Ca2GdNbO6: Sm3+,M+(M=Li+,Na+,K+)荧光粉的合成及性能研究

2022-03-18 22:19张鑫崔瑞瑞袁高峰王旭邓朝勇

张鑫 崔瑞瑞 袁高峰 王旭 邓朝勇

摘 要:为了研究Li+,Na+,K+离子掺杂对Ca2GdNbO6: 0.03Sm3+荧光粉发光性能的影响,本文采用高温固相反应法成功制备了Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)荧光粉。通过X射线衍射仪测量并分析了荧光粉的晶体结构,结果表明,Li+,Na+,K+离子成功掺入Ca2GdNbO6: 0.03Sm3+晶格。通过扫描电子显微镜测量了荧光粉的微观形貌,从图谱中可以看出,Na+离子掺入Ca2GdNbO6: 0.03Sm3+荧光粉时,其晶粒发育最完整。通过荧光光谱仪测量了荧光粉的发光性能,结果说明,荧光粉在4G5/2→6H7/2(602 nm)跃迁处发射峰最强,且Na+离子作为电荷补偿剂时发射强度最好。制备的荧光粉CIE色坐标集中在橙红色中心区域,与国际照明委员会规定的标准色坐标非常接近,表明Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)荧光粉在WLEDs领域是一种具有应用潜力的发光材料。

关键词:荧光粉;高温固相法;微观形貌;发光性能

中图分类号:TB33

文献标志码:A

白光发光二极管(white light-emitting diodes, WLEDs)作为固态光源在照明领域得到迅速的发展,因具有寿命长、功耗低及环境友好等优点被视为传统照明设备的替代品[1-3]。由于能源危机、环境污染和社会可持续发展等问题,预计WLEDs将在不同场合具有不同的应用和在未来具有更大的应用潜力[4]。目前,市场上WLEDs的获取主要有两种方式:一种是通过近紫外芯片激发红、绿、蓝三基色荧光粉发出白光;另一种是蓝色LED芯片结合黄色荧光粉YAG:Ce3+获得白光[5-6]。然而,通过第二种方法获得的白光由于缺乏红色成分,导致过高的相关色温和较低的显色指数,这有效的阻止了它们在固态照明领域的应用[7]。为了解决这个问题,许多研究人员研究了具有发光特性良好的红色或者橙红色发光材料,从而促进WLEDs在固态照明具有更广泛的应用。

在稀土离子中,Sm3+离子作为激活剂被广泛应用在各种无机化合物中。例如:硅酸盐、铌酸盐、磷酸盐等。双钙钛矿结构的铌酸盐具有优异的物理性质和热稳定性,并能为发光中心提供一个良好的晶体环境,因此选择Ca2GdNbO6作为基质。激活剂与基质结合后通过高温固相反应等方法形成的荧光粉可应用在WLEDs照明领域[8-11]。许多研究人员已经研究并报道了关于Sm3+离子掺杂铌酸盐的荧光粉,例如YNbO4: Sm3+[12],Ca2GdNbO6: Sm3+[13],BaNb2O6: Sm3+[14]。虽然Ca2GdNbO6: Sm3+荧光粉已有相关报道,对该荧光粉进行相关研究时发现其发光性能不够理想。因此,考虑使用Li+、K+、Na+离子作为电荷补偿掺杂Ca2GdNbO6: 0.03Sm3+荧光粉,从而进一步提高其发光强度。

本文通过高温固相反应法,成功制备了铌酸盐为基质的Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)橙红色荧光粉。详细研究了Li+,Na+,K+离子掺杂Ca2GdNbO6: 0.03Sm3+荧光粉时,其晶体结构、微观形貌和发光性能的影响。试验结果表明Li+,Na+,K+离子的掺入改善了基质中的缺陷,有效提升了Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)荧光粉的发光性能。其中,Na+离子作为电荷补偿时荧光粉发光性能最好,为WLEDs含有红色成分提供一种新的选择和应用。

1 试验

1.1 样品制备

采用高温固相反应法,成功合成了Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)橙红色荧光粉。样品所需原材料分别为CaCO3(99.99%), Gd2O3(3.5N), Nb2O5(4N), Sm2O3(3N), Li2CO3(AR), Na2CO3(AR)和K2CO3(AR)。使用天平对原料进行精准称量后,倒入玛瑙研钵中充分研磨45 min。将充分研磨后的样品转移到高温烧结炉中,在温度1 300 ℃的条件下煅烧6 h。待煅烧结束冷却至室温后取出样品,再次用玛瑙研钵研磨3 min得到最终样品。

1.2 性能表征

Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)荧光粉的物相结构通过日本理学Max-RA型X射线衍射仪(X-ray diffractometer, XRD)进行测试;微观形貌通过日立公司SU-8100型扫描电子显微镜(scanning electron microscope, SEM)进行观察;激发和发射光谱使用HORIBA公司FluoroMax-4型荧光光谱仪进行测试和分析。在本试验中,所有样品的测试均在室温下进行。

2 结果与讨论

2.1 物相分析

图1所示为Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)荧光粉的XRD图谱。从图1中可以观察到,样品中存在细微的杂峰,它们分别为Gd2O3和Nb2O5。在图1中,Ca2GdNbO6: 0.03Sm3+荧光粉和掺杂Li+,Na+,K+离子荧光粉的衍射峰均与标准卡片(JCPDS No.89-1438)相匹配,结果表明少量掺杂的Li+,Na+,K+离子进入到晶体内部并没有对该晶体结构产生明显的影响。通过XRD图谱可知,Li+,Na+,K+离子成功掺入Ca2GdNbO6: 0.03Sm3+荧光粉中,所有样品均属于空间群为P21/n的单斜晶系钙钛矿结构。

2.2 Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)的微观形貌

图2所示为Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)熒光粉的微观形貌。由图2可知,制备的样品颗粒半径大约在1~3 um范围,颗粒饱满且形状为椭圆形。从图2(a)中观察到,未掺杂Li+,Na+,K+离子时,样品表面存在未充分反应的化合物小颗粒。当在Ca2GdNbO6: 0.03Sm3+荧光粉中掺入Li+,Na+,K+离子时,样品颗粒更饱满、粒径进一步增大。其中,当Na+离子掺入Ca2GdNbO6: 0.03Sm3+荧光粉时样品晶粒发育最完整,表面最光滑。在制备过程中对样品进行精准称量和进行充分研磨并且具有适宜的烧结温度,能使获得的样品形貌更加优异。

2.3 Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)的激发光谱

图3所示为在602 nm波长监测下,Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)荧光粉的激发光谱。从图3中可以观察到,掺杂不同Li+,Na+,K+离子明显提升了该荧光粉的激发强度,这是因为Li+,Na+,K+离子作为电荷补偿改善了基质中的缺陷。在该荧光粉中,掺杂Li+,Na+,K+离子几乎不影响激发峰的形状和位置,且掺杂Na+离子时其激发光谱最强。由图3中可知,由于Sm3+离子的4f—4f跃迁,在350~500 nm范围内的激发峰分别是6H5/2→4D3/2(363 nm), 6H5/2→6P7/2(377 nm), 6H5/2→6P3/2(406 nm), 6H5/2→6P5/2(420 nm), 6H5/2→4G9/2(438 nm)和6H5/2→4I9/2(470 nm)跃迁[3]。Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)荧光粉在6H5/2→6P3/2(406 nm)跃迁处其激发峰最强,结果表明所制备的样品最佳激发波长为406 nm。

2.4 Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)的发射光谱

图4所示为在406 nm激发监测下,Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)荧光粉的发射光谱。通过图4中观察到,Li+,Na+,K+离子掺杂Ca2GdNbO6: 0.03Sm3+荧光粉时,显著提升了其發光性能。在Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)荧光粉中,掺杂离子均没有影响发射峰的形状及位置。由图4中插图知,Na+离子掺杂的荧光粉发射强度最好,且该荧光粉的发射强度遵循Na+大于Li+大于K+。

在发射光谱的波长范围内,Sm3+离子主要有3个不同的发射峰,分别为4G5/2→6H5/2(564 nm), 4G5/2→6H7/2(602 nm)以及4G5/2→6H9/2(649 nm)跃迁[15]。由图4可知,在不同跃迁处其发射强度不同。在564 nm处4G5/2→6H5/2跃迁属于磁偶极跃迁,在602 nm处4G5/2→6H7/2跃迁属于磁偶极和电偶极共同支配的跃迁[16]。Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)荧光粉在4G5/2→6H7/2跃迁处的发光强度大于4G5/2→6H5/2和4G5/2→6H9/2跃迁处的发光强度,结果表明Sm3+离子在4G5/2→6H7/2(602 nm)跃迁处主要占据非反演对称中心。当Sm3+离子在基质中占据非反演对称中心时,4G5/2→6H7/2跃迁主要以电偶极跃迁为主,特征峰发射出橙红光。

2.5 CIE 色度图

荧光粉的颜色通常用CIE色度坐标来描述。对样品进行发射光谱测量后,将发射光谱数据导入在CIE软件中,其荧光粉CIE色度坐标展示在表1。Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)荧光粉的发光颜色如图5所示,Li+,Na+,K+离子掺杂Ca2GdNbO6: 0.03Sm3+荧光粉的发光颜色集中在橙红色中心区域,非常接近国际照明委员会规定的标准色坐标(0.666, 0.333)。

3 结论

通过高温固相反应法,成功合成了Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)橙红色荧光粉。XRD图谱表明,合成的荧光粉晶体结构与标准卡片相匹配。SEM结果显示,Li+,Na+,K+离子掺杂Ca2GdNbO6: 0.03Sm3+荧光粉时颗粒更加饱满、粒径进一步增大。通过激发和发射光谱可知,Li+,Na+,K+离子作为电荷补偿显著提升了该荧光粉的发光强度。在406 nm波长激发监测下,Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)荧光粉在4G5/2→6H7/2(602 nm)跃迁处发射出橙红光,且发射强度遵循Na+>Li+>K+。制备的荧光粉色坐标集中在橙红色区域,非常接近国际照明委员会规定的标准色坐标。研究结果表明,Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)荧光粉在WLEDs照明领域具有潜在的应用前景。

参考文献:

[1]SUN L L, DEVAKUMAR B, LIANG J, et al. A broadband cyan-emitting Ca2LuZr2(AlO4)3:Ce3+ garnet phosphor for near-ultraviolet-pumped warm-white light-emitting diodes with an improved color rendering index [J]. Journal of Materials Chemistry C, 2020, 8(3): 1095-1103.

[2] SUN W Z, JIA Y L, PANG R, et al. Sr9Mg1.5(PO4)7:Eu2+: a novel broadband orange-yellow-emitting phosphor for blue light-excited warm white LEDs [J]. ACS Applied Materials & Interfaces, 2015, 7(45): 25219-25226.

[3] ZHANG X, CUI R R, ZHANG J, et al. A novel red-emitting phosphor Ca2GdNbO6:Eu3+: influences of sintering temperature and Eu3+ concentration on the photoluminescence [J]. ECS Journal of Solid State Science and Technology, 2021, 10(2): 026003.

[4] SHAO B Q, HUO J S, YOU H P. Prevailing strategies to tune emission color of lanthanide-activated phosphors for WLEDs applications [J]. Advanced Optical Materials, 2019, 7(13): 1900319.

[5] 王新悦, 李菁华, 崔瑞瑞, 等. Li+掺杂ZnNb2O6:Eu3+制备及发光性能研究 [J]. 人工晶体学报, 2019, 48(11): 2111-2118.

[6] ZHANG Z Z, SHI Y R, LI C, et al. Enhanced photoluminescence emission and thermal stability in diamond-like framework contained K(Sr, Ba)BP2O8:Eu3+ red phosphors via composition modification [J]. Journal of Luminescence, 2020, 219: 116885.

[7] DU P, HUANG X Y, YU J S. Facile synthesis of bifunctional Eu3+-activated NaBiF4 red-emitting nanoparticles for simultaneous white light-emitting diodes and field emission displays [J]. Chemical Engineering Journal, 2018, 337: 91-100.

[8] PORTAKAL-UCAR Z G, DOGAN T, AKCA S, et al. Effect of Sm3+ and Mn2+ incorporation on the structure and luminescence characteristics of Zn2SiO4 phosphor [J]. Radiation Physics and Chemistry, 2021, 181: 109329.

[9] SI J Y, YANG N, XU M J, et al. Structure and tunable luminescence in Sm3+/Er3+ doped host-sensitized LaNbO4 phosphor by energy transfer [J]. Ceramics International, 2020, 46(18): 28373-28381.

[10]CUI R R, GUO X, DENG C Y. A novel Ba3Bi2(PO4)4:Sm3+ orange red-emitting phosphor: influences of sintering temperature and Sm3+ concentration on microstructures and photoluminescence properties [J]. Journal of Luminescence, 2020, 224: 117233.

[11]李兆, 曹靜, 王永锋, 等. NaGd(WO4)2:Sm3+荧光粉的制备及光致发光 [J]. 稀土, 2021, 42(2): 25-29.

[12]南赏瑞, 付振东, 张云霄, 等. Tb3+,Sm3+掺杂的YNbO4多色荧光材料的制备及发光性能 [J]. 无机化学学报, 2021, 37(2): 229-234.

[13]HUA Y B, YU J S. Synthesis and luminescence properties of reddish-orange-emitting Ca2GdNbO6:Sm3+ phosphors with good thermal stability for high CRI white applications [J]. Ceramics International, 2021, 47(5): 6059-6067.

[14]VISHWAKARMA A K, JAYASIMHADRI M. Pure orange color emitting Sm3+ doped BaNb2O6 phosphor for solid-state lighting applications [J]. Journal of Luminescence, 2016, 176(5): 112-117.

[15]游潘丽. Li2BaSiO4:Sm3+荧光粉的制备与性能研究 [J]. 光学学报, 2015, 35(5): 267-272.

[16]陈浩, 刘琳, 徐飞翔, 等. Sm3+掺杂LnNbO4(Ln=La,Y)红色荧光粉的性能分析 [J]. 厦门理工学院学报, 2020, 28(5): 81-88.

(责任编辑:于慧梅)

Preparation and Luminescent Properties of Phosphors

Ca2GdNbO6: Sm3+,M+(M=Li+,Na+,K+)

ZHANG Xin, CUI Ruirui, YUAN Gaofeng, WANG Xu, DENG Chaoyong*

(Key Laboratory of Electronic Composites of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China)

Abstract:

In order to study the effect of Li+,Na+,K+ ions doping on the luminescence of Ca2GdNbO6: 0.03Sm3+ phosphors, Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+) phosphors were successfully synthesized by high temperature solid-state reaction. The crystal structure of the phosphor was measured and analyzed by X-ray diffractometer. The results show that Li+,Na+,K+ ions were successfully doped into Ca2GdNbO6: 0.03Sm3+ lattices. The micromorphology of the phosphors was measured by scanning electron microscope display it can be seen from the results that when Na+ ions are doped into Ca2GdNbO6: 0.03Sm3+ phosphors, the grain growth is the most complete. The luminescence properties of phosphors were mersured by fluorescence spectrometer and the results illustrate that the emission peaks of phosphors are the strongest during the transition of 4G5/2→6H7/2(602 nm), and the emission intensity is the best when Na+ ions were used as charge compensator. The CIE color coordinates of the prepared phosphors are concentrated in the central area of orange-red, which are very close to the standard coordinates specified by the international commission on illumination, indicating that Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+) phosphors are potential luminescent materials in the field of WLEDs.

Key words:

phosphors; high temperature solid-state method; microtopography; optical property

2596500520391