宋涵艺
摘要:随着时代的发展,汽车已经成为人们生活中的重要交通工具,而人们对汽车性能与舒适度的要求则在不断提升。因此在车辆生产过程中,其表面涂装质量同样需要进行深度检测,以保证其良好的外观形象。本文即重点介绍自动检测技术在汽车涂装表面质量检测中的应用方式,通过对自动检测系统准确性的评价,寻求降低检测过程中缺陷遗漏的方法,并有效提升车身表面的质量,提高生产过程的自动化率。
Abstract: With the development of the times, automobile has become an important means of transportation in people's life, and people's requirements for automobile performance and comfort are increasing. Therefore, in the process of vehicle production, the surface coating quality also needs to be deeply tested to ensure its good appearance image. This paper focuses on the application of automatic detection technology in automobile coating surface quality detection. Through the evaluation of the accuracy of the automatic detection system, this paper seeks to reduce the defect omission in the detection process, effectively improve the quality of the body surface and improve the automation rate of the production process.
关键词:自动检测技术;汽车涂装;表面质量检测
Key words: automatic detection technology;automobile painting;surface quality inspection
中图分类号:U471.14 文献标识码:A 文章编号:1674-957X(2021)21-0136-02
0 引言
车身喷涂是汽车生产过程中的重要步骤,在自动化技术、机器视觉技术等新型技术的全面发展应用之下,针对钢材、PCB板以及织物表面质量检测的技术得到了全面升级,目前其相关技术在国外大型汽车公司已经开始测试使用,本文即通过深入研究与探讨为国内的全面普及应用提供参考。
1 汽车涂装自动检测技术原理分析
汽车涂装自动检测技术以先进机器视觉系统为基础,针对汽车涂膜表面的质量进行自动检测,在车身行进的同时,识别汽车表面涂装存在的各类缺陷,并将其结果参数传输到报交线上,进而自动指示出需要返修的准确位置和区域。该技术主要依靠机器视觉系统完成运作,其中安装了数据处理计算机核心,通过对汽車表面涂装图像的获取、处理与分析,进而输出检测结果。具体来说,该技术的机器视觉系统是核心部件,将39个工业视觉传感器固定于车身周围,进行涂装表面图像获取,保证每个传感器都能固定获取并检测对应的区域范围,并通过所有传感器的合理分布,使得检测的总区域将车身表面全覆盖。系统以LED红色高亮光带为光源,在车身行进的同时,对车身涂膜表面进行高清扫描,从每辆车上可以获取3万张以上的高清图像,而后通过高性能计算机处理中心对图像数据进行处理,进而根据算法分析出接测结果,并通过数据输出,自动指出其缺陷位置。
该技术对于车身涂装缺陷的检测与识别主要依靠缺陷表面与正常涂装表面的反射光差异,在光的反射定律下,车身涂装平面形成的反射光具有典型特征,当视觉传感器接收到与预设光线不同的信号时,就可以大概判断其存在缺陷问题,而后将传感器图像进行智能处理,进而分析得出结果。
汽车涂装自动检测技术的系统结构主要包括编码器、视觉传感器、通讯I/O模块、光电开关传感器、PLC、光源、处理器等。该系统结构具有占地面积小,应用灵活的特征。主检测系统占地3.0×3.6米,后盖检测结构占地1.0×1.5米,可以灵活安装在面漆存储线内,进而在车间改动时较为简单。在具体的系统结构中,系统编码器直接连接输送滚床,检测系统根据输送转速控制拍照的频率。在检测时计算机系统需要处理大量图像,因此需要更优质的计算机处理器。在车身检测过程中,则分为五部分展开,分别为车身前盖、车顶、左边、右边和后盖,其中各自安装一台计算机处理器,通过通讯主机实现交互通信,进而得出总体检测结果。检测系统的视觉传感器则分别固定在车身的周边位置,通过设置一定的扫描重叠区,保证检测区域能够完全覆盖车辆表面。
2 自动检测技术在汽车涂装质量检测中的应用流程
车辆在达到检测站之前,车身信息读写站会将目标车辆的相关数据进行统计并发送给检测系统,主要信息包括车身的基本型号、车身表面的喷漆颜色、车顶的特殊形式、是否存在天线孔等。检测系统在收到型号信息后,可以根据对应型号加载数据参数。当车辆行进触发光电开关传感器后,检测系统正式开始工作,由编码器发出的脉冲信号进行图像采集工作,直到完成检测任务。
2.1 图像采集 图像采集是自动检测的第一个环节,每一个传感器通过扫描车身的特定区域,采集800-1000张高清晰度图像,根据车辆表面的面积大小,所采集的图像个数有一定浮动空间,但其图像会完整覆盖车身表面,保证检测目标不出现任何遗漏。在车身通过检测系统时,视觉传感器会一直根据编码器生成的信号记录对应图像。但是所采集的图像信息并不是全部用于检测提示,比如车顶天窗、天线孔等位置,同样会生成非预设参数,但这些区域会自动去除在缺陷检测之中。在该环节中,系统主要通过感兴趣区域 ROI机制进行控制,通过该机制可以让系统分辨出采集图像中可以忽略的信息内容,进而保证检测具有更高的针对性与精确性。对于不同颜色的车身,检测系统也会建立智能学习体系,针对不同的颜色建立检测参数库,进而以更精确的数据检测其光线范围,保证图像采集的高质量标准,从而保证检测系统不会受到因颜色而带来的反射光线差异影响。
2.2 图像处理 自动检测系统在得到传感器采集的诸多图像之后,则要对高清图片进行图像二值化算法处理,进而通过算法叠加拟合,模拟生成对应车型的检测模板。在实际检测过程中,系统可以根据车型自动设置主模板视觉传感器,其他传感器则会根据算法进行区域整合,进而保证检测范围完整化。而后系统会建立预设标准,并根据定点图案搜索智能识别检测区域中的区域形状,以此辨识缺陷存在的位置以及大小范围。
2.3 结果输出 在车身返修线上设有人工返修工位,并配备了液晶显示器,当自动检测系统检测完毕后,其结果信息会即时存储到系统的数据库之中,并且在车上运行到返修线时,其结果信息会通过液晶显示屏进行明确展示,工人可以直接根据显示器指示的位置、颜色、等级进行修补,比如红色、橙色、蓝色就分别表示了B、C1和C级等不同的缺陷。
3 自动检测技术的评价结果分析
相比较人工检测,自动检测系统在缺陷检出率上有着显著提升,这得益于自动检测技术中机器视觉系统的高精度识别能力。同时,在不同颜色车辆的检测过程中,人工检测会更容易受到颜色的影响,在浅色系车身涂装的检测中往往检出率会大幅下降,而自动检测技术同样在机器视觉的智能调节系统下,保证了不同颜色油漆下的稳定缺陷检测。
为进一步对比自动检测系统的检测效果,车辆质保专业部门可以针对自动检测与人工检测的结果进行统计分析,如图1中显示,在缺陷漏检统计方面,人工检测的漏检情况更多,而自动检测技术的检测精度明显更高。
为进一步建立自动检测系统准确性的定量分析指标,需要对自动检测系统的评价指标量进行深化,即通过缺陷检出率明确实际检测效能,通过系统单车误报结果展示检测系统的精确度。其中检出率主要表现系统的缺陷识别能力,单车误报则主要表现其检测精确度,即当系统检测存在缺陷时,实际查看时却并无缺陷的情况。由此可以建立如下公式进行计算,由此即可形成更加直观且定量的自动检测系统缺陷检出率和单车误报的评价指标。
缺陷检出率=检出缺陷/检出缺陷+未检出缺陷×100%;
系统单车误报=总误报缺陷个数/总检查车辆数量。
为了进一步验证自动检测系统的检测成效,还应建立相应的工作组,由规划、质保和涂装车间进行有效结合,一方面保证每日生产线上有效落实Audit查验车身的方式,另一方面就要在每日生产的过程中,进行一定数量的自动检测系统车身检验,并将自动检测结果与Audit检查结果进行对照,由此获悉检出缺陷、未检测出缺陷和误报缺陷等相关的数据。此外,针对不同车身颜色的情况,还可以建立检出率和单车误报的统计表。
如图2所示,自动检测系统在检测过程中受到颜色的影响相对较小,其检出率与单车误报缺陷次数相对稳定,虽然存在个别波动情况,但总体而言并没有出现较大差异,且很大程度上其差异原因在于系统设置的敏感性不同。在出现误报缺陷的情况下,人工查看后確认无缺陷则可以不做返修处理工作。而自动检测系统在批量生产运行过程中,还表现出额外的效果与优势,比如减少了人工劳动力,降低了人力标准,提高了生产的自动化效果等。
在传统的报交线上,工人需要负责两方面的工作,既要负责对缺陷的检测,又要在发现缺陷后及时进行处理,因而导致在检查与处理过程中需要消耗更多的时间。与此同时,由于人工检测还存在较多的缺陷漏检情况,因此在正常的生产流程中,还容易造成二次返修缺陷的问题。但是上述情况在自动检测系统应用下可以有效避免,返修工人不需要进行检测的工作,而只需要对缺陷进行处理即可,由此实现了更精细化的分工,可以实现降低缺陷漏检、提升检测质量的目标。
4 结语
随着工业科技的进一步发展,汽车涂装生产技术与检测流程也会持续升级,逐步向高智能化与全自动化发展。因此在机器视觉辅助下,汽车车身涂膜表面质量的自动化检测技术展现出重要的应用价值,其通过机器功能代替了人工检测的过程,不仅可以进一步防止缺陷遗漏,而且还能有效提升车身的油漆质量,甚至还通过降低劳动强度,提升了生产线的自动化率,是全面促进汽车质量检测过程工作效率的重要支持,也必将成为未来车厂的重要发展趋势。
参考文献:
[1]简云久,邓涛.浅谈影响汽车涂装质量因素与管控方案[J].汽车实用技术,2020(05):202-204.
[2]王枫,王娟.浅谈汽车涂装工艺和质量控制[J].汽车实用技术,2020(06):129-131.
[3]柯聪,董蓓.汽车涂装免中涂工艺对钢板表面质量要求的影响[J].武汉工程职业技术学院学报,2016,28(04):27-29.