李中浤,杜彩丽,陈素华,张列宇,李晓光*,黎佳茜,田振军
一体化A2/O-MBR系统中抗性基因分布及去除效果研究
李中浤1,2,杜彩丽2,3,陈素华1,张列宇2,李晓光2*,黎佳茜2,田振军2
(1.南昌航空大学,江西省持久性污染物控制与资源循环利用重点实验室,江西 南昌 330063;2.中国环境科学研究院,国家环境保护地下水污染过程模拟与控制重点实验室,北京 100012;3.同济大学环境科学与工程学院,上海 200092)
选取北京市某农村一体化A2/O-MBR污水处理系统,系统研究了系统中抗生素抗性基因(Antibiotic Resistance Genes, ARGs)及病原菌在全流程各个处理单元中的分布特征,基于宏基因组学的高通量测序技术对农村生活污水进水、MBR池中污泥和出水样品中ARGs及病原菌的丰度变化及去除效果进行了系统分析.结果表明:ARGs广泛存在于污水处理系统中,共检测出包括tetracycline类、aminoglycoside类和sulfonamide类在内的19类ARGs,进水中ARGs的相对丰度远远高于其在出水中的浓度,通过污水处理系统后ARGs相对丰度下降了72.25%,而大多数的ARGs在污水处理系统并不能得到完全去除.微生物群落结构变化显示,32种潜在病原体相对丰度下降明显,但大多数病原菌也无法得到完全去除.出水中残留的ARGs和病原菌仍会对受纳水体造成一定的潜在污染风险.
一体化A2/O-MBR;宏基因组学;ARGs;病原菌
抗生素抗性基因(ARGs)作为一种新型污染物[1],可以通过可移动遗传元件促进抗生素抗性基因在不同物种间基因水平转移[2].致病细菌携带各种ARGs后对抗生素产生耐药性[3],这些抗生素耐药致病菌(ARB)通过多种途径从环境媒介中传播给人类,进而对人类公众健康构成严重威胁[4].目前, ARGs广泛分布于湖泊[5]、河流[6]和海洋[7]等自然环境中.污水处理厂(WWTPs)汇集了医院废水、居民生活污水以及畜禽养殖污水等多种污水,因为抗生素的过度使用甚至滥用上述污水中残留着高浓度抗生素,高浓度抗生素会对ARGs和ARB产生选择性压力,促进其繁殖和扩散,是ARGs和ARB的重要储存库[8-9],也是环境中ARGs和ARB的主要来源[10-11].
目前,针对城市污水处理厂中ARGs的分布特征已经开展了大量研究[12-13],但是极少开展对农村污水处理系统ARGs变化的研究,且研究方法主要采用qPCR的方法.Chen等通过qPCR技术对4座城市生活污水处理厂和8座农村生活污水处理系统中4种四环素类抗性基因(M、O、Q和W)和2种磺胺类抗性基因(1和2)的处理效果进行评估,结果显示城市生活污水处理厂抗生素抗性基因绝对丰度显著减少(1~3个数量级),而农村生活污水处理系统对ARGs的削减较少[14].Chen等探究人工湿地系统对于农村污水中抗生素和ARGs的去除效果,采用qPCR技术对包括1、2、1、2、3、B/P、M、O、X、B和C在内的ARGs进行检测,结果表明1、2、M和O是主要的ARGs,人工湿地系统对于ARGs的去除效率>99%[15].基于qPCR的方法需要特定靶基因的序列,只能针对已知序列的单一ARGs进行检测,无法全面了解污水处理系统中ARGs的分布特征和变化规律.宏基因组高通量测序技术(NGS)是研究环境中微生物ARGs的有效方法,可获得环境中所有抗性基因的序列信息,挖掘未知抗性基因的信息,克服定量qPCR检测技术引物或探针设计与选择的限制[16].因此,急需对污水处理厂中的ARGs和ARB的来源、分布特征及去除效能开展系统性研究.
一体化污水处理设备是一种新型农村污水处理技术,与大型传统的污水处理系统相比,具有污染物去除率高、出水水质良好、抗冲击负荷能力强、占地面积小和投资运行费用低等优点,在农村污水处理过程中得到广泛应用.本文采用宏基因组学技术,开展农村生活污水一体化A2/O-MBR设备处理过程中(进水、污泥、出水)微生物群落结构、ARGs和ARB的分布特征及变化规律研究,以期为一体化处理设备在农村生活污水应用及再生水回灌过程中环境风险评估提供科学依据.
选取北京市顺义区某农村生活污水一体化A2/O-MBR系统为研究对象(编号为SP),该一体化A2/O-MBR系统日处理生活污水为200t,主体工艺为A2/O-MBR,出水满足(DB 11/1612-2019)一级B标准.样品采集时间为2020年4月21日,采样点为进水、MBR池中污泥和出水.进水和出水样品分别采集0.2L和1L,所有采集的水、污泥样品在2h之内于-4℃冷藏运输回实验室,进水和出水样品均经过0.22μm滤膜过滤后收集微生物,将过滤后进水和出水样品与污泥一起冻存于-80℃冰箱中用于DNA提取.
滤膜样品先用无菌剪刀剪碎,参考标准流程,剪碎的滤膜样品和污泥样品采用FastDNA™ SPIN Kit for Soil(MP Biomedicals,CA,USA)试剂盒完成基因组DNA抽提.完成DNA抽提后的样本使用1%琼脂糖凝胶电泳检测DNA的质量和完整性,并采用Qubit 2.0荧光光谱仪(Thermo Fisher Scientific, MA,USA)检测PCR扩增后DNA的产量和纯度.基因组DNA样品用干冰保藏并立即送往上海美吉生物医药科技有限公司进行测序,测序平台为Illumina HiSeq 4000,采用PE150测序策略进行双端测序.
使用Trimmonatic[17]对原始测序数据进行质量控制,去除低质量测序数据,得到clean reads.基于质量控制后的clean reads采用Kraken2法[18]对污泥样品在门、属两个层级开展微生物群落组成分析.应用USEARCH(accel£0.5,e-value£10-5)和BlastX (alignment length 25aa,amino acids³80% and evalue 1e-5)与SARG v2.0抗生素抗性基因数据库进行对比注释[19],对注释后的数据按照SARG抗生素抗性基因数据库分类成不同的抗生素抗性类型以及亚型.
注释出的ARGs相对丰度结果基于16S拷贝数标准化(copies of ARG per copy of 16S rRNA)[20]
式中:ARG-like sequence序列为检测某一种特定ARG的clean reads数量,reads为高通量测序中clean reads的长度,本研究中样本均为150bp,ARG reference sequence为这一种特定ARG参考序列的长度,16S sequence是在高通量测序中识别的16S序列数量,16S sequence序列是Greengene数据库中16S序列的平均长度1432bp[20-21].计算出的ARGs相对丰度单位为ARG拷贝数/16S rRNA拷贝数(简称ratio)[20]..
本文采用origin 2018进行数据绘图.使用SPSS 24.0进行spearman相关性分析.
基于抗生素抗性基因数据库(SARG v2.0)对农村生活污水一体化A2/O-MBR处理系统不同生物单元抗性基因类型进行分析.结果显示,该一体化污水处理过程中共检出19类ARGs,包括tetracycline类、multidrug类、beta-lactam类、macrolide- lincosamide-streptogramin(MLS)类、aminoglycoside类、sulfonamide类、bacitracin类、chloramphenicol类、fosmidomycin类、polymyxin类、trimethoprim类、kasugamycin类、rifamycin类、quinolone类、vancomycin类、fosfomycin类、bleomycin类、carbomycin类和unclassified类ARGs(图1a和图1b).不同处理单元采集样品中主要的ARGs为tetracycline类、multidrug类、beta-lactam类、MLS类、aminoglycoside类、sulfonamide类和bacitracin类,这与已有研究报道一致[22-23].
生活污水进水样品中检测出上述19类ARGs,总相对丰度达到了0.8283ratio,其中beta-lactam类、tetracycline类、aminoglycoside类、sulfonamide类、multidrug类及MLS类ARGs是进水样品中主要的ARGs,其相对丰度分别达到了0.1445ratio、0.1399ratio、0.1184ratio、0.1129ratio、0.0992ratio和0.0956ratio,占进水样品中总ARGs的85.79%.这6类ARGs是污水处理厂进水中常见的ARGs[24-25]. MBR池中污泥共检测出16类ARGs,总ARGs相对丰度为0.3302ratio,出水口检测出18类ARGs,总的ARGs相对丰度为0.2298ratio.其中kasugamycin和bleomycin类ARGs均未在污泥中检出,而在出水样品中检出,但其相对丰度极低,仅为0.0002ratio和0.00008ratio,这可能由于出水口样品收集时受到污染造成的.MBR池中污泥和出水样品中主要的ARGs类型基本相同,主要是multidrug类、bacitracin类和MLS类ARGs,在污泥中相对丰度分别达到为0.0725ratio、0.0597ratio和0.0320ratio,出水口中相对丰度分别为0.0526ratio、0.0434ratio和0.0234ratio.与进水口相比,multidrug类和bacitracin类ARGs在MBR池中污泥和出水中占比有所上升,说明农村一体化设备对这两类ARGs去除率相对较低.
一体化处理设备处理后,除了不同生物单元水样中优势ARGs会发生了一定的变化,部分ARGs类型相对丰度也会显著下降.在出水口样品中carbomycin类ARGs的相对丰度为0,经过污水处理该ARGs完全被去除,Tetracycline类、beta-lactam类和aminoglycoside类ARGs去除率高,分别达到了90.92%、89.36%和87.51%.但也有个别ARGs相对丰度有所上升,如rifamycin类ARGs在进水口相对丰度为0.0042ratio,而在MBR池污泥中达0.0167ratio.整体而言,与进水口相比,出水口ARGs相对丰度降低了0.5985ratio,去除率达到了72.25%. Du等[26]使用qPCR技术研究基于A2O-MBR工艺的城市污水处理厂污水处理过程中5种ARGs(GWX1和1)的变化趋势,结果表明ARGs在进水和出水中的下降趋势为1 >1 >X>G >W.其与基于A2O-MBR的一体化污水处理系统ARGs的变化趋势相一致,且宏基因组学反映更多种类ARGs的变化规律.
图2 样品中共有的和特有的ARGs数目
样品经生物信息学分析共注释出408种ARGs,进水口、污泥和出水口中各注释出371、210和217种ARGs,其各自特有的基因数分别为152种、10种和13种,共有的ARGs为157种,占比为38.4%(图2).Tetracycline类、aminoglycoside类和sulfonamide类ARGs是污水处理厂进水口样品中相对丰度最高的3种抗性基因.四环素是目前应用最广泛的一种抗生素,可应用于人类治疗、畜禽养殖和水产养殖等多个行业中,研究表明四环素使用量在中国抗生素中排第一,且难以被人和动物代谢和吸收,其中有75%以上的四环素可以通过人和动物的排泄物释放到环境中[27],.因此医疗废水、生活污水和畜禽养殖废水等中会残留高浓度的四环素类抗生素和抗性基因,污水处理厂作为这些废水处理的中间站,会是四环素类抗性基因的重要储存库.通过生物信息学分析在进水口样品中共注释出37种tetracycline类ARGs,其中C、E、Q36和A是主要ARGs,相对丰度分别为0.0271ratio、0.0250ratio、0.0163ratio和0.0160ratio,总占比为68.99%,MBR池中污泥和出水口分别注释出27和26种tetracycline类ARGs,主要是V、W、G和M抗性基因.与进水口相比,污泥和出水口中除V和G相对丰度上升外,大部分抗性基因相对丰度都有不同程度的下降,甚至个别抗性基因如34、J、R、S、X1、X5和Y等经过处理后已完全被去除(图3a).其中部分ARGs相对丰度的增加可能由于抗生素的选择压力和/或废水处理过程中广泛地去除了敏感细菌[28].磺胺类药物具有高溶解性、持久性和化学稳定性等特点,可在环境中长期存在[29],因此导致污水处理厂中磺胺类ARGs相对丰度较高.在进水口样品中共注释出4种sulfonamide类ARGs,包括1、2、3和44种ARGs,MBR池中污泥和出水口均注释出3种,1和2是3个样品中主要ARGs,其都可以通过使抗生素无法作用于目标酶来抑制抗生素[30],1也是最早被发现质粒携带的耐药基因之一[31],总占比分别为98.42%、99.36%和99.34%.通过污水处理厂后,废水中1相对丰度显著下降,为87.52%,3完全被去除,但2相对丰度在MBR池中污泥和出水口有所上升.氨基糖苷类抗生素也是一类常常用于医疗、农业和养殖业等多领域中的抗生素[32],其中(3)-Ⅰ、(3)- Ⅱ/Ⅵ、(3)-Ⅲ/Ⅳ、(6’) -Ⅱ/Ⅰb、(2”)-Ⅰ、(2”)-Ⅰ等是在污水、废水、粪便等环境媒介中最容易频繁检出的aminoglycoside类ARGs[33].本研究均检测这些ARGs,其中在进水口水样中共注释出21种aminoglycoside类ARGs,MBR池中污泥和出水口均注释出17种(图3b),A是主要ARGs,与环境菌株整合子相关,并通过质粒在粪肠球菌间转移[34].通过一体化A2/O-MBR污水处理设备后,其去除达到了91.53%.
图3 一体化A2/O-MBR污水处理设备中ARGs亚型相对丰度
白色方块表示相对丰度为0
微生物群落结构是影响污水中ARGs动态变化的重要因素[35],本文依据kraken2的分类结果得到基于了门、属水平分类上的微生物群落结构.如图4所示,农村生活污水中主要的微生物为细菌(99.81%),其余为古菌(0.19%).变形菌门(Proteobacteria)在进水废水、污泥和出水样品中相对丰度最高(53.04%~ 82.19%,平均64.50%),其次为放线菌门(Actinobacteria, 2.23%~20.07%,平均值11.82%)和厚壁菌门(Firmicutes,1.34%~5.74%,平均值2.85%),该研究结果与相关研究报道相一致[36].农村生活污水的微生物多样性较为单一,变形菌门相对丰度较高,而在污泥和出水样本中,微生物群落结构发生了较大的变化,除了变形菌门外,硝化螺旋菌门(Nitrospirae)也是主要微生物菌门.
图4 一体化A2/O-MBR污水处理设备中微生物群落变化(门)
为了探究一体化A2/O-MBR污水处理系统中病原菌的相对丰度变化趋势,通过宏基因组测序对VFDB数据库[37]中列出的32个病原菌属进行了系统分析(图5).结果显示进水、MBR污泥和出水样品中共检测到32种潜在病原体,其中进水、污泥和出水样品中均检测出这些潜在病原体.进水、MBR污泥及出水样品中病原菌占总菌属的相对丰度均超过5%,分别达到23.25%、9.37%和8.52%.进水样品中主要的病原菌属为气单胞菌属(, 16.57%)、假单胞菌属(,1.93%)和不动杆菌属(,1.05%),MBR污泥样品中主要的病原菌属为分枝杆菌属(,2.61%)、假单胞菌属(,2.45%)和布克氏菌属(1.34%);出水样品中主要的病原菌属为(,2.62%)、布克氏菌属(, 1.43%)和分枝杆菌属(,1.24%).进水样品中红孢子虫属()未检出,在污泥和出水样本中志贺氏菌属()未检出.
农村生活污水经过一体化A2/O-MBR系统处理后,32种病原菌属占总菌属的相对丰度有所下降,除红孢子虫属和志贺氏菌属外,主要病原菌属也出现了变化,其中14种病原菌属占总菌属的相对丰度出现了下降,其中红孢子虫属()、不动杆菌属()和埃希氏杆菌属()的下降幅度最大,分别达到了15.89%、0.82%和0.81%;16种病原菌属占总菌属的相对丰度出现小幅度的上升,在整个污水处理过程中李斯特菌属()的相对丰度没有变化.
图5 一体化A2/O-MBR污水处理系统中病原微生物(属)相对丰度变化
白色方块表示相对丰度为0
ARGs广泛存在于病原菌中[38],病原菌携带ARGs尤其是携带多种ARGs后将对人体健康的威胁远高于单种ARGs的威胁,为探究每类ARGs与病原菌之间的相关性,使用SPSS 24.0软件对所有ARGs与病原菌进行Pearson相关性分析,如表1所示.Chloramphenicol类、polymyxin类和tetracycline类ARGs与多种病原菌属具有显著的正相关性(<0.05),这3类ARGs广泛分布于各种宿主中;作为进水样品中相对丰度最高的气单胞菌属,其与beta-lactam类、chloramphenicol类、polymyxin类和tetracycline类具有显著的正相关性,这4类ARGs极有可能共存于一种病原菌中,形成多重耐药菌的“超级细菌”.罗晓等[39]发现多种菌属与ARGs存在相关性,与本研究一致.病原菌属在一体化污水处理设备中并没有得到完全去除,其可能携带的多种ARGs对人类健康存在着风险.
表1 ARGs与病原微生物(属)的皮尔逊相关性分析
注:重复值、无显著性关系值的值未列出; *<0.05 **<0.01.
3.1 基于宏基因组学的高通量测序方法对北京市某农村生活污水一体化A2/O-MBR污水处理系统处理工艺各单元样本ARGs进行检测,生活污水进水中的总ARGs相对丰度达到0.8283ratio, beta- lactam类、tetracycline类、aminoglycoside类、sulfonamide类、multidrug类和MLS类ARGs为进水中优势的ARGs,相对丰度占85.79%以上.出水中的总ARGs相对丰度达到0.2298ratio,抗生素抗性基因相对丰度下降了72.25%,ARGs没有得到完全去除,污水处理系统出水对收纳水体造成一定的抗性基因污染风险.
3.2 微生物多样性分析结果显示,变形菌门(Proteobacteria)是一体化A2/O-MBR污水处理系统中数量最多、种类最丰富的细菌类群;农村生活污水中存在着大量病原菌,进水中气单胞菌属()、假单胞菌属()和不动杆菌属()的比例较高,病原菌相对丰度明显减少,皮尔逊相关性分析结果显示多种病原菌属可能同时携带多种ARGs.
[1] Sanderson H, Fricker C, Brown R S, et al. Antibiotic resistance genes as an emerging environmental contaminant [J]. Dossiers Environnement, 2016,24(2):205-218.
[2] Frost L S, Leplae R, Summers A O, et al. Mobile genetic elements: the agents of open source evolution [J]. Nature Reviews Microbiology, 2005,3(9):722-732.
[3] Zhang H, He H, Chen S, et al. Abundance of antibiotic resistance genes and their association with bacterial communities in activated sludge of wastewater treatment plants: Geographical distribution and network analysis [J]. Journal of Environmental Sciences, 2019,82(8): 24-38.
[4] Martínez J L. Antibiotics and antibiotic resistance genes in natural environments [J]. Science, 2008,321(5887):365-367.
[5] Wang Z, Han M, Li E, et al. Distribution of antibiotic resistance genes in an agriculturally disturbed lake in China: Their links with microbial communities, antibiotics, and water quality [J]. Journal of Hazardous Materials, 2020,393:122426.
[6] Sun J, Jin L, He T, et al. Antibiotic resistance genes (ARGs) in agricultural soils from the Yangtze River Delta, China [J]. Science of The Total Environment, 2020,740:140001.
[7] Zhang Y, Hu H, Yan H, et al. Salinity as a predominant factor modulating the distribution patterns of antibiotic resistance genes in ocean and river beach soils [J]. Science of The Total Environment, 2019,668:193-203.
[8] Guo J, Li J, Chen H, et al. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements [J]. Water Research, 2017,123:468-478.
[9] Ju F, Li B, Ma L, et al. Antibiotic resistance genes and human bacterial pathogens: Co-occurrence, removal, and enrichment in municipal sewage sludge digesters [J]. Water Research, 2016,91:1-10.
[10] Manaia C M, Rocha J, Scaccia N, et al. Antibiotic resistance in wastewater treatment plants: Tackling the black box [J]. Environment International, 2018,115:312-324.
[11] Lapara T M, Burch T R, Mcnamara P J, et al. Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into duluth-superior harbor [J]. Environmental Science & Technology, 2011,45(22):9543-9549.
[12] Mao D, Yu S, Rysz M, et al. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants [J]. Water Research, 2015,85:458-466.
[13] 马 奔,黄雅梦,王若楠,等.城市污水厂MCR-1基因及其携带菌的污染 [J]. 中国环境科学, 2018,38(4):235-242.
Ma B, Huang Y M, Wang R N, et al. The pollution of MCR-1and MCR-1hosting bacteria in municipal wastewater treatment plants [J]. China Environmental Science, 2018,38(4):235-242.
[14] Chen H, Zhang M. Occurrence and removal of antibiotic resistance genes in municipal wastewater and rural domestic sewage treatment systems in eastern China [J]. Environment International, 2013,55: 9-14.
[15] Chen J, Liu Y S, Su H C, et al. Removal of antibiotics and antibiotic resistance genes in rural wastewater by an integrated constructed wetland [J]. Environmental Science & Pollution Research International, 2015,22(3):1794-1803.
[16] Szczepanowski R, Linke B, Krahn I, et al. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics [J]. Microbiology, 2009,155(7):2306-2319.
[17] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014,30(15):2114-2120.
[18] Wood D E, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2 [J]. Genome biology, 2019,20(1):257.
[19] Yin X, Jiang X, Chai B, et al. ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes [J]. Bioinformatics, 2018,34(13):2263- 2270.
[20] Li B, Yang Y, Ma L, et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes [J]. The ISME Journal, 2015,9(11):2490-2502.
[21] Albertsen M, Hugenholtz P, Skarshewski A, et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes [J]. Nature Biotechnology, 2013,31(6):533- 538.
[22] Tang J Y, Bu Y Q, Zhang X X, et al. Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water [J]. Ecotoxicology & Environmental Safety, 2016,132:260-269.
[23] Yang Y, Li B, Zou S, et al. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach [J]. Water Research, 2014,62:97-106.
[24] Zhang T, Yang Y, Pruden A. Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach [J]. Applied Microbiology & Biotechnology, 2015,99(18):7771-7779.
[25] Yoo K, Yoo H, Lee J, et al. Exploring the antibiotic resistome in activated sludge and anaerobic digestion sludge in an urban wastewater treatment plant via metagenomic analysis [J]. Journal of Microbiology, 2020,58(2):123-130.
[26] Du J, Geng J, Ren H, et al. Variation of antibiotic resistance genes in municipal wastewater treatment plant with A 2O-MBR system [J]. Environmental Science and Pollution Research, 2015,22(5):3715- 3726.
[27] Lekunberri, Itziar, Rafraf, et al. Abundance of antibiotic resistance genes in five municipal wastewater treatment plants in the Monastir Governorate, Tunisia [J]. Environmental Pollution, 2016,219:353-358.
[28] Figueira V, Serra E, Manaia C M. Differential patterns of antimicrobial resistance in population subsets of Escherichia coli isolated from waste-and surface waters [J]. Science of the Total Environment, 2011, 409(6):1017-1023.
[29] Wang Z, Zhang X X, Huang K, et al. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant [J]. Plos One, 2013,8(10):e76079.
[30] Huovinen P, Sundström L, Swedberg G, et al. Trimethoprim and sulfonamide resistance. [J]. Antimicrobial agents and chemotherapy, 1995,39(2):279-289.
[31] Akiba T, Koyama K, Ishiki Y, et al. On the mechanism of the development of multiple drug-resistant clones of Shigella [J]. Jpn J Microbiol, 1960,4(2):219-227.
[32] Lamba M, Graham D W, Ahammad S Z. Hospital wastewater releases of carbapenem-resistance pathogens and genes in urban India [J]. Environmental Science & Technology, 2017,51(23): 13906-13912.
[33] Heuer H, Binh C T T, Jechalke S, et al. IncP-1eplasmids are important vectors of antibiotic resistance genes in agricultural systems: diversification driven by class 1integron gene cassettes [J]. Frontiers in microbiology, 2012,3:2.
[34] Clark N C, Olsvik Ø, Swenson J M, et al. Detection of a streptomycin/ spectinomycin adenylyltransferase gene (aadA) in enterococcus faecalis [J]. Antimicrobial Agents & Chemotherapy, 1999,43(1):157- 160.
[35] Tong J, Lu X, Zhang J, et al. Factors influencing the fate of antibiotic resistance genes during thermochemical pretreatment and anaerobic digestion of pharmaceutical waste sludge [J]. Environmental Pollution, 2018,243(PT.B):1403-1413.
[36] 孔 晓,崔丙健,金德才,等.农村污水膜生物反应器系统中微生物群落解析 [J]. 环境科学, 2015,36(9):3329-3338.
Kong X, Cui B J, Jin D C, et al. Analysis of microbial community in the membrane bio-reactor(MBR) rural sewage treatment system [J]. Environmental Science, 2015,36(9):3329-3338.
[37] Jian Y, Lihong C, Lilian S, et al. VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics [J]. Nucleic Acids Research, 2008,36:539-542.
[38] Forsberg K J, Reyes A, Wang B, et al. The shared antibiotic resistome of soil bacteria and human pathogens [J]. 2012,337(6098):1107-1111.
[39] 罗 晓,袁立霞,张文丽,等.制药废水厂抗性基因和微生物群落相关性研究 [J]. 中国环境科学, 2019,39(2):831-838.
Luo X, Yuan L X, Zhang W L, et al. Correlation study between resistance genes and microbial communities in pharmaceutical wastewater treatment plants [J]. China Environmental Science, 2019, 39(2):831-838.
Study on the distribution and removal effect of resistance genes in integrated system of A2/O-MBR.
LI Zhong-hong1,2, DU Cai-li2,3, CHEN Su-hua1, ZHANG Lie-yu2, LI Xiao-guang2*, LI Jia-xi2, TIAN Zhen-jun2
(1.Key Laboratory of Jiangxi Province for Persistant Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China;2.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;3.College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China)., 2021,41(9):4135~4141
The increase of antibiotic resistance genes among microorganisms has become the main transmission source for sewage treatment plants. The purpose of this study was to explore the removal effect of Antibiotic Resistance Genes (ARGs) and pathogenic bacteria in rural domestic sewage treatment process and evaluate the water quality safety. This study selected a integration A2/O-MBR wastewater treatment system in the village of Beijing,systematic study was implemented in integrated system of A2/O-MBR wastewater treatment system to get the distribution law of ARGs and pathogenic bacteria in the each processing unit. Based on macro genomics, the high-throughput sequencing technology was used to analysis the the ability of removing ARGs and pathogenic bacteria in genus through integrated system of A2/O-MBR. Results showed that the ARGs widely existed in sewage treatment system, 19kinds of ARGs including tetracycline class, aminoglycoside class and sulfonamide class were detected, the relative abundance of the ARGs in influent was much higher than its concentration in the effluent, relative abundance of the ARGs fell by 72.25%, but most of the ARGs in sewage treatment system was not fully removed. The changes of microbial community structure showed that the relative abundance of 32potential pathogens decreased significantly, and most pathogenic bacteria could not be completely removed. The residual ARGs and pathogenic bacteria in the water will lead to the potential pollution risk of receiving water body.
integrated system of A2/O-MBR;metagenomics;ARGs;pathogenic bacteria
X703
A
1000-6923(2021)09-4135-07
李中浤(1995-),男,江西南昌人,南昌航空大学硕士研究生,主要从事污水生物处理工艺研究.
2021-02-25
国家重点研究计划(2019YFC0409202)
* 责任作者, 副研究员, xgli1982@163.com