王 锐,伦增珉,吕成远,王友启,唐永强,王 欣
(1.国家能源陆相砂岩老油田持续开采研发中心,北京 102206;2.中国石化石油勘探开发研究院,北京 102206)
提高石油采收率是通过改善油藏及流体物理化学特性,提高波及效率与驱油效率的采油方法的统称。在此定义下,提高采收率可包括那些除了利用天然能量开采和以保持地层压力为目的的注水开采之外的各种采油方法。根据驱替介质和驱替方式,提高采收率方法可分为化学驱、热采、气驱、微生物采油和物理法采油等。随着勘探开发面临对象日益复杂,对提高采收率技术需求越来越强烈,传统的提高采收率技术界限越来越模糊,技术复合交叉化趋势愈发明显,提高采收率新材料、新领域、新方法研究与应用方兴未艾。
美国密苏里科技大学提高采收率数据研究组对全球提高采收率技术进行了全面统计分析,结果表明,全球提高采收率项目约有976项,主要位于美国、加拿大和中国。其中,稠油热采项目有454 项,占46.5%;气驱有387项,占39.7%;化学驱有132项,占13.5%;其他有3 项,占0.3%。热采、气驱、化学驱作为三大主要提高采收率技术,获得了广泛应用。目前,全球应用提高采收率技术获取的日产原油约达300 万桶规模。近十年来,热采和气驱技术对全球原油生产做出了重要贡献,特别是加拿大的油砂项目和美国的CO2驱项目。其中,气驱项目日产原油约75 万桶,而化学驱项目仅日产原油37.5 万桶,约有30 万桶来自于中国。随着世界能源需求持续增长,老油田逐步步入枯竭,新油田勘探开发越来越困难,提高采收率技术愈发重要[1-2]。
传统的热采、气驱、化学驱提高采收率技术在技术、操作、经济性等各个层面面临着巨大的挑战,限制了提高采收率技术的规模推广应用。近年来,围绕新材料、新领域、新方法等方面涌现出了一些提高采收率新技术,获得了较高的关注度,其涵盖内容如图1所示。
图1 提高采收率新技术涵盖内容Fig.1 Scope of new technologies for EOR
常规的化学驱油剂主要包括聚合物、碱、表面活性剂。其中,聚合物驱技术应用最为广泛,在中国得到了规模化应用,提高采收率幅度一般在10%以上。目前现场使用的聚合物材料主要有合成聚合物和生物聚合物2 种。其中,合成聚合物以部分水解聚丙烯酰胺(HPAM)为主,主要是通过丙烯酸和丙烯酰胺共聚,或者通过聚丙烯酰胺部分水解产生。由于其良好的水溶性和较低的成本,且流度控制能力较好,在现场得到了广泛应用。为了提高聚合物的耐温抗盐性,研发了系列聚丙烯酰胺派生的聚合物产品。也有研究者研发了一些功能理想的聚合物,但是在现场未进行测试。最常用的生物聚合物是黄原胶,其具有较弱的剪切敏感性,比HPAM与盐水的兼容性更好,但其增黏性较差。综合来说,由于驱油用聚合物的性质主要取决于水动力学体积,其与聚合物的构型刚度和相对分子质量有关。目前对于驱油用聚合物的研发主要专注于合成聚合物,即通过2 种或3 种功能聚合物共聚,产生具有理想分子结构的功能型聚合物,从而改善聚合物的驱油性能[3-13]。除了上述有机新材料外,一些无机的驱油体系也受到了一定的关注。早期,基于异丙基和甲基醇的水段塞驱替展现出了较好的驱油特性。后续研究结果表明,提高采收率程度与其在油水中的溶解分配系数有关。近年来,研究发现二甲醚具有理想的油水溶解分配性能,其既能溶于油,也能溶于水,通过水溶液携带二甲醚进入油藏,二甲醚溶解进入原油并使其膨胀,从而提高原油采收率[14-15]。
据预计,纳米技术将是匹敌甚至超越数字技术的革命性技术,在未来具有广阔应用前景。目前,基于纳米材料的提高采收率技术方向主要包括以下几个方面:①纳米流体提高采收率技术,即没有任何化学剂或热流体添加的纳米悬浮液驱替技术。纳米颗粒的载体主要包括氧化锆、石墨烯、亲水性硅、Janus 颗粒、氧化镁、氧化钛、氧化铝、氧化铁、氧化锌等,其通过改善润湿性、降低界面张力、分离压力效应,以及其他的协同机理,能够提高原油采收率。②纳米辅助热采提高采收率技术,即基于镍、铁、钴等金属纳米催化剂被广泛用于辅助稠油热降黏过程,利用其较大的比表面来加速水热解反应过程,实现稠油原位降黏开发。③纳米辅助化学驱提高采收率技术,即将纳米材料添加到化学剂中,增强化学剂稳定性,从而改善化学驱效果。目前纳米颗粒辅助聚合物驱技术是将纳米SiO2与聚合物间发生离子偶极反应、物理交联等作用,减少聚合物吸附,提高抗剪切稀释能力,增加聚合物黏度,提高热、化学、机械稳定性。④纳米辅助乳液驱提高采收率技术,即均匀的纳米颗粒会在油水界面处产生紧凑的、排列有序的单层结构,使得乳状液在高温条件下稳定性良好。同时,纳米颗粒能够产生原位乳化,增加微乳液黏度,从而提高采收率。⑤纳米颗粒辅助气驱提高采收率技术,即纳米颗粒会聚集在油水界面处,使得泡沫尺寸变小,乳状液粒径变细,有效提升CO2泡沫和乳状液体系的稳定性,改善CO2驱波及效率[16-23]。
残余油区是指在一次、二次采油时无法实现经济开采的那部分含油层段,通常位于油田主产层(MPZ)油水界面以下非饱和油带或主产层之外的区域。由于残余油区含油饱和度相对较低,在以往的开采过程中,一直不作为生产目标层进行开发,但随着二氧化碳气驱强化采油(CO2-EOR)技术的不断发展,目前在美国已经对部分残余油区实现了经济有效开采,展现出良好的开发前景。目前残余油区的主要开发技术是CO2混相驱提高采收率技术。下一步需要结合残余油区的选择性完井以及与主力层同步开发,进行CO2驱,使得两者之间有相对一致的压力分布,从而限制CO2的窜流和损失,提高CO2使用效率,最终残余油区与主力层的采收率均有提高,开采效果要远好于单独开发残余油区[24-26]。
与陆上油田化学驱技术不同,海上油田化学驱技术规模化应用非常少,大都处于先导试验阶段。其主要制约因素是海上油田通常井距大,化学剂注入量管理非常关键。另外,化学剂的长期有效性也存在较大的挑战。再者,由于海上平台空间的局限性,化学剂的运输、存储和混配等都存在较大的困难。海水对化学剂性能的影响,以及产出液油水分离问题,都是化学驱技术应用的关键所在。目前,聚合物驱、三元复合驱、胶态分散凝胶驱、智能水驱等技术在部分海上油田进行了先导试验。尽管目前海上油田化学驱项目需求越来越强烈,但是海水硬度太高,二价阳离子含量也高,导致存在碱剂结垢、溶解性差等问题,表面活性剂吸附性强,聚合物不易生物降解,使得化学复合驱难以有效实施。另外,表面活性剂和聚合物等运输、溶解和注入需要较大的场地,产出液容易乳化,导致海上油田化学驱存在系列问题。为了适应海上油田苛刻的油藏条件,在降低物流和主要成本的条件下,提出抑制剂—表面活性剂复合驱技术,该技术实施过程中不需要大的场地,不会产生明显的结垢现象,预计提高采收率幅度在5%以上,可适用于海上低黏油藏[27-31]。
近年来,非常规致密页岩油藏开发成为热点。然而,该类油藏自然递减快,采收率低,亟待大幅度提高采收率。由于基质渗透率极低,天然裂缝发育,常规提高采收率技术有效性差。目前,北美地区开展了系列的致密页岩油藏注CO2、表面活性剂、天然气等提高采收率方法研究,但仅处于室内实验、数值模拟和先导试验阶段。从化学驱的角度分析,表面活性剂是最具前景的致密页岩油藏提高采收率技术,其具有良好的注入性,能够改善岩石润湿性,促进水渗吸作用,从而提高致密页岩油藏采收率。聚合物和碱剂由于注入性问题,会导致致密页岩油藏堵塞,技术适应性差;从改善水驱角度分析,低矿化度水驱被认为是致密页岩油藏潜在的提高采收率有效技术。由于低矿化度水的注入,使得岩石表面的扩散双电层膨胀,同时发生多种离子交换作用,从而使岩石润湿性改善;从混相气驱的角度分析,目前进行较多的是CO2和烃类气驱。CO2由于具有良好的溶解膨胀、扩散萃取作用,而且混相压力较低,在致密页岩油藏提高采收率中进行了广泛尝试[32-36]。
随着面临的对象越来越复杂,单一的提高采收率技术难以起到良好的效果,技术复合化趋势越来越明显。复合化趋势主要体现在多种传统提高采收率方法复合,以及提高采收率技术与井网井型复合2 种。其中,多种传统提高采收率方法复合驱技术即利用不同单一提高采收率技术的优势,形成协同驱油效果。最为典型的技术是ASP 三元复合驱、AP/SP 二元复合驱技术。在实际操作过程中,碱剂浓度过低,复合驱油体系的相行为性能差。另外,AP二元驱过程中会产生黏度非常高的宏观乳状液,导致产生压力梯度较大和相态滞留问题。此外,ASP 三元复合体系配方在水溶液中长期稳定性较差。这些问题使得复合驱技术现场应用受到一定的限制。最近,将一种低浓度、低成本的轻质共溶剂与碱-聚合物二元体系混合,形成一种新型的ACP 三元复合驱油体系。该体系能够形成低黏的微乳液,并能有效改善体系的相态行为,适用范围更广。相比于ASP 三元复合驱技术,ACP 三元复合驱技术更具应用前景[37-39]。
近年来,由于油价低迷,低成本物理法采油技术受到大家的关注。该技术具有对油层无伤害、工艺简单、操作方便、成本低廉等优势,具有较大的发展潜力。常规的物理采油方法主要包括振动、声波、脉冲、电磁波、水射流等技术,在现场取得了较好的效果。最近提出了一种基于声波的声化提高采收率技术,即通过地面设备和井下设备结合的声化技术。地面设备包括一套升级的超声波发生器和井下温度压力信息处理装置。超声波发生器能够与井下超声波工具匹配,并能根据电压和电流自动调节参数,从而实现工作效率最优化。井下设备主要包括一套模具、一套注入化学剂的系统、一套采集地球物理信息的探头。在实际操作过程中,需要根据连续处理的数据实时调节运行参数,从而选择合理的处理模式[40-43]。
水驱作为最为经济有效的技术,获得了广泛的应用。自1997 年TANG 等提出低矿化度水驱理念以来[44],低矿化度水驱提高采收率技术日益受到关注。主要是通过注入定制式离子组成的水或低矿化度水,来改变油藏润湿性,提高原油采收率。其特点是不需要添加昂贵的化学剂,具有环境友好的特点,注入水的离子组成与岩石矿物有关。这种方法在砂岩油藏和碳酸盐岩油藏中均有效,但要求岩石初始润湿性不能为完全水湿,否则低矿化度水驱技术潜力就不会起到太大作用。从岩石化学角度来说,碳酸盐岩油藏岩石表面普遍带正电,pH 值偏碱性;砂岩油藏岩石表面普遍带负电,pH值偏酸性。岩石矿物差异性较大,导致初始润湿性和润湿性改变存在较大的差异。从地层水化学性角度来说,需要打破原来油水与岩石的化学平衡,剥离岩石表面的原油,砂岩和碳酸盐岩所要求的智能水离子组成不同。从原油角度分析,极性羧酸、有机碱基团附着在岩石表面,会影响油藏润湿性。最近,SAADAT等提出一种低矿化度水驱与表面活性剂复合的提高采收率新技术,主要是利用低矿化度水驱使得岩石表面原油变得不稳定,以及表面活性剂形成低的界面张力,来阻止可动油滞留的协同机理。室内实验结果表明,复合驱方法较单一的低矿化度水驱或表面活性剂驱效果均要好,具有较好的应用前景[45-47]。
随着勘探开发的逐步深入,老油田进一步提高采收率和新发现低品位储量的有效动用相关技术需求愈发强烈。如何适应高温、高盐、高含水、高黏、高压等苛刻油藏条件,形成低成本、绿色低碳、革命性突破的提高采收率新技术,是未来技术发展的方向。
无论是提高采收率新材料、新领域,还是新方法,均面临着低成本与效益开发的挑战。特别是在长期油价低迷的情况下,提高采收率新技术的研发应用与工程技术存在着竞争生存关系。如何降本增效,形成成本优势与效率兼顾的提高采收率新技术是首要解决的问题。基于传统水驱的低成本改善水驱提高采收率技术,能够在不增加较大投入的情况下,有效提高采收率。目前,基于转流场的水驱立体开发技术、低矿化度水驱技术、定制式水驱技术、物理法增强水驱开发技术等,通过物理化学增效机理的应用,来改善储层物性及岩石润湿性,有效增加驱油效率,适度扩大波及效率,从而进一步提高水驱采收率。从另一个角度来说,工程管理理念与实践是提高采收率技术最大化降低成本和提升效率的关键所在。在老区水驱开发基础上,应当更加注重油藏、井筒、地面工程一体化,从油气田开发的全流程环节,来挖潜、提升效率。另外,在新开发油藏过程中,需要摒弃传统的一次采油、二次采油和三次采油的观念,将提高采收率理念贯穿到油气田开发的全过程,构建全生命周期的提高采收率技术管理流程,从系统优化和决策角度最大化提高油藏采收率。
环境和发展是当今人类社会面临的两大主题,环境保护是可持续发展的基石,也是提高采收率未来发展趋势。世界各大石油公司对于绿色低碳型提高采收率技术均给予了高度关注。对于新型驱油剂或体系的研发,越来越向环保型的绿色材料转移。例如生物型聚合物、生物表面活性剂等,由于其与环境具有极好的兼容性,在具备无毒无害特性时,将具有良好的应用前景。另外,微生物驱油技术作为一项古老的新兴提高采收率技术,一直处于探索之中。如何激发或利用油藏中的本源微生物,让其成为可控、高效、定制式提高采收率技术,尚需要进一步攻关。再者,将微生物技术与其他提高采收率技术复合,充分发挥多种技术的复合协同效应,是未来技术发展的方向。除此之外,高碳技术的低碳化处理也是发展趋势之一。充分利用CO2驱油技术优势,开展CO2驱油与埋存技术攻关,形成新一代CO2驱提高采收率技术,在高效采油的同时,实现CO2的规模化埋存,是油气行业低碳化发展的重要技术方向。
传统的提高采收率技术均存在一定的适用油藏条件,化学驱技术在高温高盐油藏和海上油田的应用,气驱技术在致密页岩油气藏中的探索,稠油热采后的接替技术,提高采收率技术发展面临的对象日益复杂。如何突破传统提高采收率技术的局限,形成革命性的提高采收率新技术,是未来油气田开发的内在需求。突破传统提高采收率技术的应用禁区,在充分刻画油藏地质特征后,基于大数据和人工智能等方法,对目标油藏提高采收率技术的适应性进行精准识别与判断,提出“2+3”提高采收率新技术、新型智能井+提高采收率复合技术、三次采油后进一步提高采收率技术,以及未知变革性提高采收率技术,为油藏最大化提高采收率提供技术支撑。
提高采收率技术应用主要位于美国、加拿大和中国3个国家,技术类型以热采、气驱和化学驱技术为主。提高采收率新材料方面除了传统的功能性聚合物外,二甲醚、功能性纳米材料等有机、无机小分子化合物逐步受到关注;提高采收率新领域方面逐步拓展到残余油区CO2混相驱、海上油田化学驱、非常规致密页岩油藏注气或化学驱等;提高采收率新方法方面更加注重不同技术的组合,发展出了碱-乳液-聚合物复合驱、超声波与声化技术耦合、低矿化度水驱与表面活性剂驱复合等新兴提高采收率方式。未来提高采收率技术需要摒弃原有三次采油界限,将提高采收率理念贯穿到油田开发的全生命周期中,以低成本、绿色低碳、革命性突破为指导,探索出新一代高效、低成本、环保型的提高采收率新技术。