有序多孔水凝胶膜的制备及性能研究

2021-09-28 01:18肖文柯张小娟郝凌云茅云荆雨阳陈蓉蓉任志伟季家豪
科技创新导报 2021年17期

肖文柯 张小娟 郝凌云 茅云 荆雨阳 陈蓉蓉 任志伟 季家豪

DOI:10.16660/j.cnki.1674-098X.2107-5640-0643

摘  要:通过将多孔结构引入水凝胶膜,提高人工角膜材料含水量。首先,采用甲基丙烯酸缩水甘油酯(GMA)对氨基烷基封端聚二甲基硅氧烷(KF 8010)进行亲核取代反应,通过紫外聚合法制备无孔水凝胶膜。以单分散SiO2颗粒为模板,制备含SiO2模板的多孔水凝胶膜,浸泡除去SiO2模板得到多孔水凝胶膜。测试结果表明,多孔水凝胶膜具有三维网状结构,平衡含水量达到无孔水凝胶膜的3倍。

关键词:多孔水凝胶膜  SiO2模板  无孔水凝胶膜  紫外聚合法

中图分类号:R318.08                        文献标识码:A                 文章编号:1674-098X(2021)06(b)-0021-03

Preparation and properties of ordered porous hydrogel membranes

XIAO Wenke1,2,3  ZHANG Xiaojuan1,2,3*  HAO Lingyun2,3  MAO Yun2,3  JING Yuyang2,3

CHEN Rongrong2,3  REN Zhiwei2,3  JI Jiahao2,3

(1.School of Energy Materials and Chemical Industry, Hefei University, Hefei, Anhui Province, 230601  China; 2.School of Material Engineering, Jinling Institute of Technology, Nanjing, Jiangsu Province, 211169  China; 3.Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing Jiangsu Province, 211169  China)

Abstract: The porous structure was introduced into the hydrogel membrane to improve the water content of the artificial cornea. Firstly, the nucleophilic substitution reaction of amino alkyl terminated poly (two methylsiloxane) (KF 8010) was carried out by glycidyl methacrylate(GMA), and the porous hydrogel membrane was prepared by UV polymerization. The porous hydrogel membrane containing SiO2 template was prepared by using monodisperse SiO2 particles as template. The porous hydrogel membrane was obtained after immersion in SiO2 template. The test results show that the porous hydrogel membrane has three dimensional network structure, and the equilibrium water content is 3 times that of the non porous hydrogel membrane.

Key Words: Porous hydrogel membrane; SiO2 template; Hydrogel membrane; UV polymerization

視光材料是用于增进视觉体验、改善视觉功能和保护视觉健康的多功能协同响应材料,包括发光与显示材料、功能镜片、角膜接触镜、眼药缓释载体、眼科智能穿戴等,是新材料的核心研究领域之一,是视觉健康的基础,其中人工角膜是为代替角膜混浊病变组织而使用异质成型材料制成的特殊屈光装置。目前人工角膜有两大弊端:一是生物整合能力不足,无法长期稳定;二是机械性能较差。三维网络结构的水凝胶是通过分子交联形成的,具有良好的透光性、亲水性、生物相容性,能够在水中溶胀而不溶解且不粘连伤口。

1  实验

1.1 无孔水凝胶膜的制备

将2.7mL甲基丙烯酸缩水甘油酯(GMA)和8.2g氨基烷基封端聚二甲基硅氧烷(KF 8010)于80℃搅拌6h,得改性聚硅氧烷(GKF 8010)。将GKF 8010∶三羟甲基氨基甲烷(TRIS)∶Darocur1173∶N,N-二甲基苯胺(DMA)=60∶60∶1∶80,搅拌直至透明后,滴入模具,用紫外灯照射模具10min,得到无孔水凝胶膜。

1.2 多孔水凝胶膜的制备

将47mL以去离子水∶氨水∶无水乙醇=3∶4∶40配制的溶液缓慢滴加至50mL 0.04g/mL的正硅酸乙酯(TEOS)/无水乙醇溶液中,磁力搅拌20h。离心洗涤3次,在60℃下恒温干燥24h,得到SiO2粉末[1]。将GKF8010∶TRIS∶Darocur1173∶DMA=60∶60∶1∶80在室温下搅拌直至透明,滴入铺有SiO2微球模板的模具中,用紫外灯照射模具30min。多次洗涤后,得多孔水凝胶膜。

1.3 水凝胶膜的表征

利用傅里叶红外光谱仪(FTIR,Thermo Nicolet IS10型)对水凝胶膜的官能团进行表征。采用扫描电子显微镜(SEM,SU8010型)测试所制备出的水凝胶膜的微观形貌。采用热分析仪(TG-DTA)测定水凝胶膜的热降解行为,取样品5~10mg,Al203坩锅,参比为空坩锅,N2气氛,流量为30mL/min,升温速率为10℃/min,温度为0~600℃[2]。

2  结果与分析

2.1 FTIR分析

图1中a、b、c分别为无孔水凝胶膜、含SiO2模板的水凝胶膜和多孔水凝胶膜的红外光谱图。在3430cm-1处为-OH的伸缩振动吸收峰[3]。2960cm-1处为C-H键的反对称伸缩振动吸收峰。1267cm-1处为Si-CH3的伸缩振动[4]。在2367cm-1、1064cm-1和802cm-1处存在的特征峰对应于Si-O-Si 基团[5],含SiO2模板的水凝胶膜在1064cm-1处的特征峰强度加强[6],而多孔水凝胶膜在1064cm-1处的特征峰强度减弱,证明SiO2模板的引入和洗脱不影响水凝胶膜的性质。在1644cm-1处为水分子中H-O-H的弯曲振动吸收峰,证明多孔水凝胶的孔隙含水。

2.2 SEM分析

图2中a和b分别为无孔水凝胶膜和含SiO2模板的水凝胶膜的扫描电镜图。如图2所示,SiO2模板在无孔水凝胶膜中分散均匀,呈有序紧密堆积。图2中c和d分别为1mol/L NaOH浸泡48h和72h的多孔水凝胶膜。对比可知,SiO2模板的引入和洗脱使无孔水凝胶膜具有多孔结构[7]。

2.3 平衡含水量分析

无孔水凝胶膜的含水量在30%~40%之间,多孔水凝胶膜的含水量在90%左右,是无孔水凝胶膜含水量的3倍。这说明去除SiO2模板后的多孔水凝胶膜呈三维网状结构,增加表面粗糙程度,从而大大提高其平衡含水量。

3  结论

(1)采用stober法制备单分散SiO2颗粒作为模板,通过紫外聚合法结合制备了含SiO2模板的多孔水凝胶膜,浸泡除去SiO2模板得到多孔水凝胶膜。(2)通过结果可知,多孔水凝胶膜具有三维网状结构且在孔隙中含水。相比于无孔水凝胶膜,多孔水凝胶膜的平衡含水量提高到3倍左右。

参考文献

[1] Werner St?ber,Arthur Fink,Ernst Bohn.Controlled growth of monodisperse silica spheres in the micron size range[J].Journal of Colloid and Interface Science,1968,26(1):62-69.

[2] Alavinia S,Ghorbani-Vaghei R.Targeted development of hydrophilic porous polysulfonamide gels with catalytic activity - ScienceDirect[J]. Journal of Physics and Chemistry of Solids, 2020,146:109573.

[3] Korogiannaki M,Samsom M,Schmidt T A,et al. Surface-functionalized model contact lenses with a bioinspired proteoglycan 4 (PRG4)-Grafted layer[J].ACS Applied Materials & Interfaces,2018, 10(36):30125–30136.

[4] Wei Y Y,An S S,Sun S,et al.Photo-polymerized and thermal-polymerized silicon hydrogels with different surface microstructure and wettability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,618:126284.

[5] Lira M,Cátia Loureno,Silva M,et al. Physicochemical stability of contact lenses materials for biomedical applications[J]. Journal of Optometry, 2020,13(2):120-127.

[6] 李盛凱.二氧化硅微球及纳米二氧化铈的制备与工艺研究[D].南昌:江西师范大学,2020.

[7] Chen K,Fan X,Tang K,et al.A Morphology-controllable collagen/Poly(2-hydroxyethyl methacrylate) porous hydrogel with paraffin microsphere as template[J].Acs Applied Bio Materials, 2018,1(5):1311–1318.