禾荔特晚熟焦核突变体GLL-1全基因组变异分析

2021-11-03 11:11丁峰李浩然王金英彭宏祥何新华黄小雄李平钟敏芝覃燕张树伟
南方农业学报 2021年7期
关键词:荔枝

丁峰 李浩然 王金英 彭宏祥 何新华 黄小雄 李平 钟敏芝 覃燕 张树伟

摘要:【目的】探究禾荔特晚熟焦核突變体GLL-1的全基因组变异情况,为调控荔枝果实成熟期、解析焦核发生分子机制及选育焦核品种提供理论支持。【方法】通过荔枝种质资源普查发现1个禾荔特晚熟焦核突变体GLL-1,对禾荔和GLL-1开展全基因组重测序(测序深度50×),对比分析GLL-1全基因组变异情况。【结果】与禾荔相比,GLL-1果实明显较大,品质优良,特晚熟,种子变为焦核,可食率明显提高。从GLL-1基因组获得320858674个高质量的Clean reads,定位到荔枝参考基因组的高质量Clean reads数占比为96.07%,正确识别率大于Q20的碱基占比为96.48%,正确识别率大于Q30的碱基占比为91.38%,基因组GC含量为35.28%,覆盖度(大于1×的碱基占比)为97.62%。检测到9306084个单核苷酸多态性(SNP)位点和759887个小片段插入和缺失(Indel)位点,共导致12621个基因发生变异,其中发生非同义SNP突变的基因8451个,发生Indel的基因4170个。许多与花色素苷生物合成相关的MYB、bHLH、WD40转录因子家族基因及参与ABA信号转导的重要家族基因(bZIP、WRKY、MAPK及PPR)均发生突变。【结论】MYB、bHLH、WD40、bZIP、WRKY、MAPK及PPR等家族基因的突变可能是导致GLL-1果实特晚熟及焦核发生的一个主要原因,推测其在调控荔枝果实发育和焦核发生中发挥关键作用。

关键词: 荔枝;焦核突变体;全基因组重测序;变异分析;SNP;Indel

中图分类号: S667.103.6                             文献标志码: A 文章编号:2095-1191(2021)07-1780-10

Genome-wide variation analysis of the aborted-seeded and

late-maturing mutant GLL-1 from Heli

DING Feng1,2,3, LI Hao-ran1, WANG Jin-ying3, PENG Hong-xiang2, HE Xin-hua3,

HUANG Xiao-xiong1, LI Ping4, ZHONG Min-zhi4, QIN Yan4, ZHANG Shu-wei1,2*

(1Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory,Nanning  530007, China; 2 Horticultural Research Institute, Guangxi Academy of Agricultural Sciences,Nanning  530007, China; 3 College of Agriculture/State Key Laboratory for Conservation and Utilization of Subtropical

Agro-bioresources, Guangxi University, Nanning  530004, China; 4Agricultural Technology

Extension Station of Madong,Guiping, Guangxi  537200, China)

Abstract:【Objective】The present study aimed to study the genome-wide variation situation of Lihe super late-matu-ring aborted-seeded mutant GLL-1, and provide theoretical basis for regulating the ripening period of litchi fruit, analy-zing Molecular mechanisms of aborted-seeds, and breeding of aborted-seeded litchi varieties. 【Method】Through the survey of litchi germplasm resources, Lihe super late-maturing aborted-seeded mutant GLL-1 was found, whole-genome resequencing of cultivars Heli and GLL-1 with 50× depth was conducted, and GLL-1 whole-genome variation situations were compared. 【Result】Compared with Heli, the GLL-1 fruit was obviously larger, with good quality, especially late ripening, seeds became into aborted-seeds, the edible rate was greatly improved. Obtained a total of 320858674 high qua-lity clean reads from GLL-1 genome,of which 96.07% were located in the reference genome of litchi,and the percentage of bases with the correct recognition rate greater than Q20 was 96.48%. The percentage of bases with the correct recognition rate greater than Q30 was 91.38%; the genomic GC content was 35.28%,97.62% of bases with a depth of more than 1× were covered. The results revealed 9306084 single nucleotide polymorphisms(SNPs) and 759887 insertion and deletion of small fragments(Indels),which conferred 12621 mutant genes. A total of 8451 non-synonymous SNP mutations and 4170 Indel genes were identified. It was worth noting that many anthocyanin biosynthesis associated  transcription factor family genes including MYB,bHLH and WD40 and important family genes involving in ABA signal transduction including bZIP,WRKY,MAPK and PPR were mutated. 【Conclusion】Mutations in family genes,including MYB,bHLH,WD40,bZIP,WRKY,MAPK and PPR,may be a major cause of the super late ripening and the aborted-seeded traits of GLL-1 fruit,which play a key role in regulating litchi fruit development and aborted-seeded traits.

Key words: litchi; aborted-seed mutant; whole-genome resequencing; mutation analysis; SNP;Indel

Foundation item:National Natural Science Foundation of China(32060659); Guangxi Natural Science Foundation(2017GXNSFAA198350,2018GXNSFAA050089,2018GXNSFAA294034)

0 引言

【研究意義】荔枝(Litchi chinensis Sonn.)为无患子科(Sapindaceae)荔枝属(Litchi Sonn.)亚热带常绿果树,起源于我国,因其果实形、色、香、味俱佳和营养丰富而被誉称为“岭南果王”“人间仙果”及“佛果”等。目前我国是荔枝的最大生产国,主产区分布在广东、广西及海南等地,随着荔枝产业的快速发展,产业结构问题日益突出,尤其是各主产区品种栽培结构不合理,特早熟和特晚熟品种所占比例很小,而中熟品种所占比例较大,再加上荔枝6、7月份采后保鲜难,导致广大果农丰产年而不丰收,消减了果农栽培荔枝的积极性,出现了荔枝果园无人管理现象,严重影响我国荔枝产业的发展。造成上述结果的主要原因是缺乏品质优良的特早熟和特晚熟荔枝品种。由于荔枝熟期育种缺乏基础理论指导,导致品种选育进程慢。因此,以禾荔及其特晚熟焦核芽变新种质GLL-1为材料,通过重测序挖掘调控荔枝果实发育速度和焦核发生的基因,为今后荔枝的熟期育种及焦核品种的选育提供基因资源和材料支撑。【前人研究进展】荔枝果皮着色直观反映了果实成熟进程,其实质是一个花色素苷合成积累的过程,最终成熟时果皮呈现出鲜艳的红色。在此过程中,MYB、bHLH(Basic helix-loop-helix)和WD40三大类转录因子相互作用形成MBW复合体(MYB-bHLH-WD40)共同调控花色素苷的生物合成(Baudry et al.,2004;Zimmermann et al.,2004;Xu et al.,2015)。已有研究证实,MYB转录因子在拟南芥、萝卜等植物花色素苷积累过程中发挥关键作用(Borevitz et al.,2000;Zuluaga et al.,2008;Lim et al.,2016)。bHLH转录因子在调控植物花色素苷生物合成中也发挥关键作用,如拟南芥bHLH转录因子突变体tt8、eg3和egl3幼苗和种皮花色素苷积累量明显减少(Nesi et al.,2000;Zhang et al.,2003);苹果MdbHLH3和MdbHLH33可与MYB转录因子互作,进而调控果实花色素苷的合成(Espley et al.,2007;Xie et al.,2012)。WD40蛋白是调控花色素苷生物合成的另一个重要转录因子,如矮牵牛PhAN11是第一个发现的参与花色素苷合成调控的WD40蛋白(de Vetten et al.,1997);拟南芥WD40蛋白ttg1突变体种子的花色素苷合成显著受抑制(Walker et al.,1999);在果树中,苹果MdTTG1、石榴PgWD40、VvWDR1(葡萄)等WD40蛋白均参与其果实花色素苷的生物合成(Brueggemann et al.,2010;Matus et al.,2010;Ben-Simhon et al.,2011)。在荔枝果皮着色研究方面,Lai等(2014,2015,2016)采用转录组测序技术分析荔枝果皮成熟过程中基因转录本的变化,研究发现有2个LcbHLH转录因子能与LcMYB1转录因子相互作用调控荔枝果皮花色素苷的积累。由于荔枝种子败育变为焦核,使得可食率大幅提高,深受广大消费者的亲睐,因此,焦核是评估荔枝果实品质的一个重要指标。研究发现,焦核品种幼胚中的脱落酸(ABA)含量急剧上升改变生长促进物质与生长抑制物质的正常配比,是导致其胚败育的一个重要原因(周碧燕等,1998;张以顺等,2003),表明ABA在荔枝种子败育发生过程中发挥关键作用。【本研究切入点】随着高通量测序技术的快速发展,不同作物全基因组测序工作相继完成,目前已对水稻(Hiroki et al.,2013)、菜豆(Jeremy et al.,2014)、大豆(Qi et al.,2014)及番茄(Lin et al.,2014)等作物进行遗传分析。荔枝全基因组测序也已完成,使荔枝全基因组水平的遗传分析成为可能。但目前鲜见有关荔枝果实成熟期的调控机制及种子焦核发生机制的研究报道,其主要原因在于缺乏理想的试材。而本研究发现的禾荔特晚熟焦核突变体GLL-1可为荔枝果实成熟期的调控机制及焦核发生机制研究提供重要试材。【拟解决的关键问题】以禾荔和GLL-1为试材,通过基因组重测序手段分析禾荔特晚熟焦核突变体GLL-1的全基因组变异情况,为荔枝果实成熟期调控及种子焦核发生机制的研究打下理论基础。

1 材料与方法

1. 1 试验材料

供试禾荔母树(高空压条苗)及其焦核突变体GLL-1的幼叶采自广西桂平市麻垌镇的荔枝果园(东经110°9′,北纬23°8′)。DL2000 DNA Marker、琼脂糖和植物DNA提取试剂盒购自生工生物工程(上海)股份有限公司。主要仪器设备:紫外可见分光光度计UV5Nano(METTLER TOLEDO,瑞士)、电泳仪1645050(Bio-Rad,美国)、HiSeqTM 2500测序仪(Illumina,美国)。

1. 2 试验方法

1. 2. 1 GLL-1生物学特性观测 从GLL-1枝条采集接穗进行高接换种试验,连续6年(2015─2020年)对GLL-1果实主要性状进行观测和评价,并与禾荔果实进行比较。

1. 2. 2 禾荔和GLL-1全基因组重测序 采用植物DNA提取试剂盒分别提取禾荔和GLL-1的幼叶总DNA,具体步骤参照其说明书,并利用紫外分光光度计测定其纯度和浓度,1.0%琼脂糖凝胶电泳检测其完整性。将检测合格的总DNA样品交至深圳华大基因股份有限公司进行全基因组重测序,具体步骤:(1)对DNA进行片段化及纯化、末端修复、3?端加A及连接测序接头;(2)通过1.0%琼脂糖凝胶电泳进行片段大小的选择,进行PCR扩增构建测序文库;(3)利用Illumina HiSeqTM 2500测序仪进行测序,测序深度为50×。从基因组测序数据中过滤去除低质量的reads得到高质量的Clean reads,用于后续的生物信息学分析。

1. 2. 3 GLL-1基因组变异检测及注释 分别将禾荔和GLL-1的Clean reads与荔枝参考基因组(http://litchidb.genomics.cn/page/species/index.jsp)进行比对,使用GATK进行单核苷酸多态性(SNP)和小片段插入和缺失(Indel)位点检测(McKenna et al.,2014),并通过二者比较分析GLL-1的SNP和Indel变异情况。使用SnpEff对GLL-1变异的SNP和Indel位点进行注释。

1. 2. 4 GLL-1变异基因分析 通过生物信息学方法分析挖掘GLL-1与禾荔间的非同义突变SNP及编码区(CDS)InDel的基因,再通过BLAST将变异基因与NR、SwissProt、GO、COG及KEGG等数据库进行比对,从而获得基因功能注释(Altschul et al.,1997;Ashburner et al.,2000;Tatusov et al.,2000;Minoru et al.,2004;邓泱泱等,2006)。

2 结果与分析

2. 1 禾荔和GLL-1生物学特性比较结果

据近6年的表型觀察,发现禾荔和GLL-1的花期均为4月中旬左右,但两者果实发育进度不同,禾荔果实成熟期在7月中下旬,而GLL-1果实成熟期在8月上中旬,相差约15 d左右(图1和图2);GLL-1果实较大,平均单果重24 g左右,而禾荔平均单果重19 g左右;禾荔果皮龟裂片平滑,而GLL-1果皮龟裂片锥尖状突起(图3);GLL-1果实焦核率高达92%左右,而禾荔只有4%左右(图3);GLL-1种子变为焦核后可食率明显提高,达83%左右,而禾荔种子不变成焦核,可食率仅为73%左右,说明GLL-1为特晚熟优稀芽变荔枝新种质。

2. 2 禾荔和GLL-1的全基因组重测序结果

利用Illunima HiSeqTM 2500分别对禾荔和GLL-1幼叶DNA进行全基因组重测序。禾荔全基因组重测序结果(表1)显示,去除带接头或低质量的reads后共获得336185710个Clean reads,定位到荔枝参考基因组的Clean reads占比为95.53%;正确识别率大于Q20的碱基占比97.61%,正确识别率大于Q30的碱基占比为93.91%;基因组GC含量为35.34%,覆盖度(大于1×的碱基占比)为96.78%。GLL-1基因组重测序结果(表1)显示,去除带接头或低质量的reads后共获得320858674个Clean reads,定位到荔枝参考基因组的Clean reads占比为96.07%;正确识别率大于Q20的碱基占比为96.48%,正确识别率大于Q30的碱基占比为91.38%;基因组GC含量为35.28%;样品平均覆盖深度50×,覆盖深度大于1×的碱基占比为97.62%。

2. 3 GLL-1基因组变异位点检测及注释结果

根据禾荔和GLL-1的Clean reads在荔枝参考基因组进行变异检测,结果表明GLL-1共发现10065971个变异(Variant)位点,包括9306084个SNP位点和759887个Indel位点;SNP位点中,转换类型(Transition,Ti)的SNP位点有6684053个,颠换类型(Transversion,Tv)的SNP位点有2622031个;杂合SNP位点有1260043个,纯合SNP位点有8046041个,杂合率为15.66%。

使用GATK对GLL-1基因组变异位点进行注释,结果(表2)显示,位于CDS序列的SNP位点共计301822个,其中同义突变120761个,非同义突变181061个;位于CDS序列的Indel位点共计8926个,其中包括非3个碱基的整数倍核苷酸缺失突变3204个,3个碱基的整数倍核苷酸缺失突变1779个,非3个碱基的整数倍核苷酸插入突变2353个,3个碱基的整数倍核苷酸插入突变1590个;终止密码子丢失突变1134个。基于表2注释信息,经生物信息学分析发现,这些变异共导致12621个基因发生突变,其中发生非同义SNP突变的基因8451个,发生Indel的基因4170个。

2. 4 GLL-1变异基因分析结果

KEGG通路富集分析结果显示,与禾荔基因组相比,GLL-1有115个植物激素信号传导相关的基因发生变异。针对GLL-1芽变后成熟期比禾荔明显延迟(主要体现在果皮花色素苷生物合成变慢)及种子变为焦核不育的特性,对相关候选基因进行挖掘,其中重点挖掘启动子区域或外显子区域发生突变的基因,尤其是参与调控花色素苷生物合成的MYB、bHLH和WD40三大类转录因子家族基因,结果(表3)发现,GLL-1突变体MYB转录因子家族中有15个基因发生突变,其中12个基因启动子区域发生了SNP突变,2个基因启动子区域发生了缺失突变,还有一个基因外显子区域发生了SNP突变;bHLH转录因子家族中有11个基因发生突变,其中5个基因启动子区域发生了SNP突变,2个基因启动子区域发生了缺失突变,3个基因外显子区域发生了SNP突变,还有1个基因启动子区域同时发生了SNP突变和缺失突变;WD40转录因子家族中有3个基因发生突变,均为启动子区域发生了SNP突变。

由表4可知,GLL-1突变体ABA信号转导通路中15个关键基因发生了突变,如2个bZIP转录因子基因的启动子区域发生了SNP突变;5个WRKY转录因子基因中,有3个基因的启动子区域发生了SNP突变,有1个基因的启动子区域发生缺失突变,有1个基因的启动子区域发生插入突变;5个MAPK基因中,有4个基因的启动子区域发生了SNP突变,有1个基因的外显子区域发生了SNP突变;3个PPR转录因子基因中,有2个基因的启动子区域分别发生了SNP突变及缺失突变,1个基因的外显子区域发生了SNP突变。以上这些基因的突变可能是造成GLL-1果实相关性状改变的重要原因,故推测ABA在荔枝种子焦核发生过程中起关键作用。

3 讨论

本研究通过生物学特性观察发现,与禾荔相比,其芽变新种质GLL-1果实明显较大,品质优良,特晚熟,种子变为焦核,可食率明显提高,同时保存了禾荔丰产、稳产的特性,属特晚熟优稀荔枝种质资源,适合在晚熟荔枝产区推广种植,为今后荔枝早、中、晚熟栽培品种结构的优化,延长鲜果产品供应期提供品种支撑,以提高荔枝产业经济效益。同时,在今后的荔枝杂交育种及研究工作中,GLL-1既可作为父本用于选育特晚熟和焦核优良品种,也可作为研究荔枝果实发育快慢和焦核发生的重要材料。荔枝果皮着色是一个花色素苷生物合成积累的过程,着色快慢代表果实发育的快慢。本研究为了尽量减少测序的假阳性,以50×的荔枝基因组测序深度开展重测序试验,获得在启动子区域和外显子区域发生突变的MYB、bHLH和WD40转录因子基因,其数量分别为15、11和3个,推测MYB、bHLH和WD40三大类转录因子在调控花色素苷的生物合成过程中发挥关键作用。该结论在其他物种中也得到证实。如转基因拟南芥中过表达MYB转录因子基因AtPAP1可导致其植株变为紫色(Borevitz et al.,2000;Zuluaga et al.,2008);拟南芥bHLH转录因子突变体tt8、eg3和egl3的种皮和植株花色素苷积累量均明显减少(Nesi et al.,2000;Zhang et al.,2003);甜樱桃MYB转录因子PacMYBA可与bHLH转录因子相互作用调控花色素苷的合成(Shen et al.,2014);拟南芥WD40蛋白突变体ttg1种子中的花色素苷生物合成受到明显抑制(Walker et al.,1999;van Nocker and Ludwig,2003;Couture et al.,2006)。此外,本研究发现GLL-1中大量MYB、bHLH和WD40转录因子发生突变,突变的位置发生在启动子区域和外显子区域。启动子区域发生突变可能会严重影响基因的表达水平,而外显子区域发生突变可能会严重影响到基因的生物学功能,故推测这些基因的突变是造成GLL-1果实晚熟的主要原因,还有待进一步的研究。

与禾荔相比,其芽变新种质GLL-1的重要突变性状是种子变为焦核,而焦核是评估荔枝果实品质优良的一个关键因素。ABA参与调节细胞多种生理过程,包括气孔关闭、种子发育和萌发等,其在荔枝种子败育发生过程中起着重要作用(周碧燕等,1998;Finkelstein et al.,2002;张以顺等,2003)。此外,研究表明,WRKY18、WRKY40和WRKY60参与ABAR介导的ABA信号转导途径,作为转录抑制因子互相协作,抑制下游ABA信号调节基因的表达,包括ABI4、ABI5、ABF4和MYB2,进而负调控ABA信号通路(Shang et al.,2010)。PPR蛋白也参与ABA信号转导过程,包括PPR40(Zsigmond et al.,2008)、ABO5(Liu et al.,2010)、PGN(Laluk et al.,2011)、SLG1(Yuan and Liu,2012)、AHG11(Murayama et al.,2012)、SLO2(Zhu et al.,2014)及SOAR1(Jiang et al.,2015)等。ABA还可诱导ABI5和ABFs等bZIP转录因子的表达,其中ABI5是ABA信号转导的重要正调节子,主要在种子中表达(Finkelstein and Lynch,2000;Lopez-Molina and Chua,2000;Lopez-Molina et al.,2001,2002)。同时,植物MAPK级联途径中的相关蛋白通过协同作用参与ABA信号转导,共同调控植物的生长发育过程(Xing et al.,2008;Jammes et al.,2009)。此外,很多关键转录因子家族,包括MYC和MYB(Martin and Paz-Ares,1997;Dubos et al.,2010)、bZIP(Jakoby et al.,2002)、WRKY(?lker and Somssich,2004;Rushton et al.,2010)等均需要依赖ABA的逆境信号转导。因此,本研究主要针对ABA信号转导通路筛选关键突变基因,以期探究GLL-1果实种子焦核突变的分子调控机制。在本研究中,针对ABA信号转导通路筛选到2个bZIP基因、5个WRKY基因、5个MAPK基因、3个PPR基因、15个MYB基因及11个MYC(bHLH)基因发生了突变,推测MYB、MYC、bZIP、WRKY及PPR等家族基因的突变可能是导致GLL-1种子焦核发生的一个主要原因。基于本研究结果,今后应深入探究荔枝焦核发生的分子调控机制及焦核分子育种技术。

4 结论

MYB、bHLH、WD40、bZIP、WRKY、MAPK及PPR等家族基因的突变可能是导致GLL-1果实特晚熟及种子败育成焦核的主要原因,推测其在调控荔枝果实发育和焦核发生中发挥关键作用。

参考文献:

邓泱泱,荔建琦,吴松锋,朱云平,陈耀文,贺福初. 2006. NR数据库分析及其本地化[J].计算机工程,32(5):71-73. [Deng Y Y,Li J Q,Wu S F,Zhu Y P,Chen Y W,He F C. 2006. Integrated NR database in protein annotation system and its localization[J]. Computer Engineering,32(5):71-73.]

張以顺,向旭,黄上志,傅家瑞. 2003. 荔枝胚败育过程中内源激素与蛋白质含量的变化[J]. 植物生理与分子生物学学报,29(3):233-238. [Zhang Y S,Xiang X,Huang S Z,Fu J R. 2003. Changes in endogenous hormone and protein content during embryo abortion in litchi[J]. Journal of Plant Physiology and Molecular Biology,29(3):233-238.]

周碧燕,季作梁,葉永昌,招晓东,叶耀雄. 1998. 荔枝果实发育期间内源激素含量的变化[J]. 园艺学报,25(3):236-240. [Zhou B Y,Ji Z L,Ye Y C,Zhao X D,Ye Y X. 1998. Changes of endogenous hormones in litchi fruits during fruit development[J]. Acta Horticulturae Sinica,25(3):236-240.]

Altschul S F,Madden T L,Sch?ffer A A,Zhang J H,Zhang Z,Miller W,Lipman D J. 1997. Gapped BLAST and PS-BLAST:A new generation of protein database search programs[J]. Nucleic Acids Research,25(17):3389-3402. doi:10.1093/nar/25.17.3389.

Ashburner M,Ball C A,Blake J A,Botstein D,Michael-Cherry J. 2000. Gene Ontology:Tool for the unification of biology[J]. Nature Genetics,25(1):25-29. doi:10.1038/75556.

Baudry A,Heim M A,Dubreucq B,Caboche M,Lepiniec L. 2004. TT2,TT8,and TTG specify the synergistically expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana[J]. The Plant Journal,39(3):366-380. doi:10.1111/j.1365-313X.2004.02138.x.

Ben-Simhon Z,Judeinstein S,Nadler-Hassar T,Trainin T,Bar-Yaakov I,Borochov-Neori H,Holland D. 2011. A pomegranate(Punica granatum L.) WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development[J]. Planta,234(5):865-881. doi:10.1007/s00425-011-1438-4.

Borevitz J O,Xia Y,Blount J,Dixon R A,Lamb C. 2000. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J]. The Plant Cell,12(12):2383-2394. doi:10.2307/3871236.

Brueggemann J,Weisshaar B,Sagasser M A. 2010. WD40-repeat gene from Malus×domestica is a functional homologue of Arabidopsis thaliana TRANSPARENT TESTA GLABRA1[J]. Plant Cell Reports,29(3):285-294. doi:10.1007/s00299-010-0821-0.

Couture J F,Collazo E,Trievel R C. 2006. Molecular recognition of histone H3 by the WD40 protein WDR5[J]. Nature Structural & Molecular Biology,13(8):698-703. doi:10.2210/pdb2h14/pdb.

de Vetten N,Quattrocchio F,Mol J,Koes R. 1997. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast,plants,and animals[J]. Genes & Development,11(11):1422-1434. doi:10.1101/gad.11.11.1422.

Dubos C,Stracke R,Grotewold E,Weisshaar B,Martin C,Lepiniec L. 2010. MYB transcription factors in Arabidopsis[J]. Trends Plant Science,15:573-581. doi:10.1016/j.tplants.2010.06.005.

Espley R V,Hellens R P,Putterill J,Stevenson D E,Kutty-Amma S,Allan A C. 2007. Red colouration in apple fruit is due to the activity of the MYB transcription factor,MdMYB10[J]. The Plant Journal,49(3):414-427. doi:10.1111/j.1365-313X.2006.02964.x.

Finkelstein R R,Gampala S S,Rock C D. 2002. Abscisic acid signaling in seeds and seedlings[J]. The Plant Cell,14(Sl):S15-S45. doi:10.1105/tpc.010441.

Finkelstein R R,Lynch T J. 2000. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor[J]. The Plant Cell,12:599-609. doi:10.2307/3871072.

Hiroki T,Akira A,Kentaro Y,Shunichi K,Satoshi N,Chikako M,Aiko U,Hiroe U,Muluneh T,Shohei T,Hideki I,Liliana M C,Sophien K,Ryohei T. 2013. QTL-Seq:Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations[J]. The Plant Journal,74(1):174-183. doi:10.1111/tpj. 12105.

Jakoby M,Weisshaar B,Dr?ge-Laser W,Vicente-Carbajosa J,Tiedemann J,Kroj T,Parcy F,bZIP Research Group. 2002. bZIP transcription factors in Arabidopsis[J]. Trends in Plant Science,7:106-111. doi:10.1016/S1360-1385(01)02223-3.

Jammes F,Song C,Shin D,Munemasa S,Takeda K,Gu D,Cho D,Lee S,Giordo R,Sritubtim S,Leonhardt N,Ellis B E,MurataY,Kwak J M. 2009. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling[J]. Proceedings of the National Academy of Sciences of the United States of America,106(48):20520-20525. doi:10. 1073/pnas.0907205106.

Jeremy S,Mcclean P E,Sujan M,Mamidi S,Wu G A ,Cannon S B,Grimwood J,Enkins J,Shu S Q,Song Q J,Chavarro C,Torres-Torres M,Geffroy V,Moghaddam S M,Gao D Y,Abernathy B,Barry K,Blair M,Brick M A,Chovatia M,Gepts P,Goodstein D M,Gonzales M,Hellsten U,Hyten D L,Jia G F,Kelly J D,Kudrna D,Lee R,Richard M M S,Miklas P N,Osorno J M,Rodrigues J,Thareau V,Urrea C A ,Wang M,Yu Y,Zhang M,Wing R A,Cregan P B,Rokhsar D S,Jackson S A. 2014. A re-ference genome for common bean and genome-wide ana-lysis of dual domestications[J]. Nature Genetics,46:707-713. doi:10.1038/ng.3008.

Jiang S C,Mei C,Liang S,Yu Y T,Lu K,Wu Z,Wang X F,Zhang D P. 2015. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought,salt and cold stresses[J]. Plant Molecular Biology,88:369-385. doi:10.1007/s11103-015-0327-9.

Lai B,Du L,Liu R,Hu B,Su W B,Qin Y H,Zhao J T,Wang H C,Hu G B. 2016. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation[J]. Frontiers in Plant Science,7:166. doi:10.3389/fpls.2016.00166.

Lai B,Hu B,Qin Y,Zhao J T,Wang H C,Hu G B. 2015. Transcriptomic analysis of Litchi chinensis pericarp du-ring maturation with a focus on chlorophyll degradation and flavonoid biosynthesis[J]. BMC Genomics,16:255. doi:10.1186/s12864-015-1433-4.

Lai B,Li XJ,Hu B,Qin Y H,Huang X M,Wang H C,Hu G B. 2014. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes,tissues,develop-mental phases and ABA and light stimuli in Litchi chinensis[J]. PLoS One,9(1): e86293. doi:10.1371/journal.pone.0086293.

Laluk K,Abuqamar S,Mengiste T. 2011. The Arabidopsis mitochondria-localized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abio-tic stress tolerance[J]. Plant Physiology,156:2053-2068. doi:10.1104/pp.111.177501.

Lim S,Song J,Kim D,Kim J K,Lee J Y,Kim Y M,Ha S H. 2016. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1[J]. Plant Cell Reports,35(3):641-653. doi:10. 1007/s00299-015-1909-3.

Lin T,Zhu G,Zhang J,Xu X,Yu Q,Zheng Z,Zhang Z H,Lun Y Y,Li S,Wang X X,Huang Z J,Li J M,Zhang C Z,Wang T T,Zhang Y Y,Wang A X,Zhang Y C,Lin K,Li C Y,Xiong G S,Xue Y B,Mazzucato A,Causse M,Fei Z J,Giovannoni J J,Chetelat R T,Zamir D,Stadler T,Li J F,Ye Z B,Du Y C,Huang S W. 2014. Genomic analyses provide insights into the history of tomato bree-ding[J]. Nature Genetics,46(11):1220-1226. doi:10.1038/ ng.3117.

Liu Y,He J,Chen Z,Ren,X,Hong,X. 2010. ABA overly-sensitive 5(ABO5),encoding a pentatricopeptide repeat protein required for cis-splicing of mitochondrial nad2 intron 3,is involved in the abscisic acid response in Arabidopsis[J]. The Plant Journal,63:749-765. doi:10.1111/j. 1365-313X.2010.04280.x.

Lopez-Molina L,Chua N H. 2000. A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana[J]. Plant and Cell Physiology,41(5):541-547. doi:10. 1093/pcp/41.5.541.

Lopez-Molina L,Mongrand S,Chua N H. 2001. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,98:4782-4787. doi:10.1073/pnas.081594298.

Lopez-Molina L,Mongrand S,McLachlin,Chait B T,Chua N H. 2002. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination[J]. The Plant Journal,32(3):317-328. doi:10.1046/j.1365-313x. 2002.01430.x.

Martin C,Paz-Ares J. 1997. MYB transcription factors in plants[J]. Trends in Genetic,13:67-73. doi:10.1016/s0168-9525(96)10049-4.

Matus J T,Poupin M J,Canon P,Bordeu E,Alcalde J A,Arce-Johnson P. 2010. Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine(Vitis vinifera L.)[J]. Plant Molecular Biology,72(6):607-620. doi:10.1007/s11103-010-9597-4.

McKenna A,Hanna M,Banks E,Sivachenko A,Cibulskis K,Kernytsky A,Garimella K,Altshuler D,Gabriel S,Daly M,Depristo M A. 2014. The genome analysis toolkit:A mapreduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research,20(9):1297-1303. doi:10.1101/gr.107524.110.

Minoru K,Susumu G,Shuichi K,Yasushi O,Masahiro H. 2004. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research,32(22):277-280. doi:10. 1093/nar/gkh063.

Murayama M,Hayashi S,Nishimura N,Ishide M,Kobayashi K,Yagi Y,Asami T,Nakamura T,Shinozaki K,Hirayama T. 2012. Isolation of Arabidopsis ahg11,a weak ABA hypersensitive mutant defective in nad4 RNA editing[J]. Journal of Experimental Botany,63(14):5301-5310. doi:10.1093/jxb/ers188.

Nesi N,Debeaujon I,Jond C,Pelletier G,Caboche M,Lepi-niec L. 2000. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques[J]. The Plant Cell,12(10):1863-1878. doi:10.1105/tpc.12.10.1863.

Qi X,Li M W,Xie M,Liu X,Ni M,Shao G H,Song C,Yim A K Y,Tao Y,Wong F L,Isobe S,Wong C F,Wong K S,Xu C Y,Li C Q,Wang Y,Guan R,Sun F M,Fan G Y,Xiao Z X,Zhou F,Phang T H,Liu X,Tong S W,Chan T F,Yiu S M,Tabata S,Wang J,Xu X,Lam H M. 2014. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing[J]. Nature Communications,5(5):4340. doi:10.1038/ncomms5340.

Rushton P J,Somssich I E,Ringler P,Shen Q J. 2010. WRKY transcription factors[J]. Trends in Plant Science,15(5):247-258. doi:10.1016/j.tplants.2010.02.006.

Shang Y,Yan L,Liu Z Q,Cao Z,Mei C,Xin Q,Wu F Q,Wang X F,Du S Y,Jiang T,Zhang X F,Zhao R,Sun H L,Liu R,Yu Y T,Zhang D P. 2010. The Mg-chelatase H subunit antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition[J]. The Plant Cell,22:1909-1935. doi:10.1105/tpc.110. 073874.

Shen X,Zhao K,Liu L,Zhang K C,Yuan H Z,Liao X,Wang Q,Guo X W,Li F,Li T H .2014. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-co-lored sweet cherry cv. Hong Deng(Prunus avium L.)[J]. Plant and Cell Physiology,55(5):862-880. doi: 10.1093/pcp/pcu013.

Tatusov R L,Galperin M Y,Natale D A,Koonin E V. 2000. The COG database:A tool for genome-scale analysis of protein functions and evolution[J]. Nucleic Acids Resea-rch,28(1):33-36. doi:10.1093/nar/28.1.33.

?lker B,Somssich I E. 2004. WRKY transcription factors: From DNA binding towards biological function[J]. Current Opinion in Plant Biology,7(5):491-498. doi: 10. 1016/j.pbi.2004.07.012.

van Nocker S,Ludwig P. 2003. The WD-repeat protein superfamily in Arabidopsis:Conservation and divergence in structure and function[J]. BMC Genomics,4(1):50. doi:10.1186/1471-2164-4-50.

Walker A R,Davison P A,Bolognesi-Winfield A C,James C M,Srinivasan N,Blundell T L,Esch J J,Marks M D,Gray J C. 1999. The TRANSPARENT TESTA GLABRA1 locus,which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis,encodes a WD40 repeat protein[J]. The Plant Cell,11(7):1337-1350. doi:10.1105/tpc.11.7.1337.

Xie X B,Li S,Zhang R F,Zhao J,Chen Y C,Zhao Q,Yao Y X,You C X,Zhang X S,Hao Y J. 2012. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low tempera-ture in apples[J]. Plant Cell and Environment,35(11):1884-1897. doi:10.1111/j.1365-3040.2012.02523.x.

Xing Y,Jia W,Zhang J. 2008. AtMKK1 mediates ABA induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis[J]. The Plant Journal,54(3):440-451. doi:10.1111/j.1365-313X.2008.034 33.x.

Xu W,Dubos C,Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends in Plant Science,20(3):176-185. doi:10.1016/ j.tplants.2014.12.001.

Yuan H,Liu D. 2012. Functional disruption of the pentatricopeptide protein SLG1 affects mitochondrial RNA editing,plant development,and responses to abiotic stresses in Arabidopsis[J]. The Plant Journal,70:432-444. doi:10. 1111/j.1365-313X.2011.04883.x.

Zhang F,Gonzalez A,Zhao M,Payne C T,Lloyd A. 2003. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis[J]. Development,130(20):4859-4869. doi:10.1242/dev.00681.

Zhu Q,Dugardeyn J,Zhang C,Muhlenbock P,Eastmond P J,Valcke R,De C B,Oden S,Karampelias M,Cammue B P A,Prinsen E,Van D S D. 2014. The Arabidopsis tha-liana RNA editing factor SLO2,which affects the mitochondrial electron transport chain,participates in multiple stress and hormone responses[J]. Molecular Plant,7:290-310. doi:10.1093/mp/sst102.

Zimmermann I M,Heim M A,Weisshaar B,Uhrig J F. 2004. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins[J]. The Plant Journal,40(1):22-34. doi:10.1111/j.1365-313X.2004.02183.x.

Zsigmond L,Rigó G,Szarka A,Székely G,Otv?s K,Darula Z,Medzihradszky K F,Koncz C,Koncz Z,Szabados L. 2008. Arabidopsis PPR40 connects abiotic stress respon-ses to mitochondrial electron transport[J]. Plant Physio-logy,146:1721-1737. doi:10.1104/pp.107.111260.

Zuluaga D L,Gonzali S,Loreti E,Pucciariello C,Degl'Innocenti E,Guidi L,Alpi A,Perata P. 2008. Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants[J]. Functional Plant Biology,35(7):606-618. doi:10.1071/FP08021.

(責任编辑 陈 燕)

猜你喜欢
荔枝
吃荔枝
Fruit of the South
不只是美味
荔枝红了到灵山
吃荔枝
2018年海南海口火山荔枝收获创纪录
小心“荔枝病”
荔枝
泰国北部荔枝受自然灾害的影响
荔枝枝枝枝映水