恒温饮水系统促进开放舍冬季断奶仔兔生长

2021-11-26 06:14单春花唐于寒王强军杜昊轩李明勇刘中英吴中红
农业工程学报 2021年16期
关键词:家兔盲肠温水

单春花,付 伟,2,唐于寒,3,郭 瑶,王强军,杜昊轩,李明勇,刘 曼,刘中英,吴中红

恒温饮水系统促进开放舍冬季断奶仔兔生长

单春花1,付 伟1,2,唐于寒1,3,郭 瑶1,王强军1,杜昊轩1,李明勇4,刘 曼4,刘中英1,吴中红1※

(1. 中国农业大学动物科技学院,动物营养学国家重点实验室,北京 100193;2. 西南民族大学畜牧兽医学院,成都 610041;3. 昭通市畜牧兽医技术推广站,昭通 657000;4. 青岛康大兔业发展有限公司,青岛 266400)

为研究冬季饮用温水对断奶仔兔健康状况和生长性能的影响,该研究选择180只47日龄断奶仔兔(初始体质量(1.2±0.1) kg)随机分为2组,温水组通过在冬季塑料薄膜封闭的开放舍饮水管道上安装伴热线恒温加热系统,为仔兔提供35.5 ℃的温水,对照为无加热系统的冷水组,水温为5.8 ℃。试验期48 d。结果表明:1)在舍内平均气温8.9 ℃情况下,与冷水组相比,温水组家兔在47~58和47~94日龄范围的平均日增质量分别显著提高15.11和1.94 kg(<0.05)。2)饮用温水显著降低47~58日龄范围家兔平均料质量比(18.2%)及47~94日龄范围家兔的腹泻发生率(25.6%)(<0.05)。显著下调了70日龄家兔空肠中甲状腺激素受体和(THR和)的表达量(<0.05)。3)随着日龄的增加,饮用温水显著提高了82日龄家兔血清中免疫球蛋白A(Immunoglobulin A , IgA)和总蛋白(Total protein, TP)含量(<0.05),也显著提高了82日龄家兔盲肠菌属的丰度,是58日龄的6.9倍(<0.05)。因此,冬季开放舍安装恒温饮水系统可通过提高机体免疫和肠道消化吸收能力,进而促进仔兔生长,改善健康状况。

温度;动物;开放舍;冬季;断奶仔兔;恒温饮水系统;生产性能

0 引 言

开放式畜舍由于建筑成本低、利于通风、舍内空气质量良好,在中国大部分地区广泛应用,但其保温性能差,在冬季较为寒冷的地区舍内温度过低,影响家畜生长[1-2]。寒冷气候下,开放舍冬季水温随外界环境温度的降低而降低,饮用低温冷水也是影响家畜生长和健康的重要因素。冷水会降低动物胃肠道的温度和微生物活性,进入动物体内后会增加能量消耗,降低了饲料转化效率[3]。近几年有关家畜冬季恒温饮水的研究越来越多,但多集中于仔猪[4]和牛[5]的研究。关于断奶仔兔冬季恒温饮水的研究鲜有报道。

断奶早期仔兔一方面由于母仔分离和饲养环境改变,另一方面胃肠道黏膜发育及功能不完善,营养物质摄取由母乳转为饲料,容易发生断奶应激,导致幼仔兔腹泻高发、成活率降低[6-7]。幼兔由于自身体温调节系统不健全,对低温更敏感,需要更高外界环境温度[8]。前期研究也发现,温度对促进断奶仔兔生长至关重要[9]。断奶应激和低温环境的双重作用下,幼畜会进一步发生能量消耗增强、免疫能力降低、肠道屏障功能紊乱等一系列生理和病理反应,如断奶仔猪采食量和体质量下降[10],断奶仔兔死亡率和腹泻发生风险增加[11]。冬季提高饮水温度可以缓解低温对家畜的不利影响,例如冬季饮用温水可以提高犊牛饮水量[12]、仔猪和肉牛日增质量[13-14],改善羊瘤胃功能[15],缓解冷应激所引起的畜禽生长性能下降、肠黏膜受损及细胞炎性因子产生[16]。同时,研究也发现开放式兔舍断奶仔兔冬季饮用温水可以提高其肠道有益微生物丰度,改善其肠道菌群结构和免疫功能,进而降低家兔腹泻发生风险[17]。

因此,为研究冬季饮用温水对断奶仔兔的影响,本文选取华北地区的一栋塑料薄膜封闭的开放式兔舍,通过安装恒温饮水系统为仔兔提供温水,比较分析了饮用温水和冷水对断奶仔兔生产性能和健康状况的影响,以期为提高寒冷地区开放舍断奶仔兔成活率和生产效率提供理论依据。

1 材料与方法

1.1 试验兔舍及管理

试验于2015年12月—2016年1月在山东青岛某兔场进行,试验兔舍为塑料薄膜封闭的开放式兔舍。兔舍夜间塑料薄膜封闭,白天10:00-16:00打开塑料薄膜进行自然通风。试验兔舍东西走向,尺寸为50 m×2.5 m×2 m(长×宽×檐高),舍内兔笼为层叠式三层水泥兔笼、两列纵向布置,兔笼规格为0.6 m×0.62 m×0.3 m(长×宽×高),见图1。

1.2 试验设计

试验选取180只体质量(初始体质量(1.2±0.1)kg)相近的47日龄健康断奶仔兔,随机分为2组,每组90只,饲养在同一栋塑料薄膜封闭的开放式兔舍中,每笼饲养3只。温水组(WW)在兔舍前半段水管安装伴热线加热系统,即在水管外缠绕伴热线(中国扬州,SN-EA)和6 mm厚塑料泡沫保温薄膜,通过恒温控制器调控水温35.5 ℃(图1);冷水组(CW)的饮用水未经加热处理,受舍内气温影响大,水温为1.6~12.3 ℃。试验期间,2组试验兔人工喂料,自由采食和饮水,每天10:00-10:30喂料。试验共计48 d。

1.3 检测指标及方法

1.3.1 环境指标及水温测定

试验期间,使用温湿度自动记录仪(型号179-TH)检测舍内外气温和相对湿度,舍内均匀选取8个测定点(图1),测量高度为1 m,舍外放置2个温湿度自动记录仪,每10 min自动记录数据1次。采用手持氨气测定仪(型号GT901)和二氧化碳测定仪(型号Telaire7001)于每天6:30、10:30、14:30、18:30测定舍内氨气(NH3)和二氧化碳(CO2)浓度,其测定位点和高度同温湿度。试验期间,采用插入式温度计(型号TESTO905-T1)每3 d于11:00测定温水组和冷水组的饮水温度。温水组和冷水组平均水温分别为35.5和5.8 ℃。

1.3.2 生产性能指标测定

试验期间,每天记录2组试验兔的喂料量和剩料量,计算平均日采食量;在同等条件下称量47、58、70、82、94日龄2组试验兔的体质量并计算平均日增质量,计算不同阶段2组试验兔的平均料质量比(平均料质量比=各阶段平均日采食量/平均日增质量);每天记录2组试验兔的腹泻和死亡只数,并计算不同阶段2组试验兔死亡率(死亡率=各阶段死亡兔子数/各阶段兔子总数)和腹泻发生率(腹泻发生率=各阶段腹泻兔子数/各阶段兔子总数)。

1.3.3 血清生化指标测定

在试验兔58、70、82日龄时,从2组中随机选取健康家兔各15只,收集血清,-80 ℃保存,并通过酶联免疫吸附试验测定血清中免疫球蛋白A(IgA)、总蛋白(TP)、白细胞介素1(IL-1)、白细胞介素10(IL-10)及转化生长因子1(TGF-1)含量。

1.3.4 组织器官称质量及相关基因表达

在试验兔58、70和82日龄时,从2组中随机选取健康家兔各15只,采用耳缘静脉注气法处死家兔,收集胃、盲肠内容物,称量脾脏、胸腺、肾上腺、胃、盲肠的质量,计算器官指数(器官指数=器官质量/体质量)。用Trizol试剂提取2组试验兔的肾上腺和空肠总RNA,根据网站(https://www.ncbi.nlm.nih.gov/)发表的基因序列,用Primer premier 6.0软件设计引物,通过q-PCR法检测肾上腺MC2R(上游引物,TCTCAGTGCCTACGAGAACTC;下游引物,TGGAGATGCTTGTTCTTGAC)、空肠中THR(上游引物,GACCATGTCAGGGTATATCC;下游引物,CGCTTCGAGTCATCTAGAAC)和THR(上游引物,AGCGAGACTCTAACCTTGAAC;下游引物,TTGGCCAAAAGTGTGTCAC)的mRNA水平,以GAPDH(上游引物,TGGTGAAGGTCGGAGTGAAC;下游引物,ATGTAGTGGAGGTCAATGAATGG)作为内参基因。

1.3.5 肠道微生物测定

在试验兔58、70和82日龄时,从2组中随机选取健康家兔各15只,采用耳缘静脉注气法处死家兔,收集盲肠内容物,采用16S扩增子测序及分析,具体方法参见前期发表文章[17]。

1.4 统计分析

使用SPSS19.0卡方检验分析2组家兔的腹泻发生率和死亡率;其他指标通过独立样本检验进行组间比较,并采用双因素分析方法(Two-way ANOVA)分析水温和日龄的双重影响。结果均以“平均值±标准误”表示,0.05表示差异显著,0.01表示差异极显著。

2 结果与分析

2.1 开放式兔舍内外环境参数日动态变化

由图2可知,试验期间,舍内外气温日变化分别为6.6~10.1和-3.31~5.5 ℃,舍内气温较低,平均8.9 ℃,低于10 ℃的时间占77.1%,舍外平均气温为0 ℃。舍内平均相对湿度、NH3和CO2浓度分别为74.6%、11.4 mg/m3和0.13%。

2.2 饮用温水对断奶仔兔生产性能的影响

由表1可知,饮用温水和冷水组家兔在47~58和47~94日龄范围平均日增质量分别为温水组60.58 g、冷水组45.47 g和温水组41.00 g、冷水组39.06 g,饮用温水分别显著提高了33.2%(15.11 g/d)和4.97%(1.94 g/d)(0.05),与CW组相比,WW组47~58日龄范围家兔平均料质量比降低了18.2%(0.05)。此外,水温和日龄交互影响家兔的平均日采食量、平均日增质量以及平均料质量比(0.05)。

表1 饮用温水对断奶仔兔生产性能的影响

注:1)相同日龄不同处理之间差异显著用不同大写字母表示(<0.05);相同处理不同日龄之间差异显著用不同小写字母表示(<0.05),下同。

2)47~58、47~70、47~82日龄范围家兔的平均日增质量和平均料质量比来源于前期数据[17]。

Note: 1)Different uppercase letters mean significant difference in different treatments at the same age (<0.05), different lowercase letters mean significant difference in different ages at the same treatment (<0.05), the same as below.

2)The average daily weight gain and average feed to gain ratio from 47 to 58 days, 47 to 70 days, 47 to 82 days results were from previous data[17].

2组试验兔的死亡率无明显变化,试验后期(71~94日龄范围)舍内气温由8.8降低至6.7 ℃时,WW组试验兔腹泻发生率显著低于CW组(0.05)。另外,饮用温水也显著降低了整个试验期试验兔的腹泻发生率,比CW组低了25.6% (0.05,表2)。

2.3 饮用温水对断奶仔兔器官发育和免疫指标的影响

由表3可知,2组生长兔肾上腺指数、胃指数和盲肠指数随日龄的增加显著降低(0.05),脾脏、胸腺和盲肠质量随日龄的增加显著增加(0.05),水温对肾上腺指数、胃指数、盲肠指数影响显著(0.05),水温和日龄交互影响了家兔的肾上腺指数(0.05)。由表4可知,WW组70日龄试验兔的血清IgA、TP和IL-1含量最低,较70日龄相比,82日龄家兔血清IgA和TP含量分别显著提高了29.4%和45.4%(<0.05),血清IL-1含量显著低于58日龄试验兔的(0.05)。饮用温水显著降低了58日龄试验兔的肾上腺指数及70日龄试验兔的血清TGF- 1水平(<0.05),显著提高了58日龄试验兔的血清IL-1和IL-10水平(<0.05)。

表2 饮用温水对断奶仔兔腹泻发生率和死亡率的影响

2.4 饮用温水对断奶仔兔肠道属水平微生物及能量代谢基因表达的影响

通过检测2组试验兔盲肠内容物中与营养物质消化吸收相关的属水平微生物相对丰度发现,WW组试验兔盲肠微生物罗氏菌属的丰度随着日龄增加逐渐升高,尤其在82日龄时最高,是58日龄的6.9倍(0.05),而CW组试验兔盲肠微生物厌氧支原体属的丰度随着日龄增加逐渐降低(0.05)。饮用温水显著降低了70日龄试验兔盲肠微生物腔隙杆菌属的丰度,以及空肠中甲状腺激素受体和(THR和)的mRNA水平(0.05),显著提高了82日龄试验兔肾上腺MC2R的mRNA水平(0.05)。家兔空肠中THR和MC2R的mRNA水平受日龄、日龄和水温的交互影响显著(0.05)(表4和表5)。

表3 饮用温水对断奶仔兔器官发育的影响

表4 饮用温水对仔兔免疫指标及能量代谢基因的影响

表5 饮用温水对仔兔盲肠属水平微生物丰度的影响

3 讨 论

家兔生产中,舍内环境温度较低时,家兔会增加饲料的摄入量,并蜷缩身体以减少热量损失[8]。本研究中舍内气温低于家兔生产适宜的环境温度范围,说明华北地区冬季开放舍采用塑料薄膜封闭保温效果有限,造成断奶仔兔冷应激。冷暴露能够提高哺乳动物肠道中与能量调节相关的微生物菌群的丰度,通过其代谢物增加能量消耗,调节体温平衡[18]。此外,肠道中微生物罗氏菌属和厌氧支原体属可以发酵消化葡萄糖等碳水化合物和日粮粗脂肪,促进肠道对营养物质的消化吸收,为机体生长提供能量,促进生长[19-23]。本研究中,随着日龄的增加,饮用温水提高了家兔盲肠微生物罗氏菌属的丰度,而饮用冷水降低了厌氧支原体属的丰度,这说明水温会影响盲肠中与营养物质消化吸收相关菌属丰度,进而可能会影响家兔日增质量。此外,饮用冷水提高了58日龄家兔肾上腺指数,家兔肾上腺皮质功能活动增强、促进蛋白质分解及糖异生来增加产热量维持体温的恒定[24],这可能也导致了冷水组58日龄家兔体质量低于温水组。糖皮质激素与其受体GR结合促进机体能量物质代谢为动物生长提供能量[25],微生物可降解非淀粉多糖产生丙酸和丁酸[26-27],为抵御寒冷提供能量来源[28]。同期的研究也发现温水饲喂上调了58日龄家兔空肠糖皮质激素受体的mRNA水平,降低了其盲肠内容物中属水平微生物的丰度及丙酸、丁酸的浓度[8],这也进一步说明饮用温水可减少断奶早期(47~58日龄范围)家兔的能量损失,促进其生长。同时,该阶段家兔血清中IL-1水平较高,细胞因子IL-1可通过促进肌肉细胞葡萄糖转运蛋白4(GLUT4)的易位,提高骨骼肌对葡萄糖的吸收利用,促进骨骼肌生长[29]。值得注意的是,饮用温水显著提高了47~94日龄范围家兔的平均日增质量,但两组的体质量在70、85和94日龄并没有差异,原因可能是生长兔平均日增重为较小数(40~45 g),且到后期阶段增重较少,当两组平均日增质量同时加上一个较大的基数(断奶体质量约1 000 g)时,两组间的差异就会很难达到显著性水平。

冷应激情况下,动物机体内甲状腺激素通过激活甲状腺激素受体(THR和)动员棕色脂肪组织来调节能量消耗和产热作用,进而调节全身能量稳态[30]。研究表明,断奶仔兔日增重与其肠道内容物中腔隙杆菌属的丰度呈负相关[31-32]。本研究中,饮用温水下调了70日龄家兔空肠中THR和THR的mRNA水平,减少了家兔由于冷应激造成的能量损耗。

随着舍内气温逐渐降低,饮用温水显著降低了生长后期家兔的腹泻发生率,可能与饮用温水提高了家兔血清中的IgA和TP的含量有关。动物肠道内容物中腔隙杆菌属丰度的增加已被证明与结肠炎呈正相关[33]。冷水组71~82日龄范围家兔腹泻高发与其盲肠内容物中较高丰度的腔隙杆菌属一致。冷应激情况下,下丘脑-垂体-肾上腺轴(HPA)被激活,HPA轴兴奋释放促肾上腺皮质激素(ACTH),进而增加糖皮质激素的分泌,而ACTH和糖皮质激素又通过各自受体MC2R和GR参与机体抗炎作用[34-35]。本研究中,饮用温水降低了生长后期(70~82日龄范围)家兔血清促炎因子TGF-1的含量,同时提高了肾上腺中促肾上腺皮质激素受体MC2R的mRNA水平,减少了机体炎症反应,进而降低了家兔腹泻发生率。我们同期研究也发现,饮用温水提高了断奶早期家兔空肠中糖皮质激素受体的mRNA水平,降低了生长后期家兔空肠促炎因子IL-1和IL-12的mRNA水平,提高了其盲肠内容物中与促炎因子负相关的微生物粪球菌属(1、3)和纺锤链杆属的丰度[17],这也进一步说明了冬季饮用温水可降低肠道促炎因子水平、提高肠道有益微生物丰度进而降低家兔的腹泻发生率。然而,本研究存在的不足之处在于水温的检测只有1个时间点(11:00),选择本时间检测水温的原因是家兔在采食30~60 min 后会大量饮水。但是由于一天中舍内环境温度的不断变化,可能会对不同时间的水温造成影响。因此在后续的研究中需要补充每天不同时间饮水温度的变化会更具有代表性。

4 结 论

1)伴热线恒温饮水系统可保证(35.5±1.1)℃的饮水温度。冬季低温环境下,饮用温水与(5.8±2.3)℃冷水的家兔在47~58和47~94日龄范围平均日增质量分别为温水组60.58 g、冷水组45.47 g和温水组41.00 g、冷水组39.06 g,饮用温水分别显著提高了15.11 g/d和1.94 g/d(0.05)。

2)饮用温水显著降低了47~58日龄范围家兔平均料质量比及47~94日龄范围腹泻发生率,分别降低了18.2%和25.6%(0.05)。

3)随着日龄增加,饮用温水提高了82日龄家兔血清中IgA和TP含量,较70日龄分别提高了29.4%和45.4%;随着日龄增加,饮用温水显著提高了82日龄家兔盲肠菌属的丰度,是58日龄的6.9倍(<0.05)。

因此,冬季开放舍安装伴热线恒温饮水系统能够提高断奶仔兔的平均日增质量,降低平均料质量比和腹泻发生率,尤其在47~58和47~94日龄范围饮用温水效果最好。

[1] 高腾云,张德勋,孔庆友,等. 棚式牛舍的温热环境及其对乳牛产奶量的影响[J]. 农业工程学报,2000,16(4):118-121.

Gao Tengyun, Zhang Dexun, Kong Qingyou, et al. Warm weather environment of cowshed and its influence on milk yields of dairy cows[J]. Transactions of Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(4): 118-121. (in Chinese with English abstract)

[2] 赵寿培,王超,赵娟娟,等. 河北省不同建筑类型羊舍环境参数的检测与分析[J]. 家畜生态学报,2021,42(1):69-73.

Zhao Shoupei, Wang Chao, Zhao Juanjuan, et al. Detection and analysis on environmental parameters in diferent styles of shep sheds in Hebei province[J]. Journal of animal ecology, 2021, 42(1): 69-73. (in Chinese with English abstract)

[3] Nicol A M, Young B A. Short-term thermal and metabolic responses of sheep to ruminal cooling: Effects of level of cooling and physiological state[J]. Canadian Veterinary Journal La Revue Veterinaire Canadienne, 1990, 70(3): 833-843.

[4] 李泽强,赵华,陈小玲,等. 冬季饮水温度和流速对断奶仔猪应激、生长性能及养分表观消化率的影响[J]. 动物营养学报,2019,31(3):1081-1090.

Li Zeqiang, Zhao Hua, Chen Xiaoling, et al. Effects of winter drinking water temperature and flow rate on stress, growth performance and nutrient apparent digestibility in weaned piglets[J]. Journal of animal nutrition, 2019, 31(3): 1081-1090. (in Chinese with English abstract)

[5] 刁小南,王美芝,陈昭辉,等. 冬季恒温饮水装置和屋顶采光对提高肉牛生长速率的影响[J]. 农业工程学报,2013,28(24):164-172.

Diao Xiaonan, Wang Meizhi, Chen Zhaohui, et al. Effects of thermostatic apparatus for drinking water and roof-lighting system on improvement of growth rate of beef cattle in winter[J]. Transactions of Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 28(24): 164-172. (in Chinese with English abstract)

[6] Wang J, Ni X, Wen B, et al. Bacillus strains improve growth performance via enhancing digestive function and anti-disease ability in young and weaning rex rabbits[J]. Applied Microbiology Biotechnology, 2020, 104(10): 4493-4504.

[7] El-Ashram S, Aboelhadid S M, Abdel-Kafy E M, et al. Investigation of pre-and post-weaning mortalities in rabbits bred in egypt, with reference to parasitic and bacterial causes[J]. Animals, 2020, 10(4): 537.

[8] 谷子林,秦应和,任克良. 中国养兔学[M]. 北京:中国农业大学出版社,2013.

[9] Guo Y, Wang Q J, Zhang K H, et al. Night-restricted feeding improves locomotor activity rhythm and modulates nutrient utilization to accelerate growth in rabbits[J]. FASEB Journal, 2021, 35(1): e21166.

[10] 陈曦,李英英,柯翎,等. 冬季温饮对断奶仔猪生长性能及免疫水平的影响[J]. 福建农业学报,2018,33(6):561-565.

Chen Xi, Li Yingying, Ke Ling, et al. Effect of warm drinking water in winter on growth and immunology of post-weaning piglets[J]. Fujian Journal of Agricultural Sciences, 2018, 33(6): 561-565. (in Chinese with English abstract)

[11] Espinosa J, Ferreras M C, Benavides J, et al. Causes of mortality and disease in rabbits and hares: A Retrospective study[J]. Animals, 2020, 10(1): 158.

[12] Huuskonen A, Tuomisto L, Kauppinen R. Effect of drinking water temperature on water intake and performance of dairy calves[J]. Journal of Dairy Science, 2011, 94(5): 2475-2480.

[13] 张智,梁丽萍,李保明,等. 冬季饮水温度对断奶仔猪生长性能与行为的影响[J]. 农业工程学报,2018,34(20):204-209.

Zhang Zhi, Liang Liping, Li Baoming, et al. Effects of drinking water temperature on growth performance and behavior of weaned piglets in winter[J]. Transactions of Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 204-209. (in Chinese with English abstract)

[14] 陈昭辉,庞超,靳薇,等. 基于水温对肉牛生长性能影响的冬季恒温饮水系统优选[J]. 农业工程学报,2015,31(24):212-218.

Chen Zhaohui, Pang Chao, Jin Wei, et al. Optimization of water supply system with constant temperature in winter based on effect of water temperature on growth performance of beef cattle[J]. Transactions of Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 118-121. (in Chinese with English abstract)

[15] 赵娟娟,张伟涛,郭伟婷,等. 饮水温度对冬季育肥羊生产性能、血液理化指标及瘤胃显微结构的影响[J]. 草业学报,2020,29(11):57-66.

Zhao Juanjuan, Zhang Weitao, Guo Weiting, et al. Effect of drinking water temperature on production performance, blood biochemical parameters and rumen microstructure of fatening shep in winter[J]. Journal of prataculture, 2020, 29(11): 57-66. (in Chinese with English abstract)

[16] Morton D, Verga M, Blasco A, et al. The impact of the current housing and husbandry systems on the health and welfare of farmed domestic rabbits[J]. EFSA Journal, 2005, 267: 1-31.

[17] Wang Q, Fu W, Guo Y, et al. Drinking warm water improves growth performance and optimizes the gut microbiota in early postweaning fabbits during winter[J]. Animals, 2019, 9(6): 346.

[18] Zhang X Y, Sukhchuluun G, Bo T B, et al. Huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure[J]. Microbiome, 2018, 6(1): 103.

[19] Wang J, Ni X, Wen B, et al. Bacillus strains improve growth performance via enhancing digestive function and anti-disease ability in young and weaning rex rabbits[J]. Applied Microbiology and Biotechnology, 2020, 104(10): 4493-4504.

[20] Zeng B, Han S, Wang P, et al. The bacterial communities associated with fecal types and body weight of rex rabbits[J]. Scientific Reports, 2015, 5: 9342.

[21] Drouilhet L, Achard C S, Zemb O, et al. Direct and correlated responses to selection in two lines of rabbits selected for feed efficiency under ad libitum and restricted feeding: I. Production traits and gut microbiota characteristics[J]. Journal of Animal Science, 2016, 94(1): 38-48.

[22] Kasahara K, Krautkramer K A, Org E, et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model[J]. Nature Microbiology, 2018, 3(12): 1461-1471.

[23] Tang W, Yao X, Xia F, et al. Modulation of the gut microbiota in rats by Hugan Qingzhi tablets during the treatment of High-Fat-Diet-Induced nonalcoholic fatty liver disease[J]. Oxidative Medicine and Cellular Longevity, 2018, 2018: 7261619.

[24] Tan Z, Nagata S. Superimposed cold stress-induced hypothalamic-pituitary-adrenal response during long-duration restraint stress[J]. Journal of UOEH, 2002, 24(4): 361-73.

[25] Flynn N E, Wu G. Glucocorticoids play an important role in mediating the enhanced metabolism of arginine and glutamine in enterocytes of postweaning pigs[J]. Journal of Nutrition. 1997, 127(5): 732-737.

[26] Reichardt N, Duncan S H, Young P, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota[J]. The ISME journal emultidisciplinary journal of microbial ecology, 2014, 8(6): 1323-1335.

[27] Louis P, Duncan S H, McCrae S I, et al. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon[J]. Journal of Bacteriology. 2004, 186(7): 2099-106.

[28] Bedford A, Gong J. Implications of butyrate and its derivatives for gut health and animal production[J]. Animal Nutrition. 2018, 4(2): 151-159.

[29] Tsuchiya M, Sekiai S, Hatakeyama H, et al. Neutrophils provide a favorable IL-1-mediated immunometabolic niche that primes GLUT4 translocation and performance in skeletal muscles[J]. Cell Reports, 2018, 23(8): 2354-2364.

[30] Mcaninch E A, Bianco A C. Thyroid hormone signaling in energy homeostasis and energy metabolism[J]. Annals of the New York Academy of Sciences, 2014, 1311: 77-87.

[31] Fang S, Chen X, Pan J, et al. Dynamic distribution of gut microbiota in meat rabbits at different growth stages and relationship with average daily gain (ADG)[J]. BMC Microbiology, 2020, 20: 116.

[32] Fang S, Chen X, Zhou L, et al. Faecal microbiota and functional capacity associated with weaning weight in meat rabbits[J]. Microbial Biotechnology. 2019, 12(6): 1441-1452.

[33] Qiu Z, Yang H, Rong L, et al. Targeted Metagenome based analyses show gut microbial diversity of inflammatory bowel disease patients[J]. Indian journal of microbiology, 2017, 57(3): 307-315.

[34] Wang W, Guo D Y, Lin Y J, et al. Melanocortin regulation of inflammation[J]. Frontiers in Endocrinology, 2019, 10: 683.

[35] Montero-Melendez T, Patel H B, Perretti M. Role of melanocortin receptors in the regulation of gouty inflammation[J]. Current Rheumatology Reports, 2011, 13(2): 138-145.

Promoting the growth of weaned rabbits in open shed in winter using thermostatic drinking system

Shan Chunhua1, Fu Wei1,2, Tang Yuhan1,3, Guo Yao1, Wang Qiangjun1, Du Haoxuan1, Li Mingyong4, Liu Man4, Liu Zhongying1, Wu Zhonghong1※

(1.,,,100193,;2.,,610041,;3.,657000,; 4..,.,266400,)

Cold stress of livestock easily occurs in open sheds of cold areas during winter, due mainly to the relatively low thermal insulation under the low temperature conditions. As such, cold drinking water can further deteriorate the health and growth of young livestock. The objective of this study was to investigate the effect of drinking warm water in winter on the health and growth performance of weaned rabbits. A total of 180 weaned rabbits (47 days of age) with similar body weight (initial body weight 1.2±0.1 kg) were randomly assigned to two groups, either warm water (WW) or cold water (CW) (90 rabbits in each group). An electrical heating wire was also used to heat the warm water, where the water pipe was covered with insulated foam coating. A thermostatic controller was selected to remain at a constant temperature (35.5 ± 1.1 ◦C) during the experiment. The cold water was prepared at (5.8 ± 2.3)◦C without heating. A 48-day test was carried out to measure various indicators. The results showed that: 1) The indoor average air temperature was (8.9±3.2)℃ during the experiment. The average daily weight gain of rabbits in warm water group was significantly higher than that in cold water group during 47-58 days and 47-94 days, respectively, by 15.11 kg/d and 1.94 kg/d (<0.05).. 2) The feed-weight ratio of rabbits was significantly lower in the warm water group than that in the cold water group during 47~58 days (18.2%) (< 0.05). But there was no significant difference during the rest. In addition, the risk of diarrhea in rabbits drinking warm water was significantly reduced by 25.6% during 47~94 days (< 0.05), compared with the cold water group. The expressions of thyroid hormone receptorand(THRand) in jejunum were significantly down-regulated on 70 days in rabbits drinking warm water (< 0.05). 3) The contents of immunoglobulin A (IgA) and total protein (TP) in serum increased significantly for the rabbits drinking warm water, with the increase of age, especially on 82 days (< 0.05). Moreover, the abundance of Roseburia increased in the cecum of rabbits on 82 days in the warm water group, relating to nutrient digestion and absorption, indicating 6.9 times higher than that of 58-day old rabbits (< 0.05). Consequently, the constant temperature drinking system in the open sheds in winter can be expected to improve the immunity, intestinal digestion, and absorption capacity, thereby promoting the growth and health of weaned rabbits. The finding can provide theoretical support to improve the survival rate and production efficiency of weaned rabbits in open houses in cold areas.

temperature; animals; open shed; winter; weaned rabbits; thermostatic drinking system; production performance

单春花,付伟,唐于寒,等. 恒温饮水系统促进开放舍冬季断奶仔兔生长[J]. 农业工程学报,2021,37(16):192-198.doi:10.11975/j.issn.1002-6819.2021.16.024 http://www.tcsae.org

Shan Chunhua, Fu Wei, Tang Yuhan, et al. Promoting the growth of weaned rabbits in open shed in winter using thermostatic drinking system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(16): 192-198. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.16.024 http://www.tcsae.org

2021-04-08

2021-07-28

财政部和农业农村部:国家现代农业产业技术体系(CARS-43-D-1);国家转基因重大专项(2009ZX08006-008B)

单春花,博士生,研究方向为畜禽环境生理。Email:shanchh0208@163.com

吴中红,教授,研究方向为畜禽环境工程、环境生理与动物生殖发育。Email:wuzhh@cau.edu.cn

10.11975/j.issn.1002-6819.2021.16.024

S829.1

A

1002-6819(2021)-16-0192-07

猜你喜欢
家兔盲肠温水
春季家兔管理四要点
应避免在低于10℃水温条件下给温水性鱼类接种疫苗
减少#1炉再热器减温水使用量
秋养家兔 配种要点需牢记
家兔“三催”增效饲养法
家兔疾病 如何检查
新疆驴盲肠、腹结肠、背结肠固相食糜细菌多样性研究
为什么南极会有温水湖泊?
当胶囊君遇到水
改性纱布防止兔盲肠、子宫术后盆腔粘连的效果观察