马显琢
摘要:空气预热器简称空预器,是提高锅炉热交换性能,降低热量损耗的一种预热设备。空气预热器利用锅炉尾部烟气的热量加热燃料燃烧所需空气以提高锅炉效率的热交换设备空气预热器就是锅炉尾部烟道中的烟气通过内部的散热片将进入锅炉前的空气预热到一定温度的受热面。用于提高锅炉的热交换性能,降低能量消耗。多用于燃煤电站锅炉。空气预热器最大的优点是降低锅炉等设备的排烟温度,提高热效率;使燃料易于着火、燃烧稳定和提高燃烧效率。
一、空预器的分类
1、管式型
(1)、管式空气预热器的主要传热部件是薄壁钢管。管式空气预热器多呈立方形,钢管彼此之间垂直交错排列,两端焊接在上下管板上。管式空气预热器在管箱内装有中间管板,烟气顺着钢管上下通过预热器,空气则横向通过预热器,完成热量传导。
(2)、管式空气预热器的优点是密封性好、传热效率高、易于制造和加工,因此多应用在电站锅炉和工业锅炉中。管式空气预热器的缺点是体积大、钢管内容易堵灰、不易于清理和烟气进口处容易磨损。
2、回转式型
(1)、回转式空气预热器是再生式空气预热器最常见的形式,它是利用烟气和空气交替地通过金属受热面来加热空气。回转式空气预热器按运动方式可分为受热面转动和风罩转动两种。
(2)、转子旋转式空气预热器由圆筒形转子和固定的圆筒形外壳及驱动装置组成。
二、空气预热器的具体作用
(1)、空气通过空气预热器加热后再送入炉膛,使送入炉内空气的温度升高,让炉膛的温度得到相应提高,可使燃料迅速着火,改善或强化燃烧,提高燃烧效率;
(2)、空气通过空气预热器加热后送入磨煤机,作为煤粉的干燥剂;
(3)、降低和吸收排烟温度,减少锅炉热损失,提高锅炉效率;
(4)、炉膛内辐射传热量与火焰平均温度的四次方成正比。送入炉膛空气温度提高,使火焰平均温度提高,从而增强了炉内的辐射传热,从而在相同蒸发吸热量下,采用空气预热器可减少受热面的布置,节省金属耗量。
三、基本情况
(1)内蒙古大唐国际克什克腾煤制天然气有限责任公司(以下简称克旗公司),是一家煤化工企业,厂区内动力中心有7台470t/h的高压、单锅筒、自然循环、褐煤锅炉。每台锅炉配备两台有豪顿华生产的三分仓回转式空气预热器。换热元件为波纹板,自投产以来发生过几次空预器换热元件堵塞的情况。在锅炉进行氨气脱硝改造后,堵塞频率随之增加。
四、空预器堵灰现象
空气预热器发生堵灰,表现为一次风、二次风风压增大、炉膛负压难以维持,并出现摆动现象,摆幅逐渐加大,且呈现周期性变化,其摆动周期与空氣预热器旋转一周的时间恰好吻合,严重时导致送、引风机发生喘振、引风机无调节余量,影响到燃烧自动装置的投入。空气预热器堵灰后会造成锅炉排烟温度升高, 热风温度下降,风、烟系统阻力上升,一次风、二次风正压侧和烟气负压侧的压差增大,增加了空气预热器漏风;堵灰严重时,影响锅炉的满负荷运行。
五、空预器堵灰原因分析
以克旗公司的三分仓回转式空气预热器为例
锅炉运行中,空预器进出口烟气差压增大,引风机电流增加,锅炉总风量大幅波动,炉膛负压摆动,排烟温度偏差增大,堵灰严重时有时引起风机喘振。
5.1 锅炉燃煤特性偏离设计值太大。但由于目前燃煤供应相对紧张且受价格,锅炉炉膛结焦等各种因素的影响,锅炉燃煤实际不能按照设计煤种运行,经常出现较大偏差,致使相同负荷下锅炉燃煤量大幅增加,灰分也大量增加。
5.2 煤质含硫量大,实际燃烧的煤种的含硫量远远超过设计煤种的含硫量,煤中的硫燃烧生成二氧化硫,二氧化硫在催化剂(积灰中的Fe2O3)的作用下进一步氧化生成三氧化硫与烟气中的水蒸汽生成硫酸蒸汽,硫酸蒸汽的存在使烟气的露点显著升高,当燃料中含硫量越高、过剩空气系数越大,烟气中SO3含量越高,露点也越升高。由于空预器中空气的温度较低,烟气温度不高,壁温常低于烟气露点,这样硫酸蒸汽就会凝结在空预器受热面上,烟气中的灰、沙粒便容易粘在空气预热器的受热面上形成积灰,在燃烧托浪岗煤时更为突出,表现为空预器前后差压增大,进一步发展就会造成空预器堵灰。再者氨逃逸率一直大于10ppb,容易形成鼻涕形状的硫酸氢铵, 硫酸氢铵的熔点 147℃,主要沉积在烟气温区:230-150℃,有气态→液态→固态转化,所以按温度梯度的分布,硫酸氢铵通常沉积在预热器中间部位传热原件上,在液态向固态转换时吸附灰分,直接沉积在空预器的传热元件上,长期运行会造成空预器堵塞。
5.3 省煤器灰斗输灰不通畅。一号炉省煤器输灰管路均由于煤质差磨损非常严重,灰分大使得输灰更加困难,输灰管线有时堵塞,形成恶性循环,加剧了空预器堵灰。
5.4 吹灰蒸汽过热度不够。
5.5 蒸汽暖风器泄漏。冬季由于气温变化剧烈,暖风器经常泄漏,严重时从风机底部排污口处有大量水排出,只能将暖风器被迫停运,使得排烟温度相应降低,不能保证冷端综合温度高于设计值运行,从而导致空预器低温段的腐蚀,更加重了空预器堵灰。
5.6 吹灰蒸汽阀门不严泄漏。因吹灰蒸汽进汽阀不严,水蒸汽漏入空预器内部,导致空预器堵灰。为此,我们对所有吹灰蒸汽进汽阀进行了彻底的研磨或更换等检修工作,基本解决了因吹灰蒸汽进汽阀门不严而引起空预器堵灰发生。
5.7 吹灰疏水管路直径设计太小,疏水不够彻底。空预器吹灰疏水管直径太小,当开始吹灰时,吹灰器进汽阀处明显看到有凝结水外漏现象,说明吹灰疏水没有完全疏干,有湿蒸汽进入空预器。
5.8 空预器水冲洗不彻底。停炉在三天以上基本上都要进行空预器水冲洗,由于停炉时间短,不能保证足够的冲洗时间,堵灰严重时需要2-3天才能将空预器完全冲洗干净。锅炉停运到空预器可以停止运行大约至少需要1天时间,这样空预器有效冲洗时间相对减少,造成冲洗不彻底,换热元件上残留部分垢物,在锅炉下次启动后很容易粘贴大量灰粒,并在下次冲洗时不易冲刷下去。
5.9 锅炉启动时制粉系统投入过早。在锅炉启动过程中为了节油基本上都提早投入制粉系统,致使煤粉燃烧相对较差,势必造成飞灰可燃物大量增加。在点火初期着火特别不好,大量未燃烧煤粉进入空预器增加了堵灰的发生。
5.10 最低冷端综合温度有时达不到设计值要求。冷端低温硫酸腐蚀是空预器堵灰的重要影响因素之一,同时也是影响空预器正常运行的关键所在。我厂空预器堵灰基本都发生在传热元件冷端,且灰成分都比较坚硬,堵灰后通过吹灰根本无法将其吹掉。
六、空预器堵灰预防措施
6.1 冬季加强暖风器综合治理。利用停炉机会对暖风器进行改造,以彻底解决因暖风器疏水不畅通引起振动而引起内漏。锅炉暖风器处可以增加玻璃观察窗,以方便运行过程中检查暖风器是否内漏。根据入炉煤硫份值确定合理的暖风冷端平均温度控制值,防止空预器冷端腐蚀加剧造成空预器积灰嚴重,差压升高。
6.2 减少SO3的生成。烟气中SO2氧化成SO3是在一定的条件下发生的,炉膛火焰中心温度越高,过量空气越多,生成的SO3就会越多。因此在运行中采用低氧燃烧技术,通过要求运行人员精心操作合理配风,降低锅炉过剩空气系数,禁止大风量运行,保证燃烧最佳状态,减少SO3的生成。
6.3 对脱硝系统表计进行定期进行校核检查,重点对脱硝烟气压力、喷氨流量、氨逃逸率进行检查.
6.4 运行中加强风烟系统画面参数监视,重点监视空预器出口一二次风温偏差、空预器烟气侧差压变化情况,出现空预器风温、烟气差压增大等空预器堵塞迹象及时进行空预器连续吹灰,根据空预器堵塞情况,调整堵塞侧空预器喷氨量。
6.5 制粉系统投运时尽量满足着火能量磨煤机启动前应保证二次风温大于150℃,以减少制粉系统启动初期大量不完全燃烧产物的生成,从而抑止空预器堵灰的发生。
6.6 加强省煤器输灰系统综合治理。锅炉日常运行中加强省煤器灰斗料位的监视和控制,一旦发现高料位,立即联系检修进行处理。同时利用停炉机会,检查省煤器灰斗真实料位,彻底疏通输灰管线。
6.7 对空预器要进行定期吹灰且吹灰蒸汽要保证足够的过热度。吹灰至少每8小时进行一次,如果发现空预器差压有上升趋势,应缩短吹灰时间间隔。吹灰程序控制必须采取疏水温度控制,不能通过时间简单判断疏水是否干净,必要时进行疏水管路改造以确保空预器吹灰效果。
6.8 加强吹灰阀门的综合治理。每次停炉后对空预器吹灰进汽阀和吹灰枪进行检查处理,保证运行中不发生湿蒸汽泄漏到空预器换热元件上。
6.9 高压水冲洗要彻底。空预器冲洗热段一般采用消防水喷淋,冷端采用高压水枪冲洗,通过抽检中温端换热元件干净程度以确定冲洗质量是否合格,正常两台空预器冲洗合格需要进行60小时左右。冲洗结束后一定要进行充分干燥,防止启动时大量灰粒粘贴到换热元件。
七、结论
空预器堵灰不仅影响锅炉运行的安全性而且使锅炉效率显著降低,风机单耗明显增加,排烟温度升高,严重时脱硫系统由于入口烟气温度过高而无法投入运行,因此有效预防和制止空预器堵灰显得非常重要。