赵海峰,梁海杰,王羽生
(1.中国石油大学(北京)石油工程学院,北京 102249;2.中国石油大学(北京)克拉玛依校区,新疆克拉玛依 834000)
页岩气勘探开发对国家能源安全及环境保护发挥至关重要的作用,中国页岩气可采资源量约为15×1012~25×1012m3[1],是常规油气和新能源之间的有力接替。工程实践已证明水平井分段缝网压裂可极大提高页岩气井产量[2]。缝网压裂是向地层中注入高压流体压破地层形成主裂缝,主裂缝向前延伸沟通天然裂缝形成多条分支裂缝,分支裂缝再向前扩展形成更高层次的分支裂缝,最终形成复杂裂缝网络[3-5]。目前常采用真三轴水力压裂实验研究岩石内裂缝起裂和延伸规律。MATSUNAGA 等开展压裂实验研究裂缝形成机制[6];YAN 等实验研究了地应力、天然裂缝、排量等因素对水力裂缝起裂和延伸的影响[7-11];ZHU 等基于真三轴压裂实验研究大斜度井射孔方位对裂缝起裂和延伸的影响,提出采用定向射孔技术获得平面裂缝的观点[12];LU等开展了树状分支井的室内模拟压裂实验[13];DEHGHAN 等开展水力裂缝与天然裂缝交互的压裂实验,研究水平应力差、逼近角等对水力裂缝延伸的影响[14-16]。然而,以上实验研究多只考虑了压裂液与页岩的流固耦合作用,鲜见考虑实际压裂过程中压裂液与页岩之间还存在热化耦合作用。在缝网形成过程中,压裂液提供驱动力并通过裂缝网络与岩石进行流固耦合作用,同时低温压裂液局部冷却高温页岩引起热破坏并影响岩石力学性质,另外页岩与压裂液接触发生水化作用,影响页岩裂缝的扩展[17],所以开展流固热化耦合的水力压裂实验具有重要意义。为此,笔者以涪陵区块龙马溪组页岩露头为研究对象,开展脆性页岩流固热化耦合机制的压裂实验,重点研究热作用和水化作用对页岩缝网扩展的影响,以期为页岩缝网压裂设计及施工提供理论指导。
实验设备采用中国石油大学(北京)岩石力学实验室设计组建的大尺寸真三轴实验系统。压裂过程中采用SAMOSTM 多通道声发射系统监测裂缝起裂和扩展。同时,为方便实验结束后直接观察裂缝扩展形态,在压裂液中添加适量的荧光粉示踪剂。
为研究热作用对页岩缝网扩展的影响,实验中需对岩样进行保温。为此,将水力压裂模拟实验架(图1)放入大型HW-3B 恒温箱中,以保证在整个实验阶段岩样恒定在设定温度。
图1 水力压裂模拟实验架Fig.1 Hydraulic fracturing simulation system
实验岩样选自涪陵地区龙马溪组页岩露头,将其切割成400 mm×400 mm×400 mm的立方体实验样品。在实验样品中心位置采用直径为20 mm的空心钻头钻取深度为210 mm的孔眼模拟钻井井眼,再将内径为6 mm、外径为16 mm 的模拟井筒固结于孔眼中,模拟井筒深度为180 mm,井筒下方为30 mm 的裸眼段。为模拟页岩气水平井,井筒平行于层理面并沿最小水平主应力方位布置(图2)。
图2 页岩岩样相关参数Fig.2 Parameters of shale samples
设计4组压裂实验方案(表1),实验岩样温度分别为20 和90 ℃,裸眼井段水化时间分别为0 和3 h。其中,20 ℃为地面温度,90 ℃为涪陵地区深度为2 500 m的页岩地层温度,地温梯度为2.80 ℃/hm;传统实验不考虑水化则水化时间取0 h,考虑水化则水化时间取3 h,与现场压裂施工时间一致;考虑水化作用的操作为压裂前将压裂液注入模拟井筒中并进行加压浸泡裸眼井段,加压浸泡压力为1 MPa。
表1 4组压裂实验方案Table1 Schemes of four fracturing experiments
涪陵地区深度为2 500 m 的页岩储层垂向应力为55 MPa,最大主应力为53 MPa,最小主应力为48 MPa,地层压力为34 MPa,破裂压力为52 MPa,剪切模量为12 GPa,泊松比为0.15,压裂液排量为12 m3/min,滑溜水压裂液黏度为10 mPa·s,假设主裂缝缝长为160 m,压裂施工时间为3 h。采用相似准则[18]确定实验参数,三向应力分别为21/19/14 MPa,排量为20 mL/min,破裂压力为18 MPa,计算得实验用压裂液黏度极小,这里采用黏度为1 mPa·s的清水。
压裂实验前,将装有岩样的水力压裂模拟实验架放入大型恒温箱中保温4 h,使岩样温度充分达到预期的20 或90 ℃。若后续不需要水化,则直接进行压裂实验;若需要水化,将压裂液注入模拟井筒中加压浸泡裸眼井段3 h 后再开展压裂实验,以上实验过程中恒温箱保持正常工作。
2.1.1 直接观测结果
根据4组压裂实验直接观测结果(图3),1#实验岩样形成单一水力主裂缝,主裂缝平直且缝面光滑,沟通并开启远处的天然裂缝,形成横向裂缝,此时缝网十分简单。2#实验岩样形成水力主裂缝与层理面BP1 交叉的“十”字型裂缝,主裂缝弯曲且缝面粗糙,垂直于最大水平主应力方向。主裂缝贯穿并开启近井筒层理面BP1,一翼延伸至层理面BP2时开启该层理但未穿透,原因为此时主裂缝另一翼已压穿岩样,压裂实验结束。3#实验岩样水力主裂缝沟通和开启2 条层理,并在近井地带分支转向形成次级裂缝,裂缝面复杂,产生复杂缝网。4#实验岩样近井筒地带破碎成小块,裂缝十分复杂,存在横向和纵向裂缝,但未穿透层理面,形成“工”字型裂缝,改造范围有限。分析原因为近井筒存在较多微裂缝或弱面,造成多裂缝同时扩展引起水力能量分散,不利于穿透。
图3 4组压裂实验直接观测结果Fig.3 Direct observations of four fracturing experiments
2.1.2 声发射监测结果
在施加最小水平主应力的2个岩样表面各黏贴2个声发射探头并使这4个声发射探头相互对称[19],以实时监测整个岩样内部的微破裂信号。由1#—4#实验岩样在俯视图方向的声发射事件和对应的裂缝形态(图4)可知,1#实验岩样声发射事件呈细长条带状分布,延伸方向垂直于层理,分析为1条水力裂缝;2#实验岩样声发射事件集中于垂直层理方向和平行层理方向的2条细长条带区域,说明形成1条水力裂缝和2 条层理;3#实验岩样声发射事件分布规律不明显,但结合岩样压后形态可得其裂缝形态;4#实验岩样声发射事件集中在近井筒区域,规律难以确定,其岩样破碎成块,裂缝非常复杂。
图4 4组压裂实验声发射事件和对应的裂缝形态示意Fig.4 Acoustic emission events and corresponding fracture morphology in the four fracturing experiments
2.1.3 压裂曲线分析
由1#—4#实验岩样压裂曲线(图5)可知,2#—4#实验岩样的压裂曲线出现锯齿状波动,说明水力裂缝向前扩展过程中沟通并开启层理、天然裂缝等弱面,不断有新裂缝形成,最终形成多裂缝或复杂缝网。压裂曲线锯齿状波动是页岩缝网压裂效果评价的重要参考,曲线波动越剧烈,形成缝网越复杂,压裂效果越好。3#和4#实验岩样压裂曲线波动频繁且剧烈,说明形成的缝网较复杂,这也与实际压裂实验结果相符。因此可得缝网压裂效果排序为:4#>3#>2#>1#。
图5 4组压裂实验岩样压裂曲线Fig.5 Fracturing curves of samples in four fracturing experiments
热作用对页岩缝网扩展的影响主要体现在岩石表面温度骤降产生热破坏和影响页岩力学性质等方面。将页岩岩心放在90 ℃恒温箱中保温4 h,然后在室温下冷却1 min,1 h 和3 h。由冷却后的表面形态(图6)可见,随着冷却时间的增加,岩样表面边缘的一条层理开度增加。分析原因为岩石内外受热不均引起热胀冷缩不同产生附加热应力,导致热破坏形成微裂缝或开启弱面。此时高温页岩冷却产生热破坏有利于裂缝网络的形成。
图6 高温页岩岩心冷却后的表面形态Fig.6 Surface morphology of high temperature shale core after cooling
对比1#和3#,2#和4#实验结果(图3),90 ℃页岩压裂缝网复杂程度明显高于20 ℃时缝网复杂程度。分析原因为,压裂过程中高温页岩受压裂液冷却,一方面岩石发生热破坏形成微裂纹或裂缝,此时高压压裂液挤入微裂纹或裂缝,形成“水楔”,显著降低岩石抗拉强度,使微裂纹或裂缝扩大并延伸;另一方面增加页岩脆性,同时WHITSITT 等还认为低温压裂液通过热交换会升温[20],使其黏度降低,有利于造窄长缝。这些均有利于在近井地带形成多裂缝并发生扩展,最终形成复杂裂缝网络。所以,热作用对页岩缝网扩展具有促进作用。
脆性页岩层理、裂缝发育,高压压裂液会沿着这些弱面侵入岩石并发生水化作用。水化作用对页岩裂缝起裂和延伸有重要影响[21-23]。页岩水化后形成水化应力,一方面增加井周的围岩应力,造成页岩破裂压力增加,抑制裂缝起裂;另一方面使裂缝尖端应力集中,应力强度因子增加,促使裂缝开启和扩展。所以,需要进一步分析水化作用对页岩缝网扩展的影响。
为研究水化作用对页岩弱面的影响,选取1 块页岩(取心方向平行于层理)浸泡在压裂液中,观察不同浸泡时间的弱面形态(图7)。从图7可知,浸泡前层理清晰可见,浸泡3 h 后层理面张开明显,沿层理面剖开后发现流体侵入严重,所以水化对页岩弱面具有破坏性作用。进一步分析认为,压裂液的侵入降低了弱面内聚力,使岩石临界应力强度因子大幅度减小,致使弱面开启并发生扩展,促进多分支裂缝的形成。
图7 不同浸泡时间的弱面形态Fig.7 Weak plane morphology for different immersion time
对比3#和4#实验结果(图3),高温水化的4#实验岩样在近井筒地带破碎成小块,形成了复杂裂缝网络,而高温不水化的3#实验岩样裂缝网络相对简单。分析认为,4#实验中高温裸眼井筒遇低温压裂液产生微裂缝后,继续加压浸泡井筒3 h,压裂液将沿微裂缝或天然裂缝充分滤失,降低弱面强度和形成水化应力,造成裂缝尖端应力集中,使得起裂时压裂液沿各向渗流的机率增加,从而形成复杂裂缝形态。所以,水化作用有利于页岩缝网的扩展。
为进一步研究热作用和水化作用对页岩缝网扩展的影响,对岩样进行力学参数测定分析。取A,B,C,D,E,F 六块页岩岩样(取心方向平行于层理),保温至90 ℃,然后对A 岩样直接进行三轴压缩实验,B 岩样冷却至20 ℃再进行压缩实验,C 岩样在压裂液中浸泡3 h(此时保温90 ℃)后再进行压缩实验,D 岩样直接做巴西实验,E岩样冷却至20 ℃再做巴西实验,F 岩样在压裂液中浸泡3 h(此时保温90 ℃)后再做巴西实验。
对比A,B,C 三块岩样的应力应变曲线(图8),三条曲线的斜率与峰值有明显差异,岩样A 和岩样B 弹性模量比较接近,岩样C 的弹性模量明显降低;从峰值看,在相同围压下,三块岩样的抗压强度排序为:B>A>C。可见,在热作用下,页岩抗压和抵抗弹性变形能力略增加;而在水化作用下,页岩抗压和抵抗弹性变形的能力降低。结合六块岩样的力学参数和根据TARASOV 等理论[24]计算的脆性指数(表2)分析可知,在热作用下,页岩泊松比略减小,岩石脆性增加(脆性指数越小,岩石脆性越强),抗拉强度明显降低;在水化作用下,页岩脆性和抗拉强度均下降,其中抗拉强度降低幅度达60%。由此可知,页岩更容易产生拉伸破坏引起裂缝起裂和延伸,促进缝网形成。
图8 不同条件下页岩应力应变曲线Fig.8 Shale stress-strain curves under different conditions
表2 不同条件下的龙马溪组页岩参数Table2 Shale parameters of Longmaxi Formation under different conditions
根据1#—4#压裂实验结果(图3),先统计1#—4#实验岩样的裂缝数量(表3),再采用均值分析[25]评价热作用和水化作用2个因素对缝网扩展裂缝数量的影响。
表3 4组压裂实验岩样压裂后裂缝数量统计Table3 Statistics of number of fractures of fractured samples in four fracturing experiments
为分析热作用影响,将实验岩样分为2组,一组为1#和2#实验,温度为20 ℃;一组为3#和4#实验,温度为90 ℃。考虑水化作用影响,将实验岩样分为2 组,一组为1#和3#实验,水化0 h;一组为2#和4#岩样,水化3 h。由均值分析结果(表4)可见,A2T>A1T说明热作用有利于页岩缝网扩展;A2H>A1H说明水化作用有利于页岩缝网扩展。这与前面的分析规律吻合,说明热作用和水化作用对脆性页岩缝网形成具有促进作用。
表4 各因素对缝网裂缝数量的均值分析Table4 Mean value analysis of various factors on number of fractures in fracture networks
考虑低温压裂液冷却高温页岩的热作用以及页岩与压裂液接触发生水化作用,提出并开展脆性页岩流固热化耦合的水力压裂实验,重点研究热作用和水化作用对裂缝扩展的影响。热作用下页岩脆性增加,抗拉强度降低并形成微裂缝;水化作用能降低页岩弱面强度,形成水化应力造成裂缝尖端应力集中。热作用和水化作用均能够促进页岩多裂缝的形成和扩展,有利于缝网压裂。研究成果为页岩缝网压裂的设计与实施提供了科学借鉴,对缝网压裂设计和压裂效果评估都具有实际指导意义。为进一步定量研究流固热化耦合作用对缝网扩展影响,下一步将重点开展页岩缝网扩展的流固热化耦合数值模拟研究工作。