova E, Vahdati A, Valenzuela-Lamas S, Viegas C, Wallner B, Weinstock J, Zaibert V, Clavel B, Lepetz S, Mashkour M, Helgason A, Stefánsson K, Barrey E, Willerslev E, Outram AK, Librado P, Orlando L. Tracking five millennia of horse management with extensive ancient genome time series., 2019, 177(6): 1419–1435.e31.
[5] Orlando L, Ginolhac A, Raghavan M, Vilstrup J, Rasmussen M, Magnussen K, Steinmann KE, Kapranov P, Thompson JF, Zazula G, Froese D, Moltke I, Shapiro B, Hofreiter M, Al-Rasheid KAS, Gilbert MTP, Willerslev E. True single-molecule DNA sequencing of a pleistocene horse bone., 2011, 21(10): 1705–1719.
[6] Orlando L, Ginolhac A, Zhang GJ, Froese D, Albrechtsen A, Stiller M, Schubert M, Cappellini E, Petersen B, Moltke I, Johnson PLF, Fumagalli M, Vilstrup JT, Raghavan M, Korneliussen T, Malaspinas AS, Vogt J, Szklarczyk D, Kelstrup CD, Vinther J, Dolocan A, Stenderup J, Velazquez AMV, Cahill J, Rasmussen M, Wang XL, Min JM, Zazula GD, Seguin-Orlando A, Mortensen C, Magnussen K, Thompson JF, Weinstock J, Gregersen K, Røed KH, Eisenmann V, Rubin CJ, Miller DC, Antczak DF, Bertelsen MF, Brunak S, Al-Rasheid KAS, Ryder O, Andersson L, Mundy J, Krogh A, Gilbert MTP, Kjær K, Sicheritz-Ponten T, Jensen LJ, Olsen JV, Hofreiter M, Nielsen R, Shapiro B, Wang J, Willerslev E. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse., 2013, 499(7456): 74–78.
[7] Schubert M, Jónsson H, Chang D, Der Sarkissian C, Ermini L, Ginolhac A, Albrechtsen A, Dupanloup I, Foucal A, Petersen B, Fumagalli M, Raghavan M, Seguin-Orlando A, Korneliussen TS, Velazquez AMV, Stenderup J, Hoover CA, Rubin CJ, Alfarhan AH, Alquraishi SA, Al-Rasheid KAS, MacHugh DE, Kalbfleisch T, MacLeod JN, Rubin EM, Sicheritz-Ponten T, Andersson L, Hofreiter M, Marques-Bonet T, Gilbert MTP, Nielsen R, Excoffier L, Willerslev E, Shapiro B, Orlando L. Prehistoric genomes reveal the genetic foundation and cost of horse domestication., 2014, 111(52): E5661–5669.
[8] Cantalapiedra JL, Prado JL, Fernández MH, Alberdi MT. Decoupled ecomorphological evolution and diversification in Neogene-Quaternary horses., 2017, 355(6325): 627–630.
[9] Aberle KS, Hamann H, Drögemüller C, Distl O. Genetic diversity in German draught horse breeds compared with a group of primitive, riding and wild horses by means of microsatellite DNA markers., 2004, 35(4): 270–277.
[10] Aranguren-Méndez J, Jordana J, Gomez M. Genetic diversity in Spanish donkey breeds using microsatellite DNA markers., 2001, 33(4): 433–442.
[11] Kusliy MA, Vorobieva NV, Tishkin AA, Makunin AI, Druzhkova AS, Trifonov VA, Iderkhangai T-O, Graphodatsky AS. Traces of Late Bronze and Early Iron Age Mongolian horse mitochondrial lineages in modern populations., 2021, 12(3): 412.
[12] Wallner B, Palmieri N, Vogl C, Rigler D, Bozlak E, Druml T, Jagannathan V, Leeb T, Fries R, Tetens J, Thaller G, Metzger J, Distl O, Lindgren G, Rubin CJ, Andersson L, Schaefer R, McCue M, Neuditschko M, Rieder S, Schlötterer C, Brem G. Y chromosome uncovers the recent oriental origin of modern stallions., 2017, 27(13): 2029–2035.e5.
[13] Chopineau M, Stewart F, Allen WR. Cloning and analysis of the cDNA encoding the horse and donkey luteinizing hormone beta-subunits., 1995, 160(2): 253–256.
[14] Tallmadge RL, Lear TL, Johnson AK, Guérin G, Millon LV, Carpenter SL, Antczak DF. Characterization of the beta2-microglobulin gene of the horse., 2003, 54(10): 725–733.
[15] Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blöcker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MCT, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guérin G, Hasegawa T, Hill EW, Jurka J, Kiialainen A, Lindgren G, Liu J, Magnani E, Mickelson JR, Murray J, Nergadze SG, Onofrio R, Pedroni S, Piras MF, Raudsepp T, Rocchi M, Røed KH, Ryder OA, Searle S, Skow L, Swinburne JE, Syvänen AC, Tozaki T, Valberg SJ, Vaudin M, White JR, Zody MC, Broad Institute Genome Sequencing Platform, Broad Institute Whole Genome Assembly Team, Lander ES, Lindblad-Toh K. Genome sequence, comparative analysis, and population genetics of the domestic horse., 2009, 326(5954): 865–867.
[16] McCue ME, Bannasch DL, Petersen JL, Gurr J, Bailey E, Binns MM, Distl O, Guérin G, Hasegawa T, Hill EW, Leeb T, Lindgren G, Penedo MCT, Røed KH, Ryder OA, Swinburne JE, Tozaki T, Valberg SJ, Vaudin M, Lindblad-Toh K, Wade CM, Mickelson JR. A high density SNP array for the domestic horse and extant Perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies., 2012, 8(1): e1002451.
[17] Schaefer RJ, Schubert M, Bailey E, Bannasch DL, Barrey E, Bar-Gal GK, Brem G, Brooks SA, Distl O, Fries R, Finno CJ, Gerber V, Haase B, Jagannathan V, Kalbfleisch T, Leeb T, Lindgren G, Lopes MS, Mach N, da Câmara Machado A, MacLeod JN, McCoy A, Metzger J, Penedo C, Polani S, Rieder S, Tammen I, Tetens J, Thaller G, Verini-Supplizi A, Wade CM, Wallner B, Orlando L, Mickelson JR, McCue ME. Developing a 670k genotyping array to tag ~2M SNPs across 24 horse breeds., 2017, 18(1): 565.
[18] Doan R, Cohen ND, Sawyer J, Ghaffari N, Johnson CD, Dindot SV. Whole-genome sequencing and genetic variant analysis of a Quarter horse mare., 2012, 13: 78.
[19] Warmuth V, Eriksson A, Bower MA, Barker G, Barrett E, Hanks BK, Li SC, Lomitashvili D, Ochir-Goryaeva M, Sizonov GV, Soyonov V, Manica A. Reconstructing the origin and spread of horse domestication in the Eurasian steppe., 2012, 109(21): 8202– 8206.
[20] Nergadze SG, Lupotto M, Pellanda P, Santagostino M, Vitelli V, Giulotto E. Mitochondrial DNA insertions in the nuclear horse genome., 2010, 41 Suppl 2: 176–185.
[21] Jansen T, Forster P, Levine MA, Oelke H, Hurles M, Renfrew C, Weber J, Olek K. Mitochondrial DNA and the origins of the domestic horse., 2002, 99(16): 10905–10910.
[22] Achilli A, Olivieri A, Soares P, Lancioni H, Hooshiar Kashani B, Perego UA, Nergadze SG, Carossa V, Santagostino M, Capomaccio S, Felicetti M, Al-Achkar W, Penedo MCT, Verini-Supplizi A, Houshmand M, Woodward SR, Semino O, Silvestrelli M, Giulotto E, Pereira L, Bandelt HJ, Torroni A. Mitochondrial genomes from modern horses reveal the major haplogroups that underwent domestication., 2012, 109(7): 2449–2454.
[23] McGahern A, Bower MAM, Edwards CJ, Brophy PO, Sulimova G, Zakharov I, Vizuete-Forster M, Levine M, Li S, MacHugh DE, Hill EW. Evidence for biogeographic patterning of mitochondrial DNA sequences in Eastern horse populations., 2006, 37(5): 494–497.
[24] Lei CZ, Su R, Bower MA, Edwards CJ, Wang XB, Weining S, Liu L, Xie WM, Li F, Liu RY, Zhang YS, Zhang CM, Chen H. Multiple maternal origins of native modern and ancient horse populations in China., 2009, 40(6): 933–944.
[25] Wallner B, Piumi F, Brem G, Müller M, Achmann R. Isolation of Y chromosome-specific microsatellites in the horse and cross-species amplification in the genus Equus., 2004, 95(2): 158–164.
[26] Wallner B, Vogl C, Shukla P, Burgstaller JP, Druml T, Brem G. Identification of genetic variation on the horse y chromosome and the tracing of male founder lineages in modern breeds., 2013, 8(4): e60015.
[27] Ling YH, Ma YH, Guan WJ, Cheng YJ, Wang YP, Han JL, Jin DP, Mang L, Mahmut H. Identification of Y chromosome genetic variations in Chinese indigenous horse breeds., 2010, 101(5): 639–643.
[28] Kakoi H, Kikuchi M, Tozaki T, Hirota KI, Nagata SI, Hobo S, Takasu M. Distribution of Y chromosomal haplotypes in Japanese native horse populations., 2018, 29(2): 39–42.
[29] Librado P, Khan N, Fages A, Kusliy MA, Suchan T, Tonasso-Calvière L, Schiavinato S, Alioglu D, Fromentier A, Perdereau A, Aury JM, Gaunitz C, Chauvey L, Seguin-Orlando A, Der Sarkissian C, Southon J, Shapiro B, Tishkin AA, Kovalev AA, Alquraishi S, Alfarhan AH, Al-Rasheid KAS, Seregély T, Klassen L, Iversen R, Bignon-Lau O, Bodu P, Olive M, Castel JC, Boudadi- Maligne M, Alvarez N, Germonpré M, Moskal-Del Hoyo M, Wilczyński J, Pospuła S, Lasota-Kuś A, Tunia K, Nowak M, Rannamäe E, Saarma U, Boeskorov G, Lōugas L, Kyselý R, Peške L, Bălășescu A, Dumitrașcu V, Dobrescu R, Gerber D, Kiss V, Szécsényi-Nagy A, Mende BG, Gallina Z, Somogyi K, Kulcsár G, Gál E, Bendrey R, Allentoft ME, Sirbu G, Dergachev V, Shephard H, Tomadini N, Grouard S, Kasparov A, Basilyan AE, Anisimov MA, Nikolskiy PA, Pavlova EY, Pitulko V, Brem G, Wallner B, Schwall C, Keller M, Kitagawa K, Bessudnov AN, Bessudnov A, Taylor W, Magail J, Gantulga JO, Bayarsaikhan J, Erdenebaatar D, Tabaldiev K, Mijiddorj E, Boldgiv B, Tsagaan T, Pruvost M, Olsen S, Makarewicz CA, Lamas SV, Canadell SA, Espinet AN, Iborra MP, Garrido JL, González ER, Celestino S, Olària C, Arsuaga JL, Kotova N, Pryor A, Crabtree P, Zhumatayev R, Toleubaev A, Morgunova NL, Kuznetsova T, Lordkipanize D, Marzullo M, Prato O, Gianni GB, Tecchiati U, Clavel B, Lepetz S, Davoudi H, Mashkour M, Berezina NY, Stockhammer PW, Krause J, Haak W, Morales-Muñiz A, Benecke N, Hofreiter M, Ludwig A, Graphodatsky AS, Peters J, Kiryushin KY, Iderkhangai TO, Bokovenko NA, Vasiliev SK, Seregin NN, Chugunov KV, Plasteeva NA, Baryshnikov GF, Petrova E, Sablin M, Ananyevskaya E, Logvin A, Shevnina I, Logvin V, Kalieva S, Loman V, Kukushkin I, Merz I, Merz V, Sakenov S, Varfolomeyev V, Usmanova E, Zaibert V, Arbuckle B, Belinskiy AB, Kalmykov A, Reinhold S, Hansen S, Yudin AI, Vybornov AA, Epimakhov A, Berezina NS, Roslyakova N, Kosintsev PA, Kuznetsov PF, Anthony D, Kroonen GJ, Kristiansen K, Wincker P, Outram A, Orlando L. The origins and spread of domestic horses from the Western Eurasian steppes., 2021, 598(7882): 634–640.
[30] Kader A, Li Y, Dong KZ, Irwin DM, Zhao QJ, He XH, Liu JF, Pu YB, Gorkhali NA, Liu XX, Jiang L, Li XC, Guan WJ, Zhang YP, Wu DD, Ma YH. Population variation reveals independent selection toward small body size in Chinese Debao pony., 2015, 8(1): 42–50.
[31] Petersen JL, Mickelson JR, Rendahl AK, Valberg SJ, Andersson LS, Axelsson J, Bailey E, Bannasch D, Binns MM, Borges AS, Brama P, da Câmara Machado A, Capomaccio S, Cappelli K, Cothran EG, Distl O, Fox-Clipsham L, Graves KT, Guérin G, Haase B, Hasegawa T, Hemmann K, Hill EW, Leeb T, Lindgren G, Lohi H, Lopes MS, McGivney BA, Mikko S, Orr N, Penedo MCT, Piercy RJ, Raekallio M, Rieder S, Røed KH, Swinburne J, Tozaki T, Vaudin M, Wade CM, McCue ME. Genome-wide analysis reveals selection for important traits in domestic horse breeds., 2013, 9(1): e1003211.
[32] Petersen JL, Mickelson JR, Cothran EG, Andersson LS, Axelsson J, Bailey E, Bannasch D, Binns MM, Borges AS, Brama P, da Câmara Machado A, Distl O, Felicetti M, Fox-Clipsham L, Graves KT, Guérin G, Haase B, Hasegawa T, Hemmann K, Hill EW, Leeb T, Lindgren G, Lohi H, Lopes MS, McGivney BA, Mikko S, Orr N, Penedo MCT, Piercy RJ, Raekallio M, Rieder S, Røed KH, Silvestrelli M, Swinburne J, Tozaki T, Vaudin M, Wade CM, McCue ME. Genetic diversity in the modern horse illustrated from genome-wide SNP data., 2013, 8(1): e54997.
[33] Ling YH, Ma YH, Guan WJ, Cheng YJ, Wang YP, Han JL, Mang L, Zhao QJ, He XH, Pu YB, Fu BL. Evaluation of the genetic diversity and population structure of Chinese indigenous horse breeds using 27 microsatellite markers., 2011, 42(1): 56–65.
[34] China National Commission of Resources, eds. Animal Genetic Resources in China. Horses, Donkeys and Camels. Beijing: China Agriculture Press, 2011.
国家畜禽遗传资源委员会组编. 中国畜禽遗传资源志·马驴驼志. 北京: 中国农业出版社, 2011.
[35] Lippold S, Matzke NJ, Reissmann M, Hofreiter M. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication., 2011, 11: 328.
[36] Librado P, Gamba C, Gaunitz C, Der Sarkissian C, Pruvost M, Albrechtsen A, Fages A, Khan N, Schubert M, Jagannathan V, Serres-Armero A, Kuderna LFK, Povolotskaya IS, Seguin-Orlando A, Lepetz S, Neuditschko M, Thèves C, Alquraishi S, Alfarhan AH, Al-Rasheid K, Rieder S, Samashev Z, Francfort HP, Benecke N, Hofreiter M, Ludwig A, Keyser C, Marques- Bonet T, Ludes B, Crubézy E, Leeb T, Willerslev E, Orlando L. Ancient genomic changes associated with domestication of the horse., 2017, 356(6336): 442–445.
[37] Der Sarkissian C, Ermini L, Schubert M, Yang MA, Librado P, Fumagalli M, Jónsson H, Bar-Gal GK, Albrechtsen A, Vieira FG, Petersen B, Ginolhac A, Seguin-Orlando A, Magnussen K, Fages A, Gamba C, Lorente-Galdos B, Polani S, Steiner C, Neuditschko M, Jagannathan V, Feh C, Greenblatt CL, Ludwig A, Abramson NI, Zimmermann W, Schafberg R, Tikhonov A, Sicheritz-Ponten T, Willerslev E, Marques-Bonet T, Ryder OA, McCue M, Rieder S, Leeb T, Slatkin M, Orlando L. Evolutionary genomics and conservation of the endangered Przewalski's horse., 2015, 25(19): 2577–2583.
[38] Cruz F, Vilà C, Webster MT. The legacy of domestication: accumulation of deleterious mutations in the dog genome., 2008, 25(11): 2331–2336.
[39] Lu J, Tang T, Tang H, Huang JZ, Shi SH, Wu CI. The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication., 2006, 22(3): 126–131.
[40] Lin T, Zhu GT, Zhang JH, Xu XY, Yu QH, Zheng Z, Zhang ZH, Lun YY, Li S, Wang XX, Huang ZJ, Li JM, Zhang CZ, Wang TT, Zhang YY, Wang AX, Zhang YC, Lin K, Li CY, Xiong GS, Xue YB, Mazzucato A, Causse M, Fei ZJ, Giovannoni JJ, Chetelat RT, Zamir D, Städler T, Li JF, Ye ZB, Du YC, Huang SW. Genomic analyses provide insights into the history of tomato breeding., 2014, 46(11): 1220–1226.
[41] McCue ME, Valberg SJ, Lucio M, Mickelson JR. Glycogen synthase 1 (GYS1) mutation in diverse breeds with polysaccharide storage myopathy., 2008, 22(5): 1228–1233.
[42] Bowling AT. Horse Genetics. Oxfordshire: Cab International, 1996.
[43] Rees JL. Genetics of hair and skin color., 2003, 37: 67–90.
[44] Furumura M, Sakai C, Abdel-Malek Z, Barsh GS, Hearing VJ. The interaction of agouti signal protein and melanocyte stimulating hormone to regulate melanin formation in mammals., 1996, 9(4): 191–203.
[45] Rieder S, Taourit S, Mariat D, Langlois B, Guérin G. Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses ()., 2001, 12(6): 450–455.
[46] Bailey E, Brooks SA. Chapter4: Black, Bay and Chestnut (). In: Horse Genetics. Boston, CABI. 2013.
[47] Mariat D, Taourit S, Guérin G. A mutation in the MATP gene causes the cream coat colour in the horse., 2003, 35(1): 119–133.
[48] Cook D, Brooks S, Bellone R, Bailey E. Missense mutation in exon 2 of SLC36A1 responsible for champagne dilution in horses., 2008, 4(9): e1000195.
[49] Brunberg E, Andersson L, Cothran G, Sandberg K, Mikko S, Lindgren G. A missense mutation in PMEL17 is associated with the silver coat color in the horse., 2006, 7: 46.
[50] Imsland F, McGowan K, Rubin CJ, Henegar C, Sundström E, Berglund J, Schwochow D, Gustafson U, Imsland P, Lindblad-Toh K, Lindgren G, Mikko S, Millon L, Wade C, Schubert M, Orlando L, Penedo MCT, Barsh GS, Andersson L. Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation that underlies Dun camouflage color in horses., 2016, 48(2): 152–158.
[51] Zhao RY, Zhao YP, Li B, Bou G, Zhang XZ, Mongke T, Bao T, Gereliin S, Gereltuuin T, Li C, Bai DY, Dugarjaviin M. Overview of the genetic control of horse coat color patterns., 2018, 40(5): 357–368.
赵若阳, 赵一萍, 李蓓, 格日乐其木格, 张心壮, 陶克涛, 图格琴, 旭仁其木格, 青柏, 李超,白东义, 芒来. 马毛色遗传机理研究进展. 遗传,2018, 40(5): 357–368.
[52] Promerová M, Andersson LS, Juras R, Penedo MCT, Reissmann M, Tozaki T, Bellone R, Dunner S, Hořín P, Imsland F, Imsland P, Mikko S, Modrý D, Roed KH, Schwochow D, Vega-Pla JL, Mehrabani-Yeganeh H, Yousefi-Mashouf N, Cothran EG, Lindgren G, Andersson L. Worldwide frequency distribution of the 'Gait keeper' mutation in the DMRT3 gene., 2014, 45(2): 274–282.
[53] Andersson LS, Larhammar M, Memic F, Wootz H, Schwochow D, Rubin CJ, Patra K, Arnason T, Wellbring L, Hjälm G, Imsland F, Petersen JL, McCue ME, Mickelson JR, Cothran G, Ahituv N, Roepstorff L, Mikko S, Vallstedt A, Lindgren G, Andersson L, Kullander K. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice., 2012, 488(7413): 642–646.
[54] Hill EW, Gu J, McGivney BA, MacHugh DE. Targets of selection in the Thoroughbred genome contain exercise- relevant gene SNPs associated with elite racecourse performance., 2010, 41 Suppl 2: 56–63.
[55] Hill EW, Gu JJ, Eivers SS, Fonseca RG, McGivney BA, Govindarajan P, Orr N, Katz LM, MacHugh DE. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses., 2010, 5(1): e8645.
[56] Schröder W, Klostermann A, Stock KF, Distl O. A genome-wide association study for quantitative trait loci of show-jumping in Hanoverian warmblood horses., 2012, 43(4): 392–400.
[57] Liu XX, Zhang YL, Li YF, Pan JF, Wang DD, Chen WH, Zheng ZQ, He XH, Zhao QJ, Pu YB, Guan WJ, Han JL, Orlando L, Ma YH, Jiang L. EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses., 2019, 36(11): 2591–2603.
[58] Makvandi-Nejad S, Hoffman GE, Allen JJ, Chu E, Gu E, Chandler AM, Loredo AI, Bellone RR, Mezey JG, Brooks SA, Sutter NB. Four loci explain 83% of size variation in the horse., 2012, 7(7): e39929.
[59] Orr N, Back W, Gu J, Leegwater P, Govindarajan P, Conroy J, Ducro B, Van Arendonk JAM, MacHugh DE, Ennis S, Hill EW, Brama PAJ. Genome-wide SNP association-based localization of a dwarfism gene in Friesian dwarf horses., 2010, 41 Suppl 2: 2–7.
[60] Nanaei HA, Esmailizadeh A, Mehrgardi AA, Han JL, Wu DD, Li Y, Zhang YP. Comparative population genomic analysis uncovers novel genomic footprints and genes associated with small body size in Chinese pony., 2020, 21(1): 496.
[61] Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao KY, Zhu L, Padhukasahasram B, Karlins E, Davis S, Jones PG, Quignon P, Johnson GS, Parker HG, Fretwell N, Mosher DS, Lawler DF, Satyaraj E, Nordborg M, Lark KG, Wayne RK, Ostrander EA. A single IGF1 allele is a major determinant of small size in dogs., 2007, 316(5821): 112–115.
[62] Lango AH, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, Willer CJ, Jackson AU, Vedantam S, Raychaudhuri S, Ferreira T, Wood AR, Weyant RJ, Segrè AV, Speliotes EK, Wheeler E, Soranzo N, Park JH, Yang J, Gudbjartsson D, Heard-Costa NL, Randall JC, Qi L, Vernon Smith A, Mägi R, Pastinen T, Liang LM, Heid IM, Luan JA, Thorleifsson G, Winkler TW, Goddard ME, Sin Lo K, Palmer C, Workalemahu T, Aulchenko YS, Johansson A, Zillikens MC, Feitosa MF, Esko T, Johnson T, Ketkar S, Kraft P, Mangino M, Prokopenko I, Absher D, Albrecht E, Ernst F, Glazer NL, Hayward C, Hottenga JJ, Jacobs KB, Knowles JW, Kutalik Z, Monda KL, Polasek O, Preuss M, Rayner NW, Robertson NR, Steinthorsdottir V, Tyrer JP, Voight BF, Wiklund F, Xu JF, Zhao JH, Nyholt DR, Pellikka N, Perola M, Perry JRB, Surakka I, Tammesoo ML, Altmaier EL, Amin N, Aspelund T, Bhangale T, Boucher G, Chasman DI, Chen C, Coin L, Cooper MN, Dixon AL, Gibson Q, Grundberg E, Hao K, Juhani Junttila M, Kaplan LM, Kettunen J, König IR, Kwan T, Lawrence RW, Levinson DF, Lorentzon M, McKnight B, Morris AP, Müller M, Suh Ngwa J, Purcell S, Rafelt S, Salem RM, Salvi E, Sanna S, Shi JX, Sovio U, Thompson JR, Turchin MC, Vandenput L, Verlaan DJ, Vitart V, White CC, Ziegler A, Almgren P, Balmforth AJ, Campbell H, Citterio L, De Grandi A, Dominiczak A, Duan JB, Elliott P, Elosua R, Eriksson JG, Freimer NB, Geus EJC, Glorioso N, Shen HQ, Hartikainen AL, Havulinna AS, Hicks AA, Hui J, Igl W, Illig T, Jula A, Kajantie E, Kilpeläinen TO, Koiranen M, Kolcic I, Koskinen S, Kovacs P, Laitinen J, Liu JJ, Lokki ML, Marusic A, Maschio A, Meitinger T, Mulas A, Paré G, Parker AN, Peden JF, Petersmann A, Pichler I, Pietiläinen KHP, Pouta A, Ridderstråle M, Rotter JI, Sambrook JG, Sanders AR, Schmidt CO, Sinisalo J, Smit JH, Stringham HM, Bragi Walters G, Widen E, Wild SH, Willemsen G, Zagato L, Zgaga L, Zitting P, Alavere H, Farrall M, McArdle WL, Nelis M, Peters MJ, Ripatti S, van Meurs JBJ, Aben KK, Ardlie KG, Beckmann JS, Beilby JP, Bergman RN, Bergmann S, Collins FS, Cusi D, den Heijer M, Eiriksdottir G, Gejman PV, Hall AS, Hamsten A, Huikuri HV, Iribarren C, Kähönen M, Kaprio J, Kathiresan S, Kiemeney L, Kocher T, Launer LJ, Lehtimäki T, Melander O, Mosley TH, Musk AW, Nieminen MS, O'Donnell CJ, Ohlsson C, Oostra B, Palmer LJ, Raitakari O, Ridker PM, Rioux JD, Rissanen A, Rivolta C, Schunkert H, Shuldiner AR, Siscovick DS, Stumvoll M, Tönjes A, Tuomilehto J, van Ommen GJ, Viikari J, Heath AC, Martin NG, Montgomery GW, Province MA, Kayser M, Arnold AM, Atwood LD, Boerwinkle E, Chanock SJ, Deloukas P, Gieger C, Grönberg H, Hall P, Hattersley AT, Hengstenberg C, Hoffman W, Lathrop GM, Salomaa V, Schreiber S, Uda M, Waterworth D, Wright AF, Assimes TL, Barroso I, Hofman A, Mohlke KL, Boomsma DI, Caulfield MJ, Cupples LA, Erdmann J, Fox CS, Gudnason V, Gyllensten U, Harris TB, Hayes RB, Jarvelin MR, Mooser V, Munroe PB, Ouwehand WH, Penninx BW, Pramstaller PP, Quertermous T, Rudan I, Samani NJ, Spector TD, Völzke H, Watkins H, Wilson JF, Groop LC, Haritunians T, Hu FB, Kaplan RC, Metspalu A, North KE, Schlessinger D, Wareham NJ, Hunter DJ, O'Connell JR, Strachan DP, Wichmann HE, Borecki IB, van Duijn CM, Schadt EE, Thorsteinsdottir U, Peltonen L, Uitterlinden AG, Visscher PM, Chatterjee N, Loos RJF, Boehnke M, McCarthy MI, Ingelsson E, Lindgren CM, Abecasis GR, Stefansson K, Frayling TM, Hirschhorn JN. Hundreds of variants clustered in genomic loci and biological pathways affect human height., 2010, 467(7317): 832–838.
[63] Boyko AR, Quignon P, Li L, Schoenebeck JJ, Degenhardt JD, Lohmueller KE, Zhao KY, Brisbin A, Parker HG, vonHoldt BM, Cargill M, Auton A, Reynolds A, Elkahloun AG, Castelhano M, Mosher DS, Sutter NB, Johnson GS, Novembre J, Hubisz MJ, Siepel A, Wayne RK, Bustamante CD, Ostrander EA. A simple genetic architecture underlies morphological variation in dogs., 2010, 8(8): e1000451.
[64] Flori L, Fritz S, Jaffrézic F, Boussaha M, Gut I, Heath S, Foulley JL, Gautier M. The genome response to artificial selection: a case study in dairy cattle., 2009, 4(8): e6595.
[65] Gansu Agricultural University, eds. Horse Raising. Beijing: Agriculture Press, 1981.
甘肃农业大学主编. 养马学. 北京: 农业出版社, 1981.
[66] (English) Edwards EH. Eyewitness handbooks-horse. Beijing: Chinese Friendship Press Co., 1998.
(英)爱德华兹. 猫头鹰出版社译. 全世界100多种马匹的彩色图鉴. 北京: 中国友谊出版公司, 1998.
The origin and domestication history of domestic horses and the domestication characteristics of breeds
Meng Fu, Yan Li
The horse () was domesticated thousands of years after dog, cattle, pig, sheep, and goat. Importantly, it represents the domestic animal that mostly impacted the development of human civilization. Its excellent loading and moving ability prompted the changes from fixed farming mode into mobile sharing mode. Accordingly, its domestication history deserves considerable attention. So far, many issues have long been controversial, due to the extinction of the closest wild relatives and the dramatic reduction of genetic diversity. With the continuous development of sequencing technology and the utilization of ancient samples, we got more clues to the origin and domestication process. In this review, we summarize 1) current progresses on the domestication history revealed by nuclear genes, mtDNA, Y chromosome, and ancient DNA, 2) the characteristics of population structure and diversification among modern breeds, 3) the genetic basis of important phenotypes, such as coat color, speed, and body size. The overall aim of the review is to provide in-depth insights into the studies of horse domestication, the preservation and utilization of genetic resources, the direction of breeding improvement, and the development of modern horse industry in future.
horse; domestication; origin; phenotype
2021-07-19;
2021-11-11;
2022-01-27
中国科学院先导A项目(编号:XDA2004010302),国家自然科学基金项目(编号:32070600)和云南省中青年学术带头人后备人才基金项目(编号:2018HB033)资助[Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA2004010302), the National Natural Science Foundation of China (No. 32070600) and the Young Academic and Technical Leader Raising Foundation of Yunnan Province (No.2018HB033)]
付孟,在读硕士研究生,专业方向:动物学。E-mail: 2461849250@qq.com
李艳,研究员,博士生导师,研究方向:家养动物的起源与驯化。E-mail: liyan0910@ynu.edu.cn
10.16288/j.yczz.21-260
(责任编委: 施鹏)