郑万刚 ,初 伟,崔文富,管雪倩,曹嫣镔,于田田,汪庐山
(1.中国石化胜利油田分公司石油工程技术研究院,山东东营 257000;2.山东省稠油开采技术重点实验室,山东东营 257000;3.中国石化胜利石油管理局有限公司博士后科研工作站,山东东营 257001;4.中国石化胜利油田分公司胜利采油厂,山东东营 257051;5.中国石化胜利油田分公司,山东东营 257001)
稠油是中国重要的石油资源,以热采吞吐和水驱开发为主,其中水驱稠油受油水流度比的影响,易发生指进和水窜现象,驱替不均衡,总体采收率不足20%。稠油化学降黏冷采技术因其工艺简单、配套设备少、低碳环保等优势,备受中外相关技术人员的关注[1-2]。现有的降黏剂主要以常规表面活性剂为主,其主要作用原理是在强搅拌作用下乳化分散原油,使油与油之间的摩擦力转变为水与水之间的摩擦力,实现乳化降黏目的[3-4]。此类降黏剂水溶液黏度一般与水接近,致使驱替过程中仍然会出现指进和绕流现象,大部分的降黏剂无法有效接触到原油[5-6]。中外研发的化学降黏剂存在油藏低动力条件下降黏效果差、成本高以及油藏适应性差等诸多问题,因此主要用于近井解堵和辅助井筒举升等工艺[7-8]。针对该问题,近年来,聚合物型表面活性剂用于稠油降黏已成为重点研究方向[9]。
渗透降黏驱油剂是一种兼顾微动力降黏和水相增黏等多功能于一体的高分子型降黏驱油剂,可在500 mg/L 条件下降低稠油黏度95%以上,同时具有优异的润湿改性功能,洗油效果显著。该降黏驱油剂已形成了工业化产品,并成功应用于现场试验,初步取得较好的增油效果,为进一步推广该降黏驱油剂的现场应用,有必要开展提高采收率机理研究。
中外用于研究降黏驱油机理的技术方法以微观驱油为主[10-12],LENORMAND 通过微观刻蚀模型驱替实验,研究孔隙级的渗流规律及分形描述方法[13];CHATIZE 等认为水驱后剩余油的微观分布分为占据1 个孔隙空间的单液滴、占据2 个孔隙空间的双液滴、占据3 个孔隙空间以上的枝状液滴等3种形态[14]。根据微观剩余油流动形态、赋存位置以及油水接触关系,将其分为膜状、滴状、柱状、多孔及簇状等5类流态[15]。
医用CT扫描技术研究降黏驱油机理鲜有报道,采用CT 扫描技术可对驱替过程的含油饱和度进行全方位监测。为此,笔者依托该技术,从介观层面对渗透降黏驱油剂在油藏条件下与稠油作用机理进行深入研究,揭示其通过形成油包水乳液扩大波及、润湿改性提高洗油效率以及乳化分散性能提高渗流能力的提高采收率机理,为该渗透降黏驱油剂进一步推广应用提供理论指导。
实验材料 实验用油为胜利油区滨南采油厂某区块原油,其在油藏温度(50 ℃)下的地面测试黏度为2 742 mPa·s(含乳化水),属于普通稠油,油乳化含水率为22.4%。实验用水为胜利油区滨南采油厂某区块注入水(过滤、曝氧),矿化度为23 583 mg/L,钙镁离子质量浓度为457 mg/L。
实验所用渗透降黏驱油剂为自主研发,其分子式如图1所示。
图1 渗透降黏驱油剂分子结构Fig.1 Molecular structure of permeable viscosity-reducing oil displacement agent
实验仪器 上海无陌光学仪器有限公司生产的偏光显微镜,德国IKA公司生产的高速搅拌器,江苏天翎仪器有限公司生产的恒温水浴锅,苏州朗润医疗系统有限公司生产的CT扫描仪。
刻蚀模型机理实验 采用微流控驱替芯片模型(图2)开展实验研究。注入速率为0.1 μL/min,所对应的矿场驱替速度为1 m/d。每组实验进行多次重复,并在高倍目镜下观察微观驱替现象,在低倍目镜下采集视频用于定量分析油相流态。
图2 微观刻蚀模型构建Fig.2 Micro-etching model construction
CT 扫描双管驱油实验 实验中所用设备有医用CT扫描仪、岩心夹持器、加温加压循环设备、驱替泵以及连接管线、四通阀和药剂罐等。实验所用岩心为双层岩心,2 层岩心的渗透率分别为1.25 和3.75 mD,渗透率级差为3,尺寸为30 cm×4.5 cm×4.5 cm。
实验流程主要为:首先将岩心抽真空并饱和水,然后将岩心饱和油,再进行水驱,随后进行渗透降黏驱油剂驱,最后进行后续水驱,每一步都进行1次或多次CT 扫描测试并得到相应测试数据。实验温度为油藏温度(50 ℃),所用稠油黏度为275 mPa·s(脱水后)。当水驱至含水率为100%时,渗透降黏驱油剂注入量为0.5 PV,后续水驱至含水率达到100%,驱替速度为0.2 mL/min。
可对饱和油、水驱、渗透降黏驱油剂驱等全过程进行CT扫描,得到驱替过程中地层原油饱和度场的分布规律,从介观层面对提高采收率机理进行研究。由图3 可知,整个水驱过程(注入量为0~3.3 PV)采收率约为31%,此时水相主要沿高渗透通道流动,高渗透层与低渗透层产量比接近于4∶1,与其渗透率级差基本一致。而在渗透降黏驱油剂驱(注入量为0.33~0.83 PV)过程中,出现2 个采油峰值。注入初期(注入量为0~0.4 PV),高、低渗透层产出油量大幅增加,此时出现第1个采油峰值,采出油以纯油相为主;进一步注入渗透降黏驱油剂溶液(注入量为0.4~1.0 PV),低渗透层采出油量大幅增加,超过高渗透层产出油量,此时得到第2个采油峰值,非均质模型中的高、低渗透层得到均衡动用,采收率从31%提升至64.1%。
图3 含水率和采收率与注入量的关系Fig.3 Relationships between water cut,recovery and injected volume
为探究高、低渗透层均衡动用的原理,将不同驱替时期的岩心含油饱和度进行了全过程扫描,结果显示,在降黏驱阶段1后,高渗透层的前端含油饱和度与水驱相比不降反升,说明此时油墙产生,致使降黏驱阶段1 出现了纯油相的产出油。结合图4可以看出,后续注入的渗透降黏驱油剂继续推动乳液流动,低渗透层产出油量甚至高于高渗透层的产出油量,分析其原因包括2个方面:①乳液的卡堵作用致使低渗透层的剩余油进一步得到动用。②高渗透层由于前期动用程度高,含油饱和度大幅下降后,剩余油采出困难。
图4 高渗透层全流程的含油饱和度变化Fig.4 Variation curve of oil saturation in high-permeability layer in whole process
利用微观可视化驱油实验,可直观观察到药剂与原油在油藏条件下的渗流状态及作用规律[16]。通过观察渗透降黏驱油剂与原油在微观刻蚀模型中形成的不同流体形态,研究其在模拟油藏多孔介质中的驱油机理。微观驱替实验过程中,首先观察到渗透降黏驱油剂溶液与原油形成油包水乳液,继续驱替后,渗透降黏驱油剂溶液通过改变润湿性和乳化分散等作用起到优异的降黏洗油性能。
2.2.1 初期形成油包水乳液的渗透驱油机理
油包水乳液中油为连续相,可以较好地渗透进微流控模型中的油相,从而有效扩大波及范围,提高波及效率和原油采出程度。从图5 中可以看出,油包水乳液渗透波及的油相范围极大,这是由于所形成的油包水乳液的黏度远大于渗透降黏驱油剂溶液黏度和纯油相黏度,因此扩大了驱替范围,抑制了渗透降黏驱油剂溶液的指进效应,从而起到提高采收率的效果。
图5 油包水乳液驱油效果Fig.5 Oil displacement effect of W/O emulsion
2.2.2 后续渗透降黏驱油剂溶液对油包水乳液的剪切作用
从图6 中可以看到,后续驱油剂溶液对油包水乳液的剪切作用将高黏的W/O 相剪切成分散的液滴有助于油包水乳液的流动与运移。随着渗透降黏驱油剂溶液的持续注入,与前缘油包水乳液接触的降黏驱油剂溶液大幅增多,油相和水相的质量比大幅增大,导致前缘的油包水乳液被进一步剪切成W/O/W 型乳液,使不易流动的W/O 相转变成了更易流动的乳液滴,从而将微流控芯片中的原油驱替出来。
图6 W/O型乳液变为W/O/W型乳液Fig.6 Transformation from W/O to W/O/W emulsion
2.2.3 润湿剥离机理
渗透降黏驱油剂主要是通过体系在岩石表面的吸附来改变润湿性。通过毛细管中的油水界面微流控实验可以发现,油水界面上形成了既亲油又亲水的微乳液相。根据微乳液溶胀理论[17-19],表面活性剂形成的界面膜可使界面张力大大下降,甚至暂时降低到零,以至产生瞬时负界面张力。由于负界面张力是不可能存在的,因此体系具有自发扩张界面的趋势,使更多的表面活性剂吸附到界面,瞬时负界面张力导致了体系自发扩张界面,使界面张力恢复到正值,形成了微乳。因此,可以推测出微乳液相是造成油湿界面润湿性改变的主要原因。从图7 和图8 中可以发现,渗透降黏驱油剂溶液具有显著润湿改性功能,由于形成的微乳液相既亲油又亲水,因此,导致稠油在岩石上的黏附力下降,甚至被剥离,实现剩余油的有效动用。
图7 渗透降黏驱油剂改变润湿性机理Fig.7 Mechanism of changing wettability of permeable viscosity-reducing oil displacement agent
图8 油膜剥离作用机理Fig.8 Mechanism of oil film stripping
2.2.4 乳化分散机理
渗透降黏驱油剂与油相能够形成低界面张力体系,在多孔介质流动过程中,较易受到外界扰动的影响使油相被剪切成小液滴。根据多孔介质孔喉结构不同,乳化分散的形式主要包括汇流中的乳化分散、拖拽分散、孔喉卡断乳化分散以及分流乳化分散等。经过多重孔喉结构的剪切和卡断作用,形成分散体系的油相在渗透降黏驱油剂溶液中,受表面自由能的影响,普遍以球状流态存在,大幅提高了油相的流动能力,降低渗流阻力(图9)。
图9 乳化分散形态Fig.9 Emulsification dispersion form
2.2.5 剩余油赋存状态分析
实验采用微机图像处理技术对微观刻蚀模型驱替后的剩余油分布进行定量识别[20],对各个类型的剩余油的数量、分布面积等变化情况进行梳理。从图10 和图11 可知,与水驱相比,渗透降黏驱油剂驱后大面积连片簇状剩余油含量大幅降低,从65%下降至5%,说明渗透降黏驱油剂实现了均衡驱替;同时,渗透降黏驱油剂的良好润湿改性剥离原油作用使得膜状和滴状剩余油含量降低。相比来看,多孔状和柱状剩余油的相对含量较多,主要是这2 类剩余油的黏附力过大所造成的。
图10 水驱和渗透降黏驱油剂驱后剩余油分布状态Fig.10 Remaining oil distribution after water flooding and permeable viscosity-reducing agent flooding
图11 剩余油相对含量Fig.11 Relative contents of remaining oil
渗透降黏驱油剂是一种聚合物型表面活性剂,具有提高水相黏度和降低油相黏度的作用,可有效降低油水流度比,扩大波及体积,能大幅提高水驱稠油采收率。采用CT 扫描和微观刻蚀模型驱替实验对渗透降黏驱油剂提高采收率的机理开展分析和探索。非均质模型的CT扫描实验结果表明,渗透降黏驱油剂驱过程中出现了纯油相和乳液相2个采油峰值;全流程的含油饱和度扫描发现,在渗透降黏驱油剂驱初期,驱替模型中出现油墙,使得高、低渗透层得到均衡动用。
微观刻蚀模型驱油实验结果表明,渗透降黏驱油剂在不同驱油阶段会产生不同的产出液形态:注入初期,由于渗透降黏驱油剂水相增黏作用,使得窜流被抑制,造成少量渗透降黏驱油剂溶液进入大量油相中并被包裹乳化形成W/O型乳液,而高黏W/O 型乳液作为驱替相实现了均衡波及;继续注入,W/O 型乳液被进一步剪切成易于流动的W/O/W 型乳液,提高了渗流能力;注入后期,大量的渗透降黏驱油剂溶液与稠油接触,与稠油形成了微乳液相实现油膜的剥离,提高了洗油效率。同水驱相比,渗透降黏驱油剂可显著降低簇状和滴状剩余油的相对含量,说明其具有良好的扩大波及和洗油效果。