◆马艳娟 王和宁
(1.国家计算机网络与信息安全管理中心青海分中心 青海 810000;2.青海省海东市公安局 青海 810600)
狭义上理解,物联网是指物-物互联的网络,即利用信息感知设备(例如射频识别RFID、GPS、激光扫描装置、红外感应装置等)获取物品数据和信息,以互联网为媒介,实现物品的智能识别、定位、跟踪、监控和管理[1]。广义上说,物联网不局限于物-物互联,而是将一切事物数字化、网络化,在物-物之间、人-物之间、人-环境之间实现信息空间与物理空间的充分融合和高效信息交换[2]。物联网的发展和技术更新既带动了经济发展,方便了我们的生活,也存在漏洞、网络攻击、数据安全等亟待解决的多种威胁[3]。因此,本文对物联网信息安全威胁与安全防护策略的实现进行了分析。
物联网一般采用三层架构:由传感器、RFID 等采集数据的设备构成感知层;由信息接入、数据汇聚和核心交换等网络设备构成网络层;由数据分析、计算等管理功能抽象的应用层[4]。三层架构实现了物联网从信息采集、信息传输到信息处理的完整过程,但其面对的信息安全威胁也与三层架构有着密切关系,下面围绕这三层架构进行分析。
物联网之所以会面对各种安全威胁,主要原因是系统中存在漏洞,攻击者利用这些漏洞进行攻击和非法入侵,而为了达到攻击目的,攻击者常常借助病毒、木马、恶意软件等手段[5]。例如攻击者使用僵尸病毒,通过自动化脚本组合出物联网终端节点用户名和密码,从而篡改设备配置,使之成为僵尸节点。随着越来越多的终端节点设备被破解,庞大的僵尸网络逐渐形成。根据物联网三层结构特点,各层常见信息安全威胁如图1所示。
图1 物联网信息安全常见威胁
根据物联网架构层次特点及威胁来源,信息安全需求主要包括以下几方面:第一,节点安全需求。如图1 显示的情况,节点自身易受到各种攻击,譬如物理攻击、恶意注入、篡改假冒等,因而需加强节点防护措施。第二,数据安全需求。数据采集是物联网感知层的主要功能,攻击者通过窃听、篡改、伪造数据方式进行攻击,所以需对采集的数据加以保护。第三,网络安全服务需求。数据传输是网络层的重要功能,为避免网络拥塞和拒绝服务,故有安全服务需求。第四,轻量高效的安全需求。通常,物联网节点设备的计算能力、存储容量、电池电量等有一定限制,不适合运行复杂、能耗高的安全系统,所以轻量化、能耗低、效率高是基本需求。
第一,感知层安全防护策略。感知层包含各类传感器、RFID、摄像头及多种智能设备,这些设备大小、功能各异,面对的安全威胁也多种多样,故需从硬件、接入、操作系统、应用等多个环节入手,确保硬件安全、接入安全、操作系统安全和应用安全,保证数据不被篡改和未授权获取,防范非法侵入和攻击,保证操作系统升级更新过程安全可控,应用软件行为受到监控。
第二,网络层安全防护策略。物联网采用无线局域网、窄带物联网络、蜂窝移动网络、无线自组网络等多种接入技术,面对的安全威胁也复杂多样,需从身份认证、数据完整性保护、数据传输加密操作、网络通信安全感知等方面进行加强,包括引入身份认证机制、强化终端数据完整性保护、禁止明文传输(即加密处理)、跟踪监控通信网络行为等策略。
第三,应用层安全防护策略。物联网内会产生海量数据,配置大量服务资源,为避免攻克一点而全网崩溃的局面的出现,应采用去中心管理系统,即分布式数据管理系统,同时配置系统加固、漏洞检测、安全审计等功能,强化安全防护能力。对于采用云计算的应用,为防范各种攻击行为,可采取设置安全基线、自动检测、不定期扫描漏洞和系统更新、数据统计分析、安装防病毒软件等策略,并采取业务分级保护措施。
结合物联网信息安全防护策略,构建应用于多种场景、不同构架层次的防护框架,如图2所示。
图2 物联网信息安全防护框架
感知层安全防护的重点是保护终端设备安全,为此根据防护策略需采取多种防护技术,防御攻击者借助僵尸病毒发起攻击是关键环节。网络层安全防护的重心是保障数据传输安全,其中核心是保障通信的安全,保护通信可采取通信加密和认证的方式。应用层安全防护的重点是保护通信服务器安全,为此可采取异常流量监测和通信协议深度包检测的方式,发现异常及时报警,以防范攻击规模扩大。
2.3.1 感知层信息安全防护策略的实现
感知层内分布着大量节点终端设备,攻击者主要通过端口扫描和暴力破解方式进行攻击,为实现感知层信息安全防护策略,可从加强端口扫描检测和暴力破解检测做起。检测端口扫描可部署入侵检测系统(IDS),其原理是对节点终端设备收集的数据进行分析,从中发现攻击信息,识别攻击行为,进而判断是否存在入侵行为,有则立即采取措施避免攻击扩大。确定入侵行为后向防火墙报警,防火墙实时阻断端口扫描数据包。
防御暴力破解攻击可利用防火墙工具,通过限制相关服务的登录次数来防御,因为暴力破解需通过大量尝试获得正确的登录用户名和密码,设置登录失败次数的阈值(例如3 次),防火墙就会自动屏蔽攻击者的IP 地址。为避免合法用户因输入错误而被防火墙屏蔽,可采取设置白名单的措施。
2.3.2 网络层信息安全防护策略的实现
网络层信息安全防护可采取通信加密和身份认证策略。现代加密算法有对称加密算法和非对称加密算法之分,前者加密和解密使用同一密钥,后者加密和解密使用不同的密钥。对称加密算法的优点是加解密快速,但用户数量过多时密钥管理负担重,AES、DES 或3DES是典型的对称加密算法。非对称加密算法复杂,安全性高,但相对对称加密算法来说加解密速度比较慢,RSA 是典型的非对称加密算法。
身份认证策略也是基于密码学理论实现的,主要基于数字证书或公钥、身份标识认证,例如基于数字证书的身份认证由发证机构(CA)用私钥对身份信息(用户名、公钥)、证书机构名称、证书有效期进行数字签名,再加上用户身份信息就形成了数字证书。
2.3.3 应用层信息安全防护策略的实现
应用层信息安全防护主要是检测深度包和监测异常流量。深度包检测是对通信协议进行解析和访问控制,拒绝不符合通信协议及特征异常的数据包。监测通信流量的通信系统,一旦发现异常数据包,即报警处理。
通常,物联网由感知层、网络层和应用层三层架构组成,各层具有不同的功能与特点,面对的安全威胁也不尽相同。为应对多种安全威胁,提出了物联网节点、数据、网络安全服务、轻量高效等安全需求。针对物联网架构不同层次安全威胁,各层次有其独特的安全防护策略。为实现这些安全防护策略,需构建安全防护框架,并在框架指导下确立各层次安全防护策略的实现方法。