专辑导读: 加强大田经济作物栽培措施与环境/资源配置的互作研究、推动产业高效优质发展

2021-12-12 06:48周广生
作物学报 2021年9期
关键词:学报花生作物

周广生 王 晶 蒯 婕 汪 波

专辑导读: 加强大田经济作物栽培措施与环境/资源配置的互作研究、推动产业高效优质发展

周广生 王 晶 蒯 婕 汪 波

华中农业大学植物科学技术学院/ 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070

油菜、大豆、花生、棉花是食用油、饲料蛋白和纺织原料的重要来源, 是我国主要的大田经济作物。但目前, 我国食用植物油、大豆及棉花的自给率均处于较低水平, 产需矛盾尤为突出[1-3]; 且其关键品质也低于其他主产国, 市场竞争力不强。此外, 这些经济作物在各主产区还常常遭遇干旱、洪涝、高温、低温、盐碱等不良环境, 严重影响了作物的优质高效生产。“十三五”国家重点研发计划项目“大田经济作物优质丰产的生理基础与调控”针对各主产区的生态特点和生产中的主要问题, 围绕油菜、大豆、花生、棉花的光温水肥高效利用; 栽培措施与资源配置的互作及调控、抗逆稳产及反馈机制等科学问题展开研究, 旨在创新优质高产、提质增效的理论和方法, 提升我国主要经济作物科技创新能力和国际竞争力, 保持可持续发展和农民增收。《作物学报》以专辑形式集中刊发该项目支持的17篇论文, 方便相关研究工作者了解最新研究动态。

适宜的品种、合理的栽培措施不仅是作物高产与稳产的重要保证, 还可以提高肥料利用率, 减少化肥用量, 平衡高产、优质与环境友好间的关系[4-10]。作物产量既取决于光合源同化物的生产能力, 又取决于库的大小和库容能力, 协调的源库关系, 扩源增库才能保证作物的高产[11-13]。“北方主栽花生品种的源库特征及其分类”一文[13]以中国北方主栽的13个花生品种为材料, 对单株叶面积等18个源库性状进行分析, 对比不同品种的源库性状差异和产量差异。研究指出在花生品种培育和高产栽培上, 应该控制叶源大小, 防止源冗余现象限制产量; 通过提高有效果比例和荚果饱满度, 增加荚果产量, 获得高产。不同栽培措施间常通过互作方式影响作物的生长发育[14-15]。“种植密度对油菜正反交组合产量与倒伏相关性状的影响”一文[16]研究种植密度对亲本及正、反交组合产量与倒伏相关性状的影响。研究指出在当前油菜高密度直播生产模式下, 杂交油菜亲本选配推荐方案以高产品种为父本, 抗倒性强的品种为母本进行组配, 可以获得高产、抗倒性强且更适宜密植的杂交油菜品种。当前我国主推花生品种多为直立紧凑型, 适宜密植栽培, 但因其主茎较高, 易倒伏, 农业生产中需喷施外源生长调节剂调控株高[17]。“利用WGCNA鉴定花生主茎生长基因共表达模块”一文[18]以不同主茎高花生品种为材料, 利用转录组测序揭示出细胞壁及次生细胞壁纤维素和木质素生物合成基因的表达差异, 并鉴定到关联模块内核心调控因子, 对花生品种选育以及栽培调控具有重要参考意义。“行距、氮肥和甲哌鎓化控对黄河流域棉区棉花冠层结构及微环境的影响”一文[19]采用黄河流域棉区机采棉的适宜种植密度, 在等密度下鉴别行距间的差异及行距与氮肥和甲哌鎓化控的互作, 从而为黄河流域棉区机采棉配套栽培措施的制定提供依据。研究指出, 黄河流域棉区机采棉采用92 cm等行距种植, 施氮量可在105~210 kg hm-2之间进一步优化, 而DPC剂量以140~280 g hm-2为宜。饲料玉米与大豆间作模式下, 耐荫大豆品种的选用尤为重要。“饲用大豆品种耐荫性鉴定指标筛选及综合评价”一文[20]独辟蹊径, 采用结荚期遮光处理来模拟间作模式下的遮阴效果, 结果表明该技术完全可以用于玉米间作大豆模式下耐荫材料的快速评价与筛选。钙肥和氮肥的施用是影响花生生长发育和产量形成的重要栽培措施[21-24]。“钙与氮肥互作对花生干物质和氮素积累分配及产量的影响”一文[25]采用单粒播种方式, 在不同试验样地设置不同的施钙量和施氮量, 分析钙肥和氮肥及其互作对花生干物质和氮素积累分配及荚果产量的影响。研究指出钙肥增施是提高氮肥利用效率, 增加花生结果数和百果重、促进稳产高产的重要途径。该结果为花生减氮协同增效栽培提供了重要理论依据。磷是作物必需的营养元素之一, 但土壤中能被作物吸收利用的有效磷仅占土壤全磷的1%; 且有研究表明, 磷铁2个营养元素间存在着拮抗效应, 土壤中磷含量与植物铁吸收密切相关[26]。探索植物体内磷铁平衡规律, 将会为磷铁肥的合理施用提供理论证据。“不同磷效率大豆农艺性状与磷/铁利用率对磷素的响应”一文[27]以磷高效和磷低效大豆品种为试验材料, 采用沙培方式和裂区设计研究不同P︰Fe比对大豆生物学性状的影响及基因型差异。结果发现在铁供应充足情况下, 无论是磷高效还是磷低效基因型施P︰Fe比达到1︰1时整体表现最好。与传统的栽培领域研究相比, 上述研究在试验思路上具有一定的新意, 研究结果为实现大田经济作物优质丰产、资源高效利用提供了品种选用依据及便于操作的栽培新技术。

作物的生长发育要求一定的温度范围。在适宜的温度下, 作物不仅生命活动旺盛, 而且生长发育迅速。温度过高或过低都会影响作物的正常生长[28-32]。低温胁迫是影响我国花生发芽出苗的重要因素, 不论是北方地区的“倒春寒”, 还是华南地区的“秋季冷害”等常引起花生低温烂种, 导致严重减产[33]。“花生耐冷综合评价体系构建及耐冷种质筛选”一文[34]对68个东北地区主栽的花生品种进行了耐冷性评价, 鉴定出适合东北地区种植的在萌发期和幼苗期均耐冷的农花5号及冷敏感型品种阜花18号, 为高寒地区的花生栽培及耐冷机制研究提供了宝贵资源。高油酸花生由于种子亚油酸含量显著降低, 具有更好的加工与储藏品质, 已逐渐成为我国当前的主推品种。通常认为高油酸花生对低温敏感, 耐冷性差, 因此不适宜在高纬度与高海拔等寒冷地区种植[33]。花生高油酸性状由2对Δ12脂肪酸脱氢酶(fatty acid desaturase 2, FAD2)基因(和)发生隐性突变导致[35]。“花生基因启动子及5¢-UTR内含子功能验证及其低温胁迫应答”一文[36]发现, 在低温胁迫条件下,基因调控区启动活性明显受到抑制, 导致下游基因表达受限, 这可能是花生对冷胁迫敏感的一个因素。但是, “低温胁迫对普通和高油酸花生种子萌发的影响研究”一文[37]则发现, 种子高油酸并非决定其萌发期耐寒性的关键因素, 而遗传背景对花生耐寒性的影响更大, 可能与Δ12脂肪酸脱氢酶基因的其他拷贝在低温诱导下上调表达有关。上述研究结果为培育耐寒能力强的高油酸花生品种提供了理论依据。“过氧化氢浸种对花生种子发芽及生理代谢的影响”一文[38]则发现利用过氧化氢(H2O2)浸种可以显著提高低温下花生的发芽能力, 这可能与其介导的抗氧化酶、ABA和GA以及贮藏物质的分解来促进种子萌发有关。不同于花生, 棉花生产中常常受到高温的胁迫。高温胁迫导致的源能力不足被认为是高温条件下棉花减产降质的重要原因之一[39-41]。“棉花叶片响应高温的差异与夜间淀粉降解密切相关”一文[42]利用13C标记技术, 从光合产物暂时储存和转运能力入手, 系统研究胁迫下和胁迫解除后不同热敏感性棉花叶片源能力响应花铃期短期高温胁迫的差异。结果表明, 耐热型棉花品种的叶片在高温胁迫发生时及胁迫恢复后表现出更强的抵御高温逆境能力及更好的恢复能力, 且与其夜间淀粉降解能力即叶片最小(夜间)淀粉含量增加幅度较小密切相关。这些结果初步揭示了花生耐低温和棉花耐高温的生理机制, 为选育和筛选适宜品种、提出合理的栽培调控技术提出了新的参考依据。

受全球气候变暖的影响, 各主产区极端天气发生频率增多, 降水年际间和季节间分布不均匀, 干旱已成为严重影响大田经济作物优质高效生产的主要非生物逆境胁迫[43-46]。褪黑素(melatonin, MT)是内源性的自由基清除剂和抗氧化剂, 能够有效清除过量的活性氧物质, 有效缓解作物逆境胁迫损伤[47]。“外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响”[48]与“外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析”[49]2篇文章分别聚焦外施褪黑素对干旱条件下苗期与鼓粒期大豆生长的影响。研究指出, 施用褪黑素可以显著提高干旱胁迫下大豆气体交换参数、苗期各器官干物质积累量、叶片中抗氧化酶活性和可溶性蛋白含量, 从而缓解大豆苗期的干旱胁迫; 而对于鼓粒期大豆来说, 外源褪黑素可以促进干旱胁迫下β-葡萄糖苷酶基因表达, 提高了L-天冬酰胺和6-磷酸葡萄糖代谢物的含量, 最终也提高了大豆的抗旱性。植物与其生长环境中的微生物关系密切, 两者形成了植物—微生物共生体系统。植物影响着其周围及体内微生物的群落结构, 这些微生物又通过其生命活动影响植物的生长发育, 对植物的生长和适逆性至关重要[50]。“干旱条件下棉花根际真菌多样性分析”[51]与“涝害对不同大豆品种根际微生物群落结构特征的影响”[52]分别对干旱条件下棉花根际真菌群落及淹水条件下2个大豆品种根际细菌群落进行了多样性、群落组成和网络特征行分析。结果表明, 干旱的发生对土壤中真菌的丰度、多样性和群落结构产生显著影响, 棉花根际表现出丰富的真菌群落; 而在淹水条件下, 耐涝基因型与敏感型大豆根际微生物丰度及富集种类存在显著差异。这些结果为利用微生物提高棉花水分利用率与耐旱性、大豆耐涝栽培及育种提供了新的思路。

随着生活水平的逐步提高, 人们的饮食结构也发生了很大变化, 对肉、蛋、奶的需求增加; 消费者对农产品质量安全, 食品多样化和高品质, 食物营养与健康也提出了更高要求。而随着畜牧业的大力发展, 蛋白饲料的紧缺越发突出。中国工程院院士华中农业大学傅廷栋教授创新性提出, 利用麦(及其他早熟作物)收获后的空闲耕地, 复种饲料油菜, 不仅可解决牲畜青饲料缺乏的问题[53-54], 而且可提高油菜生产效益。“无人机多角度成像方式的饲料油菜生物量估算研究”一文[55]探索并评估一种通过无人机平台搭载可见光相机提取饲料油菜生物量的新方法, 为大田作物地上生物量信息的无损高效监测提供了易于实施的解决方案和技术参考。

优质农产品的生产, 不仅需要高产优质品种, 更缺乏配套的栽培调控理论和技术。希望这些论文的发表, 能为我国不同区域主要大田经济作物的丰产、稳产与提质、增效研究提供借鉴, 为提出各作物优质丰产生理基础及栽培调控技术, 创新栽培理论与关键技术, 突破制约各作物产业发展面临的技术瓶颈, 解决产量、品质协同提升的矛盾, 提高种植效益提供新的思路和技术, 为落实党的十九大提出的乡村振兴战略提供有力支撑。

[1] 佚名. 2020年我国食用油自给率力争达40%. 中国油脂, 2016, 41(10): 83.

Anonymous. The self-sufficiency rate of edible oil in China will strive to reach 40% in 2020., 2016, 41(10): 83 (in Chinese).

[2] 陈彧. 中国大豆自给率与大豆供给率研究. 统计与决策, 2020, 36(6): 65–69.

Chen Y. Research on soybean self-sufficiency rate and soybean supply rate in China., 2020, 36(6): 65–69 (in Chinese).

[3] 卢秀茹, 贾肖月, 牛佳慧. 中国棉花产业发展现状及展望. 中国农业科学, 2018, 51: 26–36.

Lu X R, Jia X Y, Niu J H. Development status and prospect of China’s cotton industry., 2018, 51: 26–36 (in Chinese with English abstract).

[4] 姜义平, 肖留斌, 赵静, 谭永安, 邱晨. 栽培模式与施氮量对棉田节肢动物群落结构及稳定性的影响. 新疆农业科学, 2020, 57: 2280–2290.

Jiang Y P, Xiao L B, Zhao J, Tan Y A, Qiu C. Effects of cultivation mode and nitrogen application rate on structure and stability of arthropod community in cotton field., 2020, 57: 2280–2290 (in Chinese with English abstract).

[5] 袁莉民, 周天阳, 陈良, 顾骏飞, 王志琴, 杨建昌. 不同栽培措施对土壤微观结构及水稻产量的影响. 生态环境学报, 2020, 29: 1994–2002.

Yuan L M, Zhou T Y, Chen L, Gu J F, Wang Z Q, Yang J C. Effects of different cultivation measures on soil microstructure and rice yield., 2020, 29: 1994–2002 (in Chinese with English abstract).

[6] 朴琳, 李波, 陈喜昌, 丁在松, 张宇, 赵明, 李从锋. 优化栽培措施对春玉米密植群体冠层结构及产量形成的调控效应. 中国农业科学, 2020, 53: 3048–3058.

Piao L, Li B, Chen X C, Ding Z X, Zhang Y, Zhao M, Li C F. Effects of optimized cultivation measures on canopy structure and yield formation of spring maize under close planting., 2020, 53: 3048–3058 (in Chinese with English abstract).

[7] 袁雨晴, 苟开礼, 王维, 李士敏. 不同栽培措施对黔花生4号产量和经济性状的影响. 耕作与栽培, 2020, 40(3): 42–45.

Yuan Y Q, Gou K L, Wang W, Li S M. Effects of different cultivation measures on yield and economic characters of Qianhua 4., 2020, 40(3): 42–45 (in Chinese).

[8] 张建栋, 黄萌, 宋云生, 孙华, 宋英. 不同栽培措施对双低油菜苏油8号产量与品质的影响. 江苏农业科学, 2020, 48(6): 46–49.

Zhang J D, Huang M, Song Y S, Sun H, Song Y. Effects of different cultivation measures on yield and quality of double low rapeseed Suyou 8., 2020, 48(6): 46–49 (in Chinese).

[9] 毛依琦, 陈蕾, 顾逸彪, 张耗, 刘立军, 王志琴, 杨建昌, 顾骏飞. 栽培措施对超级稻产量及氮肥利用效率的影响. 中国稻米, 2019, 25(4): 8–15.

Mao Y Q, Chen L, Gu Y B, Zhang X, Liu L J, Wang Z Q, Yang J C, Gu J F. Effects of cultivation measures on yield and nitrogen use efficiency of super rice., 2019, 25(4): 8–15 (in Chinese with English abstract).

[10] Wang Y, Pang Y L, Chen K, Zhai L Y, Shen C C, Wang S, Xu J L. Genetic bases of source-, sink-, and yield-related traits revealed by genome-wide association study in Xian rice., 2020, 8: 119–131.

[11] Lyu X M, Zhang Y, Zhang Y X, Fan S J, Kong L G. Source-sink modifications affect leaf senescence and grain mass in wheat as revealed by proteomic analysis., 2020, 20: 257.

[12] Sonnewald U, Fernie A R. Next-generation strategies for understanding and influencing source-sink relations in crop plants., 2018, 43: 63–70.

[13] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类. 作物学报, 2021, 47: 1712–1723.

Gao F, Liu Z X, Zhao J H, Wang Y, Pan X Y, Lai H J, Li X D, Yang D Q. Source-sink characteristics and classification of peanut major cultivars in North China., 2021, 47: 1712–1723 (in Chinese with English abstract).

[14] Wang X R, Hou Y R, Du M W, Xu D Y, Lu H Y, Tian X L, Li Z H. Effect of planting date and plant density on cotton traits as relating to mechanical harvesting in the yellow river valley region of China., 2016, 198: 112–121.

[15] Luo Z, Liu H, Li W, Zhao Q, Dai J, Tian L, Dong H. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density., 2018, 218: 150–157.

[16] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响. 作物学报, 2021, 47: 1724–1740.

Lou H X, Ji J L, Kuai J, Wang B, Xu L, Li Z, Liu F, Huang W, Liu S Y, Yin Y F, Wang J, Zhou G S. Effects of planting density on yield and lodging related characters of reciprocal hybrids inL., 2021, 47: 1724–1740 (in Chinese with English abstract).

[17] 张佳蕾, 郭峰, 张凤, 杨莎, 耿耘, 孟静静. 提早化控对高产花生个体发育和群体结构影响. 核农学报, 2018, 32: 2216–2224.

Zhang J L, Guo F, Zhang F, Yang S, Geng Y, Meng J J. Effects of earlier chemical control on ontogeny and population structure of high yield peanut., 2018, 32: 2216–2224 (in Chinese with English abstract).

[18] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘晓怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块. 作物学报, 2021, 47: 1639–1653.

Wang Y, Gao F, Liu Z X, Zhao J H, Lai H J, Pan X Y, Bi C, Li X D, Yang D Q. Identification of gene co-expression modules of peanut main stem growth by WGCNA., 2021, 47: 1639–1653 (in Chinese with English abstract).

[19] 颜为, 李芳军, 徐东永, 杜明伟, 田晓莉, 李召虎. 行距、氮肥和甲哌鎓化控对黄河流域棉区棉花冠层结构及微环境的影响. 作物学报, 2021, 47: 1654–1665.

Yan W, Li F J, Xu D Y, Du M W, Tian X L, Li Z H. Effects of row spacings and nitrogen or mepiquat chloride application on canopy architecture, temperature, and relative humidity in cotton., 2021, 47: 1654–1665(in Chinese with English abstract).

[20] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价. 作物学报, 2021, 47: 1741–1752.

Song L J, Nie X Y, He L L, Kuai J, Yang H, Guo A G, Huang J S, Fu T D, Wang B, Zhou G S. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties., 2021, 47: 1741–1752 (in Chinese with English abstract).

[21] 王建国, 张昊, 李林, 刘登望, 万书波, 王飞, 卢山, 郭峰. 施钙与覆膜栽培对缺钙红壤花生钙素积累、分配及利用率的影响. 华北农学报, 2017, 32(6): 205–212.

Wang J G, Zhang H, Li L, Liu D W, Wan S B, Wang F, Lu S, Guo F. Effects of calcium application and film mulching on calcium accumulation, distribution and utilization rate of peanut in calcium deficient red soil., 2017, 32(6): 205–212 (in Chinese with English abstract).

[22] 张佳蕾, 郭峰, 孟静静, 杨莎, 耿耘, 杨佃卿, 李元高, 张文生, 李新国, 万书波. 钙肥对旱地花生生育后期生理特性和产量的影响. 中国油料作物学报, 2016, 38: 321–327.

Zhang J L, Guo F, Meng J J, Yang S, Geng Y, Yang D Q, Li Y G, Zhang W S, Li X G, Wan S B. Effect of calcium fertilizer on physiological characteristics and yield of dryland peanut at late growth stage., 2016, 38: 321–327 (in Chinese with English abstract).

[23] 党现什, 蒋春姬, 李憬霖, 赵凯能, 曲胜男, 刘娜, 王婧, 王晓光. 钙肥对花生产量及生理特性的影响. 沈阳农业大学学报, 2018, 49: 717–723.

Dang X S, Jiang C J, Li J L, Zhao K N, Qu S G, Liu N, Wang J, Wang X G. Effect of calcium fertilizer on yield and physiological characteristics of peanut., 2018, 49: 717–723 (in Chinese with English abstract).

[24] 王建国. 水钙互作对南方红壤旱地花生产量影响机制. 湖南农业大学博士学位论文, 湖南长沙, 2017.

Wang J G. The Effective Mechanism of Calcium and Water on Yield of Peanut in Red Soil Upland in Southern of China. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2017 (in Chinese with English abstract).

[25] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙肥与氮肥互作对花生干物质、氮素积累分配及产量的影响. 作物学报, 2021, 47: 1666–1679.

Wang J G, Zhang J L, Guo F, Tang Z H, Yang S, Peng Z Y, Meng J J, Cui L, Li X G, Wan S B. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut., 2021, 47: 1666–1679 (in Chinese with English abstract).

[26] 赵婧, 邱强, 张鸣浩, 张伟, 闫晓艳. 植物体内磷铁平衡与缺铁胁迫的关系研究进展. 作物研究, 2016, 30: 343–346.

Zhao J, Qiu Q, Zhang M H, Zhang W, Yan X Y. Research progress on the relationship between P–Fe balance and Fe deficiency stress., 2016, 30: 343–346 (in Chinese with English abstract).

[27] 赵婧, 张鸣浩, 于德彬, 邱强, 孟凡钢, 饶德民, 丛博韬, 张伟, 闫晓艳. 磷铁互作对不同磷效率基因型大豆生物学性状的影响. 作物学报, 2021, 47: 1824–1833.

Zhao J, Zhang M H, Yu D B, Qiu Q, Meng F G, Rao D M, Cong B T, Zhang W, Yan X Y. Response of agronomic traits and P / Fe utilization efficiency to P application with different P efficiency in soybean., 2021, 47: 1824–1833 (in Chinese with English abstract).

[28] 王俊娟, 王德龙, 阴祖军, 王帅, 樊伟丽, 陆许可, 穆敏, 郭丽雪, 叶武威, 喻树迅. 陆地棉萌发至幼苗期抗冷性的鉴定. 中国农业科学, 2016, 49: 3332–3346.

Wang J J, Wang D L, Yin Z J, Wang S, Fan W L, Lu X K, Mu M, Guo L X, Ye W W, Yu S X. Identification of the chilling resistance from germination stage to seedling stage in upland cotton., 2016, 49: 3332–3346 (in Chinese with English abstract).

[29] 黄纯倩, 朱晓义, 张亮, 孙兴超, 华玮. 干旱和高温对油菜叶片光合作用和叶绿素荧光特性的影响. 中国油料作物学报, 2017, 39: 342–350.

Huang C Q, Zhu X Y, Zhang L, Sun X C, Hua W. Effects of drought and high temperature on photosynthesis and chlorophyll fluorescence characteristics of rape leaves., 2017, 39: 342–350 (in Chinese with English abstract).

[30] 王瑞森, 沈盟, 姚祥坦. 低温胁迫对油菜种子发芽及成苗的影响. 上海农业学报, 2020, 36(1): 38–43.

Wang R S, Shen M, Yao X T. Effects of low temperature stress on seed germination and seedling formation of rapeseed., 2020, 36(1): 38–43 (in Chinese with English abstract).

[31] 陈娜, 程果, 潘丽娟, 陈明娜, 张小燕, 王冕, 王通, 许静, 禹山林, 孙泓希, 于树涛, 迟晓元. 东北地区收获期低温对花生品质影响及耐低温品种筛选. 植物生理学报, 2020, 56: 2417–2427.

Chen N, Cheng G, Pan L J, Chen M N, Zhang X Y, Wang M, Wang T, Xu J, Yu S L, Sun H X, Yu S T, Chi X Y. Effects of low temperature on peanut quality and selection of low temperature tolerant varieties in northeast China., 2020, 56: 2417–2427 (in Chinese with English abstract).

[32] 常博文, 钟鹏, 刘杰, 唐中华, 高亚冰, 于洪久, 郭玮. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响. 作物学报, 2019, 45: 118–130.

Chang B W, Zhong P, Liu J, Tang Z H, Gao Y B, Yu H J, Guo W. Effects of low temperature stress and gibberellin on seed germination and seedling physiological response of peanut., 2019, 45: 118–130 (in Chinese with English abstract).

[33] 王传堂, 唐月异, 王秀贞, 吴琪, 王志伟, 宫清轩, 冯昊, 杜祖波, 李秋. 高油酸花生新品系丰产性与播种出苗期耐低温高湿田间评价. 山东农业科学, 2019, 51(9): 110–114.

Wang C T, Tang Y Y, Wang X Z, Wu Q, Wang Z W, Gong Q X, Feng H, Du Z Q, Li Q. Evaluation on productivity of new high oleic peanut lines and field tolerance to low temperature and high moisture during sowing to emergence period., 2019, 51(9): 110–114 (in Chinese with English abstract).

[34] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选. 作物学报, 2021, 47: 1753–1767.

Zhang H, Jiang C J, Yin D M, Dong J L, Ren J Y , Zhao X H, Zhong C, Wang X G, Yu H Q. Establishment of comprehensive evaluation system for cold tolerance and screening of cold- tolerance germplasm in peanut., 2021, 47: 1753–1767(in Chinese with English abstract).

[35] 张照华, 王志慧, 淮东欣, 谭家壮, 陈剑洪, 晏立英, 王晓军, 万丽云, 陈傲, 康彦平, 姜慧芳, 雷永, 廖伯寿. 利用回交和标记辅助选择快速培育高油酸花生品种及其评价. 中国农业科学, 2018, 51: 1641–1652.

Zhang Z H, Wang Z H, Huai D X, Tan J Z, Chen J H, Yan L Y, Wang X J, Wan L Y, Chen A, Kang Y P, Jiang H F, Lei Y, Liao B S. Fast development of high oleate peanut cultivars by using maker-assisted backcrossing and their evaluation., 2018, 51: 1641–1652 (in Chinese with English abstract).

[36] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生基因启动子及5¢-UTR内含子功能验证及其低温胁迫应答. 作物学报, 2021, 47: 1703–1711.

Shi L, Miao L J, Huang B Y, Gao W, Zhang Z X, Qi F Y, Liu J, Dong W Z, Zhang X Y. Characterization of the promoter and 5´-UTR intron ingenes from peanut and their responses to cold stress., 2021, 47: 1703–1711 (in Chinese with English abstract).

[37] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响研究. 作物学报, 2021, 47: 1768–1778.

Xue X M, Wu J, Wang X, Bai D M, Hu M L, Yan L Y, Chen Y N, Kang Y P, Wang Z H, Huai D X, Lei Y, Liao B S. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid., 2021, 47: 1768–1778 (in Chinese with English abstract).

[38] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响. 作物学报, 2021, 47: 1834–1840.

Hao X, Cui Y N, Zhang J, Liu J, Zang X W, Gao W, Liu B, Dong W Z, Tang F S. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut., 2021, 47: 1834–1840 (in Chinese with English abstract).

[39] 王友华, 束红梅, 陈兵林, 许乃银, 赵永仓, 周治国. 不同棉花品种纤维比强度形成的时空差异及其与温度的关系. 中国农业科学, 2008, 41: 3865–3871.

Wang Y H, Shu H M, Chen B L, Xu N Y, Zhao Y C, Zhou Z G. Temporal-spatial bariation of cotton fiber strength of different cultivars and its relationship with temperature., 2008, 41: 3865–3871 (in Chinese with English abstract).

[40] 李文丹, 雒珺瑜, 张帅, 吕丽敏, 王春义, 朱香镇, 李春花, 崔金杰. 高温胁迫对棉花内源激素的影响. 中国棉花, 2016, 43(6): 14–16.

Li W D, Luo J Y, Zhang S, Lyu L M, Wang C Y, Zhu X Z, Li C H, Cui J J. Influence of heat stress on endogenous hormone of cotton., 2016, 43(6): 14–16 (in Chinese with English abstract).

[41] 宋桂成, 王苗苗, 曾斌, 陈全战, 唐灿明. 高温对棉花生殖过程的影响. 核农学报, 2016, 30: 404–411.

Song G C, Wang M M, Zeng B, Chen Q Z, Tang C M. The effects of high-temperature on reproductive process in upland cotton., 2016, 30: 404–411 (in Chinese with English abstract).

[42] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关. 作物学报, 2021, 47: 1680–1689.

Zhao W Q, Xu W Z, Yang L Y, Liu Y, Zhou Z G, Wang Y H. Different response of cotton leaves to heat stress is closely related to the night starch degradation., 2021, 47: 1680–1689 (in Chinese with English abstract).

[43] 张树杰, 王汉中. 我国油菜生产应对气候变化的对策和措施分析.中国油料作物学报, 2012, 34: 114–122.

Zhang S J, Wang H Z. Analysis on the countermeasures and measures of rapeseed production to cope with climate change in China., 2012, 34: 114–122 (in Chinese with English abstract).

[44] 王兴荣, 张彦军, 李玥, 刘天鹏, 张金福, 祁旭升. 干旱胁迫对大豆生长的影响及抗旱性评价方法与指标筛选. 植物遗传资源学报, 2018, 19: 49–56.

Wang X R, Zhang Y J, Li Y, Liu T P, Zhang J F, Qi X S. Effects of drought stress on growth and screening methods and indexes for drought-resistiance in soybean., 2018, 19: 49–56 (in Chinese with English abstract).

[45] 董奇琦, 艾鑫, 张艳正, 张克朝, 周东英, 王晓光, 蒋春姬, 赵姝丽, 钟超, 王婧, 于海秋, 赵新华. 干旱胁迫对不同耐性花生品种生理特性及产量的影响. 沈阳农业大学学报, 2020, 51(1): 18–26.

Dong Q Q, Ai X, Zhang Y Z, Zhang K C, Zhou D Y, Wang X G, Jiang C J, Zhao S L, Zhong C, Wang J, Yu H Q, Zhao X H. Effects of drought stress on physiological characteristics and yield of peanut varieties with different tolerance., 2020, 51(1): 18–26 (in Chinese with English abstract).

[46] 姜梦辉, 孙丰磊, 范蓉, 石颖颖, 刘亚丽, 赵柯柯, 曲延英, 陈全家. 花铃期干旱胁迫对棉花陆海RIL群体光合的影响. 生物学杂志, 1–6 [2021-02-01]. https://kns.cnki.net/kcms/detail/34. 1081.Q.20200911.1421.002.html

Jiang M H, Sun F L, Fan R, Shi Y Y, Liu Y L, Zhao K K, Qu Y Y, Chen J J. Effects of drought stress on photosynthesis of RIL population in land and sea of cotton at flowering and bolling stage., 1–6 [2021-02-01]. https://kns.cnki.net/kcms/ detail/34.1081.Q.20200911.1421.002. html. (in Chinese with English abstract).

[47] 蒲玉瑾, 张一璇, 苗灵凤, 杨帆. 常温和低温条件下不同浓度褪黑素对降香黄檀幼苗的生理生态影响. 广西植物, 1–18 [2020-08-30]. https://kns.cnki.net/kcms/detail/45.1134.Q.202008 07.1108.006.html.

Pu Y J, Zhang Y X, Miao L F, Yang F. Effects of exogenous melatonin on the eco-physiological characteristics of Dalbergia odorifera seedlings under ambient and low temperatures., 1–18 [2020-08-30]. https://kns.cnki.net/kcms/detail/45.1134.Q. 20200807.1108.006.html (in Chinese with English abstract).

[48] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响. 作物学报, 2021, 47: 1791–1805.

Zhang M C, He S Y, Qin B, Wang M X, Jin X J, Ren C Y, Wu Y K, Zhang Y X. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress., 2021, 47: 1791–1805 (in Chinese with English abstract).

[49] 曹亮, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 代谢组转录组联合分析外源褪黑素对干旱胁迫下鼓粒期大豆碳氮代谢的调控作用. 作物学报, 2021, 47: 1779–1790.

Cao L, Yu G B, Jin X J, Zhang M C, Ren C Y, Wang M X, Zhang Y X. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin., 2021, 47: 1779–1790 (in Chinese with English abstract).

[50] Bai Y, Muller D B, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Munch P C, Spaepen S, Remus-Emsermann M, Huttel B, McHardy A C, Vorholt J A, Schulze-Lefert P. Functional overlap of theleaf and root microbiota., 2015, 528: 364–369.

[51] 岳丹丹, 韩贝, Ullah A, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析. 作物学报, 2021, 47: 1806–1815.

Yue D D, Han B, Ullah A, Zhang X L, Yang X Y. Fungi diversity analysis of rhizosphere under drought conditions in cotton., 2021, 47: 1806–1815 (in Chinese with English abstract).

[52] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响. 作物学报, 2021, 47: 1690–1702.

Yu T B, Shi Q H, Nian H, Lian T X. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties., 2021, 47: 1690–1702 (in Chinese with English abstract).

[53] 傅廷栋, 涂金星, 张毅, 陈常兵, 杨祁峰, 滕怀渊, 牛菊兰, 尹经章. 在我国西北部地区麦后复种饲料油菜的研究与利用. 中国西部科技, 2004, (6): 4–7.

Fu T D, Tu J X, Zhang Y, Chen C B, Yang Q F, Teng H Y, Niu J L, Yin J Z. Research and utilization of multiple cropping forage rape after wheat in Northwest China., 2004, (6): 4–7 (in Chinese).

[54] 汪波, 宋丽君, 王宗凯, 王积军, 熊明清, 甘丽, 刘芳, 张哲, 蒯婕, 傅廷栋, 周广生. 我国饲料油菜种植及应用技术研究进展. 中国油料作物学报, 2018, 40: 695–701.

Wang B, Song L J, Wang Z K, Wang J J, Xiong M Q, Gan L, Liu F, Zhang Z, Kuai J, Fu T D, Zhou G S. Research progress of feed rape cultivation and application technology in China., 2018, 40: 695–701 (in Chinese with English abstract).

[55] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 基于无人机多角度倾斜成像方式估算饲料油菜生物量. 作物学报, 2021, 47: 1816–1823.

Zhang J, Xie T J, Wei X N, Wang Z K, Liu C T, Zhou G S, Wang B. Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle., 2021, 47: 1816–1823 (in Chinese with English abstract).

Editorial: strengthening the research on the interaction between cultivated measures and environment/resource allocation of field economic crops to promote the development of industry with high efficiency and high quality

ZHOU Guang-Sheng, WANG Jing, KUAI Jie, and WANG Bo

College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China

10.3724/SP.J.1006.2021.04633

本研究由国家重点研发计划项目“大田经济作物优质丰产的生理基础与调控”(2018YFD1000900)资助。

This study was supported bythe National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops” (2018YFD1000900).

周广生, E-mail: zhougs@mail.hzau.edu.cn

猜你喜欢
学报花生作物
覆盖作物及其作用的研究进展
《北京航空航天大学学报》征稿简则
《北京航空航天大学学报》征稿简则
吉林省省级作物种质资源保护单位名单(第一批)
《北京航空航天大学学报》征稿简则
《北京航空航天大学学报》征稿简则
专题性作物博物馆的兴起与发展
多少堆花生
到底埋在哪棵树下
花生去哪儿了