孙轲 田静 姜艳水 刘成祥
摘要:粗铜中主量及次量组分的测定通常采用化学分析法,耗时较长,无法满足炉前快速检测的需求。实验采用车床制样,建立了X射线荧光光谱法测定粗铜中主量及次量组分的方法。实验使用实际生产中的粗铜样品绘制标准曲线,优化了样品表面平整度和共存元素干扰等影响因素,主量、次量组分吸收增强效应采用经验系数法进行校正。该方法测定结果的相对标准偏差为0.12 %~5.78 %,方法快速、准确,能够用于指导吹炼炉的生产。
关键词:X射线荧光光谱法;粗铜;经验系数法;表面平整度;共存元素
中图分类号:TD926.3 O657.3文献标志码:A开放科学(资源服务)标识码(OSID):
文章编号:1001-1277(2021)06-0098-04doi:10.11792/hj20210619
引 言
富氧底吹熔炼技术具有技术先进、处理量大等优点,应用广泛[1-2]。复杂金铜矿首先采用富氧底吹熔炼技术,将铜等有价金属富集在液态冰铜中,之后冰铜与熔炼渣分离;其次采用旋浮吹炼技术从冰铜中提炼粗铜;最后粗铜经阳极炉氧化还原精炼为98.5 %以上的阳极铜,再由溜槽导流至圆盘浇铸机,进行阳极板浇铸作业,合格的阳极板作为工序的主产品交付电解车间进行电解精炼。目前,粗铜中主量和次量组分的测定多为化学分析方法,如氧化还原电位滴定法和络合滴定法等。但是,这些方法耗费的时间较长,无法满足炉前快速分析检测的需求。X射线荧光光谱法可以同时测定多种元素,且快速、灵敏度高,因此在元素分析中应用广泛。在粗铜组分分析中,与滴定法相比,X射线荧光光谱法具有样品损伤小、分析速度快、准确性高等特点[3-4]。采用该方法检测贵金属时,分析后的样品能够直接回收,且不产生工业“三废”,是一种绿色环保、可靠的测试方法。实验采用粗铜试样,经多种方法定值后绘制标准曲线,同时考察了样品平整度、共存元素干扰等因素的影响。
1 实验部分
1.1 仪器及试剂
波长色散X射线荧光光谱仪(美国Thermofisher公司),Rh靶,功率4.2 kW,真空光路,其工作条件见表1。TCO-250B台式车床(天津市精工仪表机床厂)。
无水乙醇,分析纯。
1.2 实验方法
1.2.1 样品制备
样品制备严重影响X射线荧光光谱法测定的准确度。该方法检测样品时,近半数以上的误差是由样品制备造成的[5]。根据X射线荧光光谱法对检测样品的要求,炉前采用圆柱体形状的铸铁模具,一般浇铸内径40 mm×30 mm的柱状铜块为宜。为减轻X射线荧光光谱仪机械手臂和FORK的承受力,应确保检测样品在200 g以内。铜液不能浇铸过满,否则溢出模具造成铜边过多,影响粗铜检测结果。浇铸铜块时应同时浇铸2~3个样品,避免检测时出现铜块有孔,确保检测结果的准确性。
将铜块装夹在台式车床上,固定好样品后取下扳手。严格控制车刀加工厚度,以免过载损坏样品,车床转速以铜块表面不氧化为宜。如果样品过热可使用无水乙醇冷却。台式车床需车出一个光洁、平整的镜面检测面,且要保证样品不能有坑或孔。
1.2.2 标准样品定值及标准曲线绘制
为了确保粗铜标准样品测量值的准确性,采用实际生产中的粗铜样品,按照国家标准方法进行定值。采用YS/T 521.1—2009 《粗铜化学分析方法 第1部分:铜量的测定 碘量法》[6]测定铜,原子吸收光谱法测定银,电感耦合等离子体原子发射光谱法测定硒、碲、铅、锡、铋等。使用8个不同梯度组分含量的粗铜生产样品作为标准样品。按照仪器工作条件要求测定一系列标准样品,建立组分质量分数与荧光强度的标准曲线。线性回归方程为:w=D+ERM(w为标准样品质量分数(%);D为曲线截距;E为曲线斜率;R为荧光强度(s-1);M为吸收增强效应校正系数)。标准样品中部分元素标准曲线见图1,标准曲线回归方程相关参数见表2。
2 结果与讨论
2.1 样品表面平整度
粗铜属于铜合金材料,其特性是随着杂质含量增大,硬度增加,脆性增大,使用普通车床较容易加工出平面[7]。实验考察了样品表面平整度对测定结果的影响,见表3。
由表3可知:样品研磨面粗糙度会造成X射线强度变化,表面越平整,X射线荧光强度越高。因此,研磨时保证样品(标准样品、未知样品)表面粗糙度的一致性非常重要。表面粗糙度越小,标准曲线的准确度越高,重复精度也越高。此外,样品抛光后应立即进行测量,防止样品表面过热氧化或污染造成检测结果偏差过大。因此,加工时车床运行速度不宜过快。此外,可以使用无水乙醇进行表面冷却,降低样品表面温度。
2.2 谱线重叠干扰及校正方法
考虑到主量、次量组分的吸收增强效应,采用经验系数法校正元素间干扰[8]。基体校正公式为:
wi=w′i(1+Ki+Aijwj)+Bijwj+Cj(1)
式中:wi为分析元素i校正后的质量分数(%);w′i为元素i校正前的质量分数(%);Ki、Aij、Bij、Cj为校正系数;wj为共存元素j的质量分数(%)。
2.3 方法的准确度
选用实际生产中的4个粗铜样品,按照实验方法进行测定,并与化学法(YS/T 521.1—2009 《粗铜化学分析方法 第1部分:铜量的测定 碘量法》[6]测定铜,原子吸收光谱法测定银,电感耦合等离子体原子发射光谱法测定硒、碲、铅、锡、铋等)测定结果对比,结果见表4。
由表4可知:本方法测定结果与化学法测定结果吻合相对较好。除个别样品中铜元素外,其他元素测定结果的分析误差相对较小。分析误差来源主要包括2个方面:①取样误差,采样过程中的样品不均匀性导致的;②车样误差,检测面的平整度和光洁度不一致导致的。因此,要求检测样品表面和标准样品表面高度一致。但是,该检测方法測定结果完全能够满足炉前生产控制分析检测的要求。
2.4 方法的精密度
按照實验方法测定实际粗铜标准样品(CLCT-1)11次,计算其相对标准偏差,结果见表5。
由表5可知:粗铜样品中各元素测定结果的相对标准偏差为0.12 %~5.78 %,能够满足实际生产需求。
3 结 语
采用X射线荧光光谱法测定粗铜中主量及次量组分时,标准样品个数少,铜含量差距小,导致测定结果误差稍大。化学法检测1个粗铜样品需要3~4 h,测定周期较长,费时费力,无法满足生产快速分析的需求;X射线荧光光谱法15 min可完成粗铜中所有元素的检测,快速反馈到炉前指导生产。如果有必要,可以对单炉次样品进行抽样化学法检测,将X射线荧光光谱法和化学法二者结合起来,更好地指导生产。
[参考文献]
[1] 梁亚平.铜矿石化学分析方法概述与评价[J].甘肃科技,2015,31(18):52-53.
[2] 冯丽琼,谭飞,陈芸平.粗铜中铜含量测定方法的改进[J].云南地质,2016,34(4):608-611.
[3] 中华人民共和国工业和信息化部.粗铜化学分析方法 第6部分:砷、锑、铋、铅、锌和镍量的测定 电感耦合等离子体原子发射光谱法:YS/T 521.6—2009[S].北京:中国标准出版社,2009.
[4] 吉昂,陶光仪,卓尚军,等.X射线荧光光谱分析[M].北京:科学出版社,2005.
[5] 吕新宁.高银粗铜阳极炉精炼[J].内燃机与配件,2017(18):39-40.
[6] 中华人民共和国工业和信息化部.粗铜化学分析方法 第1部分:铜量的测定 碘量法:YS/T 521.1—2009[S].北京:中国标准出版社,2009.
[7] 黄燕海,胡华伟,罗喻文.影响粗铜质量的几大因素的研究[J].湖南有色金属,2017,33(3):37-41.
[8] 杨红玉,孙海荣,吕庆成,等.湿法分离-ICP-AES法测定粗铜中金、银[J].贵金属,2018,39(增刊1):206-208.
Determination of primary and secondary components
in crude copper by X-ray fluorescence spectrometry
Sun Ke1,2,Tian Jing1,2,Jiang Yanshui1,2,Liu Chengxiang1,2
(1.Henan Zhongyuan Gold Smelter LLC.;
2.Henan Key Laboratory of Comprehensive Utilization of Gold Resources)
Abstract:The determination of primary and secondary components in crude copper usually adopts chemical ana-lysis that takes a long time and cannot meet the needs of rapid detection before the furnace.Therefore a method for the determination of primary and secondary components in crude copper by X-ray fluorescence spectrometry was established using lathe sample preparation.The crude copper samples in actual production are used to make calibration curves.The surface finish and the interference between coexisting elements are optimized,and the primary and secondary components absorption enhancement effect should be calibrated by empirical coefficient method.The relative standard deviation of the determination results of each element is 0.12 %-5.78 %.The method is fast and accurate,and can be used to guide the production of blowing furnaces.
Keywords:X-ray fluorescence spectrometry method;crude copper;empirical coefficient method;surface finish;coexisting element
收稿日期:2021-01-06; 修回日期:2021-04-10
基金项目:2020年度三门峡市科技计划项目(2020010102)
作者简介:孙 轲(1983—),女,河南三门峡人,工程师,从事分析检测工作;河南省三门峡市产业集聚区209国道南侧,河南中原黄金冶炼厂有限责任公司,472000;E-mail:gxhde@163.com