世界陨石坑研究

2021-07-28 10:37丁毅侯征吴云霞
地质论评 2021年4期
关键词:陨石坑陨石石英

丁毅,侯征, 吴云霞

河北地质大学, 石家庄,050031

内容提要: 本文综述了全球陨石坑研究的研究历史和最新成果、基本的概念、陨石坑的识别要点、世界著名的陨石坑、陨石撞击地球可能引起的岩浆活动、陨石撞击与生命演化等内容。确定一个陨石坑,要从有一定弧度的地貌开始,鉴别低平圆形地质体是陨石还是其他原因造成的,综合确定岩石的岩石学特征、岩石中是否有撞击变质矿物、残余陨石、重力异常。陨石撞击太阳系的所有行星。由于地球表面遭受严重的风化和侵蚀,地质学家很难发现陨石坑。截至2021年3月31日,全球陨石坑数据库中有190个经确认的陨石坑,但中国只有一个,中国地质学家在发现陨石坑方面应当积极努力。对一个陨石坑认识可能不很成熟,但往往能改变对一个地区的地质成因理论的认识,形成完整的陨石坑证据链可能需要几代科学家的不断努力。

陨石撞击地球是太阳系运行过程中一个基本的现象, 一直是宇宙中一个极其重要的行星过程(Reimold et al., 2018)。进入太阳系的绝大部分陨石都被质量大的太阳和木星吸走了,人们通过天文望远镜知道月球在4.0 Ga间被陨石砸的面目全非,在火星上也发现了75000个陨石坑(Stepinski et al., 2012),太阳系中最大的陨石坑(卡洛里,直径达1550 km)发现在水星的表面(Watters et al., 2009)。 地球的体量比火星、水星和月球都大,被陨石砸的概率当然要比它们大得多。目前每年有大约10000到80000颗陨石袭击地球(Monthly Notices of the Royal Astronomical Society)。然而到目前为止,加拿大新不伦瑞克大学的行星与空间科学中心[ PASSC (Planetary and Space Science Centre (University of New Brunswick; Canada) ] 所维护的全球陨石坑数据库(Earth Impact Database, 2021)仅认证了190个陨石坑。它们主要集中在欧洲、北美、澳州、南非。 中国已报道的陨石撞击构造不少,如王若柏等(2004)、云金表等(2019),但尚需进一步论证。全球陨石坑数据库收录的中国陨石坑仅有岫岩陨石坑一个 (Chen Ming et al.,2011)。

地球大气圈的保护、板块运动、岩浆溢流、沉积物的掩埋、风化剥蚀、海洋淹没等使得地质科学家在地球陆地上发现陨石坑要比在火星或月球上发现陨石坑困难得多。1976年中国吉林市北郊发现的3000多块陨石中,最大的一块陨石重约1.77 t,砸出了一个2 m长6.5 m深的陨石坑(meteorite crater),陨石坑又被称之为冲击坑 (impact crater)。

研究地球上的陨石坑到现在已超过百年(Baratoux and Barringer, 1910),积累了许多判别陨石坑的标志,推动了陨石坑的发现和陨石学的发展,这使得人类更加了解陨石的冲击对地球生命演化的影响(Burgess et al., 2017;Lowery et al., 2018; Schaller and Fung, 2018;Wang Guangxu et al., 2019);丰富了冲击变质岩石学、岩石化学、矿物学、结晶学和年代学 (Clyde et al., 2016; Cohen et al., 2017; Erickson et al., 2017; Folco et al., 2018; Jourdan et al., 2019);丰富了岩浆起源和成岩成矿理论,即陨石冲击地壳作为外因是否能引发岩浆侵入作用和热液成矿作用 (Burgess et al., 2017; Pickersgill et al., 2019)。

1 陨石坑的地貌形态特点

1.1 陨石坑地貌的特点

全世界所发现的大多数陨石坑都是从圆形地质体或隆起的弧形山体开始的,陨石坑属于低平圆形地质体的一种。低平圆形地质体还有可能是玛珥式火山口、地表尚未完全塌陷的石灰岩溶洞、以及背斜岩层剥蚀出来的不同风化程度所造成的圆形体等等。它们共同的特点是卫星影像呈圆形、似圆形、或椭圆形,地表观察它们的口沿不高,但是地质体内外在岩石成分、口沿内外的形状都各自有特点。陨石坑的基本特征是负地形的圆形体,没有经过风化的月球上的陨石坑(图1a)保存如初的状态,使得我们有机会认识陨石坑的地貌特征。直径小于2.5 km的陨石坑被称之为简单陨石坑(图1e),口沿单一,口沿边部的内壁陡峭; 直径大于2.5 km (有的文献中把2.5~4 km这个区间作为简单和复杂陨石坑的分界区段)的陨石坑又被称之为复杂陨石坑(图1a—c,f—h),复杂陨石坑有多层口沿和混乱的岩石层 (multi-ringed structures, Ferriere and Osinski, 2012)。有一些陨石坑由于形成年代早,它们的口沿或已经被侵蚀掉了或因其是负地形有可能被新的沉积物掩埋了,有的位于地球上沙漠地带的陨石坑正在遭受风蚀的破坏(图1c)。

图1 (a)月球上的最大陨石坑,900 km直径,为复杂陨石坑,具有明显的双环特征,然而中间显示相对平整,外圈隆起的高度不对称 (图片中箭头所指的较高,图片来自NASA)。 (b)南非的Vredefort陨石坑是地球上目前发现的最大的(直径约250 km)和年代最老的陨石坑 (200~300 km (Erickson et al., 2013), 图片来自 geology.com),箭头所示的撞击坑的隆起在高度和复杂性上与另一侧的隆起不对称; (c)非洲乍得的Aorounga陨石坑正在遭受横向风沙的风化(Visible, 2021),但是仍然可识别出中心,由“中心峰圈”和“中心峰”组成,直径约为12.6 km。 (d)岫岩陨石坑,位于鞍山市岫岩满族自治县苏子沟镇罗圈沟里村,为简单陨石坑,直径1.8 km(据Google Earth)。 (e) 美国的Barringer陨石坑,1.2 km直径,为简单陨石坑;(f) 加拿大的Sudbury陨石坑。 (g) 加拿大的Manicouagan 陨石坑,直径100 km(图片来自www.passc.net)。 (h)加拿大的Clearwater Lakes姊妹陨石坑(图片来自www.sott.net)Fig. 1 (a)The largest crater on the Moon, 900 km in diameter, is a complex crater with obvious double rings, but the center shows relatively flat, and the uplift in the outer ring pointed by the white arrow in the picture is highly asymmetric to the other side (the picture is from NASA). (b) Vredefort crater in South Africa is the largest(250 km in diameter)and oldest meteorite crater found in the Earth (the picture is from geology.com). The rim uplift along the impact crater indicated by the arrow is asymmetric in height and complexity to the one in the opposite direction. (c) the Aorounga crater, with 12.6 km in diameter, in Chad, Africa, is being weathered by transverse sandstorm. (d) Xiuyan crater, located in Luoquangouli village, Suzigou Town, Xiuyan Manchu Autonomous County, Anshan City, is a simple crater with a diameter of 1800 m (from Google Earth). (E) Barringer crater, 1.2 km in diameter, is a simple crater. (f) Sudbury crater, Canada. (g) Manicouagan crater, Canada, 100 km in diameter (image from www.passc.net). (h) Clearwater lakes sister craters in Canada, from www.sott.net

1.2 陨石坑与玛珥式火山口的区别

在地貌上,陨石坑与负地形的玛珥式火山口相似,区别在于后者坑底平整和坑内的坡度较为平缓 (丁毅等, 2019);而陨石坑的底部是不平整的,坑内的坡度较为陡峭。简单陨石坑底部与复杂陨石坑相同,也呈现略为凸起的特点 (图1e);复杂陨石坑的底部有中央隆起 (central uplift),又称为中心峰 (central peak, 图1c), 坑底岩石在受到巨大陨石轰击后,由于应力释放而产生一定程度的回弹,故在一些复杂陨石坑的底部常出现中央隆起(Morgan et al., 2016)。当中心峰风化以后还保留“峰圈”(peak ring)(图1h)。然而,我们也注意到超大型(直径大于200 km)陨石坑存在中心平整和口沿隆起的高度不对称的特点(图1a、b、f)。

2 陨石坑鉴别标志

2.1 岩石、岩石化学、岩石颜色、碎裂角砾岩层

陨石砸在地球上的地点是不可预测的,即砸在什么岩石上都有可能。当被砸岩石是石灰岩时,由于冲击热变质,会产生大理岩; 砸在其他岩石上,高温高压的结果,可产生冲击变质的熔岩。有一种玻璃质的似曜岩(tektites)(图2c、d),陨石砸在地面产生熔融的碎屑飞溅、散落、呈扇形分布(图2b绿色区)。这些似曜岩与火山黑曜岩不同之处在于成分复杂,黑色、绿色、无色都有 (Cavosie, 2018; Stöffler et al., 2002)。陨石撞击地表岩石会带来宇宙元素, 被冲击的岩石化学会有一定的改变,可能含有比较多的宇宙元素(镍、铂、铱、钴等)(Mougel et al., 2017; Folco et al., 2018; Crosta et al., 2019; Mougel et al., 2019)。

图2 (a)石英中存在冲击变形结构;(b)玻璃质的似曜岩散落区(绿色),被认为是Ries和Steinheim (红色)两个陨石坑 造成的;(c)、(d) Tektites (玻璃质的似曜岩);(e)、(f) 震裂锥;(g)铁陨石;(h)陨石坑中冲击角砾岩Fig. 2 (a) impact deformation texture in quartz; (b) glassy obsidian like scattering area (green), which is considered to be caused by two craters, Ries and Steinheim (red); (c), (d) Tektites; (e) , (f) seismic cone; (g) iron meteorite; (h) impact breccia in crater

如果陨石坑底的组成岩石不是火山口相的火山集块岩、火山角砾岩或火山熔岩,就排除了地貌上的环状体的火山成因。 冲撞变质成因的熔岩与火山熔岩是有着明显区别的。如果原先岩石就是火山凝灰岩等火山碎屑岩,需要进行岩石薄片分析并进行坑内外火山岩的对比(是否存在高温高压矿物和石英晶体是否存在冲击变质结构)。新鲜的陨石坑表面有一层薄薄的棕—黑色壳(fusion crust),是由陨石砸在地表岩石时炽热烘烤造成的,发现这种情况的坑很少,其原因是后期风化很快就掩埋这些特征了。Bjornerud(1998)描述并定量分析了美国Indiana州Kentland陨石坑中三种不同类型的角砾岩。Wilshire 等 (1971) 描述了Sierra Madera陨石坑中的冲击角砾岩,陨石坑内外有许多不同类型的角砾,有破碎角砾,可能为破碎角砾或集块 (shocked, 冲击粉碎的,没有被其他融化物质所胶结) ,完全被冲击融化的 (impact melt)和破碎的角砾被更小的融化物质所胶结 (impact breccia) 。它们又被统称为冲击破碎岩(图2h)(impactites,Stöffler and Grieve, 2007)。Tagamite是一种冲击熔融岩石,看起来有点类似于陆地玄武岩,它是以西伯利亚波皮盖陨石坑内的Tagami山脊命名的(Afanasiev et al., 2019)。

2.2 冲击变质矿物和矿物结构

陨石中心撞击岩石时压力可能会达到几百GPa(Stöffler and Grieve, 2007),会产生高温高压冲击变质矿物 [柯石英、超石英(Stishovite)、重硅石、斜硅石(Chao et al.,1960)、金刚石(Afanasiev et al., 2019)]。Cohen 等 (1961) 和Fahey (1964) 研究了Coconino陨石坑和石英中存在的冲击变形结构 (Planar Fractures (PFs) and Planar Deformation Features (PDFs)) (图2 a) 。矿物的热分解、熔融以及出现流动构造,特别是在同一岩石中结晶体与玻璃体并存,如石英、长石已转变为玻璃相,而深色矿物仍保留晶质相。在陨石冲击情况下,难熔矿物亦发生分解,如陨石坑内存在钛铁矿、金刚石、铁板钛矿和斜锆石等,它们有可能已熔成液滴状 (Ferriere et al., 2009; Reimold et al., 2014)。Kenkmann(2002)研究这些矿物的生成和矿物特有的结构,认为它们可能是在15~60 s中完成的。

2.3 残留陨石

大多数陨石是石质陨石(stony meteorites),分为球粒陨石(chondrites)和无球粒陨石(achondrites),球粒陨石根据化学—岩石学分类被分为:E、H、L、LL、C 五个化学群类。只有约6%的陨石是铁陨石(iron meteorites)(图2g)或岩石和金属的混合物,即石铁陨石 (stony-iron meteorites) (Krot et al., 2007)。人类发现陨石越来越多,陨石的分类(Weisberg et al., 2006)也变得非常复杂。陨石冲过地球大气圈,摩擦后,虽然燃烧耗尽, 但是仍然会有陨石落到陨石坑附近,尤其在简单陨石坑(澳大利亚的Wolfe Creek陨石坑和美国的Barringer陨石坑)附近都能找到陨石的残留物,而在大型陨石坑内却很少发现,这可能是陨石与地面冲撞时易于爆炸和陨石炽热蒸发有关。在内蒙古狼山弧形隆起西北方向发现有25 km2的陨石散落区。在南极的冰盖上,在无土背景下,陨石颜色与冰盖的白色强烈对比较易发现陨石,在南极的格罗夫山,我国南极考察队发现了陨石散落区,7次南极陨石考察共收集南极陨石12265块。1976年3月8日,我国吉林省吉林市近郊发生了大规模的陨石雨,陨落区直径70多千米,面积在400~500 km2之间,共收集到陨石100多块,总重2616 kg,其中“吉林1号”陨石重1770 kg,属H球粒陨石。中国新疆地区也发现体积较大的大陨石。

2.4 震裂锥 (Shatter Cones)

为高温高压冲击变质所产生的一种特殊的岩石形体,从小于1 cm到15 cm或更大,呈锥体形状,表面有很多沟槽,顶端为钝尖,指向陨石与岩石碎块摩擦冲击的方向(图2e、f)。在复杂陨石坑内,原岩是石灰岩、白云岩、石英岩、片麻岩或页岩时,可以见到震裂锥,震裂锥被认为是陨石坑的可靠证据 (Dietz, 1947, 1960; Chennaoui et al., 2016; Osinski and Ferrière, 2016)。

2.5 重力负异常和岩浆活动

陨石坑内重力负异常是由于坑底岩石遭到粉碎性撞击后,岩石疏松或变为碎块造成的,火山的火口内则为重力正常场。另外碎块分布多、坑的内部和周边存在杂乱无章的小断裂也都是陨石坑识别的辅助标志 (Regan and Hinze, 1975)。一个巨大陨石轰击有可能触发或控制深部岩浆活动和热液活动,世界最大的Ni—Cu—Pt—Pd—Au矿床所在地,加拿大的Sudbury陨石坑(图1f)已被证实为一个陨石先冲击而后诱发岩浆矿产形成的一个复合构造,岩浆成矿的重叠在大约1.85 Ga年形成的陨石坑内(Burgess et al., 2017; Richards et al., 2015)。

3 世界一些著名的陨石坑

具有地貌形态是必须的,其他诸如:残留陨石、冲击变质矿物、矿物的内部结构、震裂锥、重力异常等证据很重要,如果有陨石坑的地貌地形(中大型的有中心峰)、石英、长石或其他矿物的PDFs/PFs,再加上一些其他证据就已经很完善了。柯石英、超级石英、或冲击金刚石的发现当然是确凿的证据,但是发现的概率较少。

世界上所发现的大型陨石坑为数不多,最大的是南非的Vredefort陨石坑(图1b) (Grieve et al.,2008),其次是加拿大的Sudbury(图1f) (Lenauer and Riller, 2012)和排在第三位的墨西哥境内的尤卡坦半岛Chicxulub陨石坑。Chicxulub陨石坑又被称为“恐龙陨石坑”,直径有198 km, 是65 Ma前一颗直径为10~13 km的小行星撞击地球而成,被认为是导致恐龙灭绝的原因 (Alvarez et al., 1980; Claeys et al., 2002; Lowery et al., 2018), 并确定了K/T分界线(Alvarez et al., 1980; Renne et al., 2018)。其中的高Ir元素含量层(Alvarez et al., 1980)被认为是证据之一。 陨石冲击也被认为是当时全球变冷的主要原因(Brugger et al., 2017)。该陨石坑为重力负异常(Gulick et al., 2013)、存在地震反射波(Connors et al., 1996)和地震折射波异常(Gulick et al., 2013),中心峰附近的岩浆热液活动有可能是陨石冲击造成的(Kring et al., 2017)。

加拿大境内的陨石坑:Tunnunik陨石坑,位于北极圈地区,25 km直径的圆形坑,中心峰地区存在震裂锥,从受冲击影响的岩石的年龄来判断是450 Ma前形成的(Dewing et al., 2013;Lepaulard et al., 2019)。加拿大的Sudbury陨石坑(图1f)形成于元古代,地形上仍然可见弧形构造,250 km直径,有震裂锥的存在,石英、长石、锆石中都有PDF,坑内岩石广泛存在碎屑化 (Lenauer and Riller, 2012)。 Clearwater Lakes陨石坑(图1h),这是一对孪生陨石坑,形成在290 Ma以前,可能是由分裂成两块的小行星同时撞击地球而成。东南的小的陨石坑直径22 km,西北的陨石坑直径32 km, 后者具有中心峰的环状地貌,简称“峰圈”(图2h),它们在奥陶纪形成,坑内外岩石多种元素 (Os、 Ir、 Ru、 Rh and Pd) 都高于地壳平均值(Schmidt,1997),富含铂族元素(PGE)、 Ni、 Au(Tangle and Hecht,2006), 石英具有PDFs(Cluston et al., 2018);阿尔伯塔省西北部的Steen River陨石坑,直径为25 km,地形不明显,但是显示磁异常和地震波异常,钻探取芯发现岩石含有冲击变质矿物——镁铁尖晶石(Magnesioferrite, MgFe2O4), 长石和石英中有PDFs (MacLagan et al., 2018; Walton et al., 2018);加拿大的Manicouagan陨石坑(图2g),陨石坑有明显的被冰面覆盖的环状湖。这个陨石坑的直径有100 km,形成在210 Ma前,存在震裂锥,斜长石、石英、钾长石中都有PDFs(Clutson et al., 2018)。此外,在加拿大境内还认定了Charlevoix (Schmieder et al., 2019), Nicholson Lake (McGregor et al., 2018), Lac La Moninerie (McGregor et al., 2018) 等陨石坑。

南非境内的陨石坑:Vredefort是具有中心峰的陨石坑,由花岗岩组成的中心峰直径大约70 km, 被称之为 “Vredefort Dome”,10 km直径大小的小行星在2.0 Ga年前冲击地球,形成约180~300 km直径, 40 km深的圆形坑,另外还有矿物的PDFs和震裂锥证据,这是世界上被认证的最老和最大的陨石坑(Buchanan and Reimold, 2002; Grieve et al., 2008; Erickson et al., 2013)。

美国境内的陨石坑:Alamo陨石坑为位于内华达州的中南部、382 Ma左右前形成,44~65 km直径,存在角砾层、地形和PDFs证据(Pinto and Warme, 2007; Evans et al., 2012; Keith et al., 2013; Poole and Sandberg, 2015);Barringer陨石坑,1.2 km直径,170 m深,形成在50 ka之前,在世界上认证最早、保存最好、研究最成熟的一个陨石坑(Baratoux and Barringer, 1910; Barringer, 1964)。该陨石坑非常有名的原因是地形明显(图2a)、发现得早、被成功地转为赚钱的地质公园 (Kring, 2017)。其他证据还有角砾层、柯石英和超级石英(Chao et al., 1960, 1962)、铁镍陨石碎块 (Artemieva, 2006);Decorah陨石坑,位于Iowa州,5.6 km直径,200 m深。主要证据有圆形凹陷地形,坑的内外分布有碎块,岩芯中存在大量的石英PDFs, 形成年代在中奥陶世(French et al., 2018)。阿拉斯加Avak陨石坑,直径约12 km,存在角砾层、圆形地貌、震裂锥和PDFs证据。

德国境内的Steinheim陨石坑,直径3.8 km。主要证据是:圆形坑体、中心隆起、杂乱无章的岩石碎块、无规律分布的断裂 (Stöffler et al., 2002); Ries陨石坑,直径24 km。这两个陨石坑之间散布着tektites[前面介绍了,是一种黑色、绿色、无色的似曜岩,又被称为moldavite (捷克陨石)],研究者认为两个陨石坑和它们之间的moldavite分布场(strewn field)都是在15 Ma前形成的(Stöffler et al., 2002)。

澳大利亚Wolfe Creek陨石坑(图2n),位于澳大利亚西北部沙漠地区,直径880 m,形成年代小于300 ka,是一个比较年轻的陨石坑。坑底部相比坑外地面水平线的高度为25 m, 地貌特别之处是这个简单陨石坑中心有一个与坑口沿同心的圈。陨石坑具有磁场异常和重力负异常(O’Neill and Heine, 2005),陨石坑内可见震裂锥、铁陨石氧化后的残余物质、高温下砂粒熔化形成的玻璃物 (Barrows et al., 2019)。

4 展望

全球发现的陨石坑都集中在欧美发达国家(Chabou,2019; Flamini et al., 2019)。北京以北的冀蒙交界的内蒙多伦地区,有一个超大规模的圆形地貌,这个坑具有同心环状的 “波脊丘” ,直径为170 km的外环和直径为70 km的内环;太湖是否为陨石坑仍然在研究中。到本文发稿时间为止,录入世界数据库的在中国境内发现的只有岫岩陨石坑(Chen Ming et al., 2011; Earth Impact Database, 2021)。

Mazrouei 等 (2019) 团队严格检验世界陨石数据库中每个陨石坑形成的年代数据,试图从统计中找出陨石群体袭击地球的年代段,如果他们的工作有突破性进展,将做出对陨石学和天体学有意义的贡献。Pickersgill 等 (2019) 共计364位多学科的科学家团队,大规模开展美国和墨西哥边境上的Chicxulub陨石坑的全面研究。目前他们已经发现造成Chicxulub陨石坑的陨石的冲击还触发了岩浆热液活动。这可能与加拿大的Sudbury陨石—火成岩复合构造相似。

Stewart(2011)估算地球上约有多于714座(大于2.5 km直径的约有228座)的陨石坑有待发现。陨石砸在地球的位置应当是到处都有可能,而70%落入海中,是无法找到的(Hergarten and Kenkmann, 2015)。最近在国土面积小于中国云南省(39万 km2)的芬兰(33万 km2)也发现了陨石坑(Plado et al., 2018), 这对中国地质学家是个激励。需要指出的是最初认识陨石坑并不需要完整的证据链,从上面一些世界陨石坑的发现来看,从最初怀疑到完善证据是几十年中一代又一代地质人逐步实现的。中国境内陨石坑的发现方兴未艾,期待中国地质学工作者为全人类陨石坑研究做出中国贡献。

生活水平的提高也促进了许多地学爱好者收集残留陨石,推动了地质学对陨石坑的研究。发现陨石、汇集包括发现地和种类、建立全球数据库、让全世界科学家分享数据是全球地质科学家的责任,这些数据的收集整理和研究无疑促进了更多陨石坑的发现。

致谢: 与吴思本先生进行了有益的讨论, 审稿专家提出了宝贵的修改意见, 特致谢意。

参 考 文 献/References

(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)

丁毅,吴云霞,李继成,郝志平,戴涛杰, 2019. 内蒙卓资县玛珥火山口群的发现和意义. 地质论评,65(6):1431~1434.

王若柏,何肇雄,万文妮,高培芝,李爱荣.2004.一种特殊的地貌现象——碟形洼地群及其成因的探索. 地质论评,50(4):391~396.

云金表,宁飞,宋海明.2019.新疆南部皮山北环形构造——古陨石撞击的记录. 地质论评,65(1):16~25.

Afanasiev V, Pokhilenko N, Eliseev A, Gromilov S, Ugapieva S, Senyut V. 2019. Impact diamonds: Types, properties and uses. In: 14th International Congress for Applied Mineralogy (ICAM2019): 179~182.

Alvarez L W, Alvarez W, Asaro F, Michel H V. 1980. Extraterrestrial cause for the Cretaceous—Tertiary extinction. Science, 208 (4448): 1095~1108;

Doi: 10.1126/science.208.4448.1095

Artemieva N A. 2006. Size and velocity of Canyon Diablo meteorite —— models comparison (abstract). Meteoritics and Planetary Science, 41: A17.

Baratoux D and Barringer D M. 1910. Meteor Crater (formerly called Coon Mountain or Coon Butte) in northern central Arizona. Paper presented at the National Academy of Sciences, Princeton University, Nov. 16, 1909:1~24.

Barringer B. 1964. Daniel Moreau Barringer (1860~1929) and his crater (the beginning of the Crater Branch of Meteorites). Meteoritics, 2: 183~199.

Barrows T T, Magee J, Miller G, Fifield L K. 2019. The age of Wolfe Creek meteorite crater (Kandimalal), Western Australia. Meteoritics and Planetary Science, 54:2686~2697.

Bjornerud M G. 1998. Superimposed deformation in seconds: Breccias from the impact structure at Kentland, Indiana (USA). Tectonophysics, 290(3~4): 259~269.

Brugger J, Feulner G, Petri S. 2017. Baby, it’s cold outside: climate model simulations of the effects of the asteroid impact at the end of the Cretaceous. Geophysical Research Letters, 44:419~427.

Buchanan P C and Reimold W U. 2002. Planar deformation features and impact glass in inclusions from the Veredefort Granophyre, South Africa. Meteoritics and Planetary Science, 37: 807~822.

Burgess S D, Muirhead J D, Bowring S A. 2017. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nature Communications, 8:164.

Cavosie A J. 2018. The enduring mystery of Australasian tektites. Elements, 14:212~213.

Chabou M C. 2019. Meteorite impact structures in the Arab World: An Overview. In: Bendaoud A et al. eds. The Geology of the Arab World——An Overview. Switzerland: Springer: 455~506.

Chao E C T, Fahey J J, Littler J, Milton D J. 1962. Stishovite, SiO2, a very high-pressure new mineral from Meteor Crater, Arizona. Journal of Geophysical Research, 67: 419~421.

Chao E C T, Shoemaker E M, Madsen B M. 1960. First natural occurrence of coesite. Science, 132(3421): 220~222.

Chennaoui A H, El Kerni H, Reimold, W U, Baratoux D, Koeberl C, Bouley S, Aoudjehane M. 2016. The Agoudal (high Atlas Mountains, Morocco) shatter cone conundrum: A recent meteorite fall onto the remnant of an impact site. Meteoritics and Planetary Science, 51:1497~1518.

Chen Ming, Koeberl, C, Xiao Wansheng, Xie Xiande, Tan Dayong. 2011. Planar deformation features in quartz from impact-produced polymict breccia of the Xiuyan Crater, China. Meteoritics and Planetary Science, 46:729~736.

Claeys P, Kiessling W, Alvarez W. 2002. Distribution of Chicxulub ejecta at the Cretaceous—Tertiary boundary. In: Koeberl C and Macleod K G. eds. Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Papers, 356: 55~68.

Cluston M J, Brown D E, Tanner L H. 2018. Distal processes and effects of multiple Late Triassic terrestrial bolide impacts: Insights from the Norian Manicouagan event, northeastern Quebec, Canada. In: Tanner T H. ed. The Late Triassic World. Switzerland: Springer: 127~187.

Clyde W C, Ramezani J, Johnson K R, Bowring S A, Jones M M. 2016. Direct high-precision U-Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales. Earth and Planetary Science Letters, 452:272~280.

Cohen A J, Bunch T E, Reid A M. 1961. Coesite discoveries establish cryptovolcanics as fossil meterorite craters. Science, 134(3490): 1624~1625.

Cohen B E, Mark D F, Lee M R, Simpson S L. 2017. A new high-precision40Ar/39Ar age for the Rochechouart impact structure: at least 5 Ma older than the Triassic—Jurassic boundary. Meteoritics and Planetary Science, 52:1600~1611.

Connors M, Hildebrand R A, Pilkington M, Ortiz-aleman C, Chavez R E, Urrutia-fucugauchi J, Graniel-castro E, Camarazi A, Vasquez J, and Halpenny J F. 1996. Yucatán karst features and the size of Chicxulub Crater. Geophysical Journal International, 127: F11~F14.

Crosta A P, Reimold W U, Vasconcelos M A R, Hauser N, Oliveira, G J G, Maziviero M V, Goes A M. 2019. Impact cratering: The South American record——part 1. Geochemistry, 79(1):1~61.

Dewing K, Pratt B R, Hadlari T, Brent T Bedard J, Rainbird R H. 2013. Newly identified “Tunnunik” impact structure, Prince Albert Peninsula, northwestern Victoria Island, Arctic Canada. Meteoritics and Planetary Science, 48(2):211~223.

Dietz R S. 1947. Meteorite impact suggested by the orientation of shatter cones at the Kentland, Indiana disturbance. Science, 105: 42~43;

Doi: 10.1126/science.105.2715.42

Dietz R S. 1960. Meteorite impact suggested by shatter cones in rock. Science, 131(3416): 1781~1784.

Ding Yi, Wu Yunxia, Li Jicheng, Hao Zhiping, Dai Taojie. 2019&. Discovery and significance of Maars in Zhuozi County, Inner Mongolia. Geological Review, 65(6):1431~1434.

Earth Impact Database. 2021. Data online retrieved on 2021-02-23 from www.passc.net/EarthImpactDatabase/. University of New Brunswick, Fredericton, Canada.

Erickson T M, Cavosie A J, Moser D E, Barker I R, Radovan H A, Wooden J. 2013. Identification and provenance determination of distally transported, Vredefort-derived shocked minerals in the Vaal River, South Africa, using SEM and SHRIMP—RG techniques. Geochimica et Cosmochimica Acta, 107: 170~188.

Erickson T M, Timms N E, Kirkland C I, Tohver E, Cavosie A J, Pearce M A, Reddy S M. 2017. Shocked monazite chronometry: Integrating microstructural and in situ isotopic age data for determining precise impact ages. Contributions to Mineralogy and Petrology, 172:11

Evans S C, Elmore R D, Dennie D, Dulin S A. 2012. Remagnetization of the Alamo Breccia, Nevada. Geological Society, London, Special Publications, 371: 145~162;

Doi: 10.1144/SP371.8.

Fahey J J. 1964. Recovery of coesite and stishovite from Coconino sandstone of Meteor Crater, Arizona. American Mineralogist, 49: 1643~1647.

Ferriere L, Morrow J R, Amgaa T, Koeberl C. 2009. Systematic study of universal-stage measurements of planar deformation features in shocked quartz: Implications for statistical significance and representation of results, Meteoritics and Planetary Science, 44(6): 925~940;

Doi: 10.1111/j.1945-5100.2009.tb00778.x

Ferriere L, Osinski G R. 2012. Shock metamorphism. In: Osinski G R and Pierazzo E. eds. Impact Cratering: Processes and Products. Chichester, UK: John Wiley & Sons, Ltd.

Flamini E, Di Martino M, Coletta A. 2019. Encyclopedic Atlas of Terrestrial Impact Craters. Switzerland: Springer: 1~606.

Folco L, Glass B P, D’orazio M, Rochette P. 2018. Australasian microtektites: impactor identification using Cr, Co and Ni ratios. Geochimica et Cosmochimica Acta, 222:550~568.

French B M, Koeberl C. 2010. The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why. Earth-Science Reviews, 98(1~2):123~170.

French B M, Mckay R M, Liu H P, Briggs D E, Witzke B J. 2018. The Decorah structure, northeastern Iowa: geology and evidence for formation by meteorite impact. Geological Society of America Bulletin, 130(11~12);

Doi: 10.1130/B31925.1

Grieve R A F,Reimold W U, Morgan J, Riller U, Pilkington M. 2008. Observations and interpretations at Vredefort, Sudbury, and Chicxulub: Towards an empirical model of terrestrial impact basin formation. Meteoritics and Planetary Science, 43: 855~882.

Gulick S P S, Christeson G L, Barton P J, Grieve R F, Morgan J, Urrutia-fucugauchi J. 2013. Geophysical characterization of the Chicxulub impact crater. Reviews of Geophysics: 51: 31~52;

Doi: 10.1002/rog.200

Hergarten S, Kenkmann T. 2015. The number of impact craters on Earth: Any room for further discoveries. Earth and Planetary Science Letter, 425:187~192.

Jourdan F, Nomade S, Wingate M T, Eroglu E, Deino A. 2019. Ultraprecise age and formation temperature of the Australasian tektites constrained by40Ar/39Ar analyses. Meteoritics and Planetary Science, 19;

Doi: 10.1111/maps.13305. 54: 2573~2591.

Keith A M, Tapanila L, Bottenberg H C. 2013. Lithologic mapping of the Alamo impact in the Reveille Range, Nevada. Journal of the Idaho Academy of Science, 49(1): 59.

Kenkmann T. 2002. Folding within seconds. Geology, 30(3):231~234.

Kring D A. 2017. Guidebook to the Geology of Barringer Meteorite Crater, Arizona (a.k.a. Meteor Crater): 2nd edition. Lunar and Planetary Institute, Houston TX: 1~270; LPI Contribution No. 2040.

Kring D A, Claeys P, Gulick S P S, Morgan J V, Collins G S. 2017. Chicxulub and the Exploration of Large Peak—Ring Impact Craters through Scientific Drilling. GSA Today, 27 (10): 4~8;

Doi: 10.1130/GSATG352A.1

Krot A N, Keil K, Scott E R D, Goodrich C A, Weisberg M K. 2007. “Classification of Meteorites”. In: Holland H D, Turekian K K. eds. Treatise on Geochemistry: 1. London: Elsevier Ltd.: 83~128; DOI:10.1016/B0-08-043751-6/01062-8. ISBN 978-0-08-043751-4

Lenauer I, Riller U. 2012. Strain fabric evolution within and near deformed igneous sheets: The Sudbury Igneous Complex, Canada. Tectonophysics, 558~559: 45 ~57;

Doi: 10.1016/j.tecto.2012.06.021

Lepaulard C, Gattacceca J, Swanson-hysell N, Quesnel Y, Demory F,Osinski G R. 2019. A Paleozoic age for the Tunnunik impact structure. Meteoritics and Planetary Science, 54:740~751.

Lowery C M, Bralower T J, Owens J D, Rodriguez-tovar F J, Jones H, Smit J, Whalen M T, Claeys P H, Farley K, Gulick S P, Morgan J V. 2018. Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature, 558:288~291;

Doi: 10.1038/s41586-018-0163-6

Maclagan E, Walton E L, Herd C D K, Dence M. 2018. Investigation of impact melt in allochthonous crater fill deposits of the Steen River impact structure, Alberta, Canada. Meteoritics and Planetary Science, 53:2285~2305.

Mazrouei S, Ghent R R, Bottke W F, Parker A H,Gernon T M. 2019. Earth and Moon impactux increased at the end of the Paleozoic. Science, 363:253~257.

Mcgregor M, Mcfarlane C R M, Spray J G. 2018. In situ LA-ICP-MS apatite and zircon U-Pb geochronology of the Nicholson Lake impact structure, Canada: shock and related thermal effects. Earth and Planetary Science Letter, 504:185~197.

Morgan J, Gulick S, Bralower T, Chenot E, Christen G, Claeys P H, Cockell C, Collins G, Coolen M, Ferrie`re L, Gebhardt C, Goto K, Jones H, Kring D, Le Ber E, Lofi J, Long X, Lowery C, Mellet C, Ocampo-torres R, Osinski G, Perez-cruz L, Pickersgill A, Poelchau M, Rae A, Rasmussen C, Rebolledo-vieyra M, Riller U, Sato H, Schmitt D, Smit J, Tikoo-schantz S, Tomioka N, Fucugauchi J U, Whalen M, Wittmann A, Yamaguchi K, Zylberman W. 2016. The formation of peak rings in large impact craters. Science, 354:878~882.

Mougel B, Moynier F, Gopel C, Koeberl C. 2017. Chromium isotope evidence in ejecta deposits for the nature of Paleoproterozoic impactors. Earth and Planetary Science Letter, 460:105~111.

Mougel B, MoynierF, Koeberl C, Wielandt D, Bizzarro M. 2019. Identification of a meteoritic component using chromium isotopic composition of impact rocks from the Lonar impact structure, India. Meteoritics and Planetary Science, 54:2592~2599.

O’Neill C, Heine C. 2005. Reconstructing the Wolfe Creek meteorite impact: deep structure of the crater and effects on target rock. Australian Journal of Earth Sciences, 52: 699~709.

Osinski G R, Ferriere L. 2016. Shatter cones: (Mis)understood? Science Advances, 2(8): e1600616; http://DOI.org/10.1126/sciadv.1600616.

Pinto J, Warme J. 2007. Alamo Event, Nevada: Crater stratigraphy and impact breccia Realms. Geological Society of America Special Papers, 437: 99~137;

Doi: 10.1130/2008.2437(07)

Plado J, Hietala S, Kreitsmann T, Lerssi J, Nenonen J, Pesonen L J. 2018. Summanen, a new meteorite impact structure in Central Finland. Meteoritics and Planetary Science, 53:2413~2426.

Pickersgill A E, Christou E, Mark D F, Lee M R, Tremblay M M, Rasmussen C, Morgan J V, Gulick S P S, Schmieder M, Bach W, Osinski G R, Simpson S L, Kring D A, Cockell C C, Collins G S, Christeson G L, Tikoo S M, Stockli D F, Ross C, Wittmann A, Swindle T D, the Expedition 364 Scientists. 2019. Six million years of hydrothermal activity at Chicxulub? [abstract 5082]. In: Large Meteorite Impacts VI, 2019, Brazil, LPI Contribution No. 2136. Lunar and Planetary Institute, Houston, TX.

Poole F G, Sandberg C A. 2015. Unusual central Nevada geologic terranes produced by Late Devonian Antler Orogeny and Alamo Impact. Geological Society of America Special Papers, 517; ISBN: 978-0-8137-2517-8;

Doi: 10.1130/9780813725178

Regan R D, Hinze W J. 1975. Gravity and magnetic investigations of Meteor crater, Arizona. Journal of Geophysical Research, 80: 776~778.

Reimold W U, Ferriere L, Deutsch A, Koeberl C. 2014. Impact controversies: Impact recognition criteria and related issues. Meteoritics and Planetary Science, 49: 723~731;

Doi: 10.1111/maps.12284.

Reimold W U, Hauser N, Crosta A P. 2018. The impact record of southwest Gondwana. In: Siegesmund S et al. eds. Geology of Southwest Gondwana. Switzerland: Springer: 677~688.

Renne P R, Arenillas I, Arz J A, Vajda V, Gilabert V, Bermudez H D. 2018. Multi-proxy record of the Chicxulub impact at the Cretaceous—Paleogene boundary from Gorgonilla Island, Colombia. Geology, 46:547~550.

Richards M A, Alvarez W, Self S, Karlstrom L, Renne P R, Manga M, Sprain C J, Smit J, Vanderkluysen L, Gibson S A. 2015. Triggering of the largest Deccan eruptions by the Chicxulub impact. GSA Bull., 127:1507~1520.

Schmidt G. 1997. Clues to the nature of the impacting bodies from platinum-group elements (Rhenium and gold) in borehole samples from the Clearwater East crater (Canada) and the Boltysh impact crater (Ukraine). Meteoritics and Planetary Science, 32(6):761~767;

Doi: 10.1111/j.1945-5100. 1997. tb01566.x

Schaller M F, Fung M K. 2018.The extraterrestrial impact evidence at the Palaeocene—Eocene boundary and sequence of environmental change on the continental shelf. Philosophical Transactions of the Royal Society A, 376:20170081.

Schmieder M, Shaulis B J, Lapen T J, Buchner E, Kring D A. 2019. In situ U-Pb analysis of shocked zircon from the Charlevoix impact structure, Quebec, Canada. Meteoritics and Planetary Science, 54:1808~1827.

Stepinski T F, Ding Wei, Vilalta R. 2012. Detecting Impact Craters in Planetary Images Using Machine Learning[OL]. Http//: www.researchgate.com; DOI:10.4018/978-1-4666-1806-0.ch008

Stewart S A. 2011. Estimates of yet-to-find impact crater population on earth. Journal of the Geological Society, London, 168(1): 1~14;

Doi: 10.1144/0016-76492010-006.

Stöffler D, Artemieva N A, Pierazzo E. 2002. Modeling the Ries—Steinheim impact event and the formation of the moldavite—strewn field. Meteoritics and Planetary Science, 37:1893~1907.

Stöffler D, Grieve R A F. 2007. Impactites: Chapter 2.11. In: Fettes D and Desmons J. eds. Metamorphic Rocks: A Classification and Glossary of Terms, Recommendations of the International Union of Geological Sciences. Cambridge: Cambridge University Press.

Tagle R and Hecht L. 2006. Geochemical identification of projectiles in impact rocks. Meteoritics and Planetary Science, 41(11): 1721~1735.

Visible Earth. 2021. Data online retrieved on 2021-03-31 from https://visibleearth.nasa.gov/images/82517/dune-movement-around-aorounga. NASA.

Walton E L, Sharp T G, Hu J, Tschauner O. 2018. Investigating the response of biotite to impact metamorphism: Examples from the Steen River impact structure, Canada[J][OL]. Meteoritics and Planetary Science, 53(1): 75~92; Http://dx.DOI.org/10.1111/maps.13011

Wang Guangxu, Zhan Renbin, Percival I G. 2019. The end Ordovician mass extinction: A single-pulse event? Earth-Science Reviews, 192:15~33.

Wang Ruobai, He Zhaoxiong, Wan Wenni, Gao Peizhi, Li Airong. 2004&. A special landform: Dish-shaped pit groups and their genesis. Geological Review,50(4):391~396.

Watters T R, Solomon S C, Robinson M S, Head J W, Andre S L, Hauck II S A, Murchie S L. 2009. The tectonics of Mercury: The view after MESSENGER’s first flyby. Earth and Planetary Science Letters, 285: 283~296.

Weisberg M K, McCoy T J, Krot A N. 2006. Systematics and evaluation of meteorite classification. In: Lauretta D S and McSween H Y Jr. eds. Meteorites and the Early Solar System II. Tucson: University of Arizona Press: 19~52.

Wilshire H, Howard K, Offield T. 1971. Impact breccias in carbonate rocks, Sierra Madera, Texas. Geological Society of America Bulletin, 82: 1009~1018.

Yun Jinbiao,Ning Fei,Song Haiming. 2019&. Ring structure of northern Pishan in the southern Xinjiang: Record from meteorite impact. Geological Review,65(1):16~25.

猜你喜欢
陨石坑陨石石英
南极为何多陨石
石英及方石英的碱浸动力学研究
科学家在黑龙江新发现陨石坑
陨石坑里藏着什么
陨石猎人
关于宽带石英滤波器配套谐振器的选用
陨石
幸运陨石
严重楔状缺损石英纤维桩树脂修复临床分析
石英云母片岩力学性质各向异性的模拟方法探讨