张靖祎, 彭头平, 范蔚茗, 董晓涵, 刘兵兵, 高剑峰, 梁细荣, 陈林丽
缅甸密支那早白垩世钾玄质岩石成因及其大地构造意义
张靖祎1, 2, 彭头平1, 3*, 范蔚茗3, 4, 董晓涵1, 2, 刘兵兵1, 2, 高剑峰5, 梁细荣1, 陈林丽1
(1.中国科学院 广州地球化学研究所, 同位素地球化学国家重点实验室, 广东 广州 510640; 2.中国科学院大学, 北京 100049; 3.中国科学院 青藏高原地球科学卓越创新中心, 北京 100101; 4.中国科学院 青藏高原研究所, 北京 100101; 5.中国科学院 地球化学研究所, 矿床地球化学国家重点实验室, 贵州 贵阳 550081)
缅甸地处喜马拉雅造山带东段, 紧临喜马拉雅东构造结。作为喜马拉雅造山过程深部动力学在浅部的响应, 该区发育了大量晚中生代‒新生代岩浆岩, 这些岩浆岩是揭示新特提斯演化过程及缅甸不同地块与青藏高原内部各块体之间大地构造属性的重要窗口。但是, 目前该区域研究程度非常低, 特别是东缅密支那地区几乎是空白。本文首次报道缅甸密支那地区的一套二长岩, 锆石U-Pb年龄表明其形成时代为早白垩世(~130 Ma)。岩石地球化学特征显示, 这套岩石具有高的SiO2(58.92%~63.73%)、全碱(Na2O+K2O=7.94%~10.14%)、K2O含量(3.88%~6.14%)、K2O/Na2O值(>1), 以及富集LILE、LREE和亏损Nb-Ta-Ti特征, 类似典型的钾玄质岩石。结合其Sr-Nd同位素组成以及低Sr/Y、La/Yb值和高Y、Yb含量, 暗示密支那钾玄质二长岩来源于受俯冲流体/溶体交代的含金云母岩石圈地幔。综合区域上研究资料, 认为密支那钾玄质岩浆形成于洋内俯冲的岛弧环境, 是俯冲板块回撤或者断离后软流圈上涌导致富集岩石圈地幔部分熔融的产物。因此, 大地构造上, 密支那洋并不是青藏高原班公湖‒怒江洋的南延, 而是新特提斯洋的重要组成部分。
早白垩世; 钾玄质岩石; 交代富集岩石圈地幔; 洋内弧; 密支那
钾玄质岩石(shoshonitic rocks)是一类具有高碱(K2O+Na2O>5%)、高K2O/Na2O值(>0.5)、低TiO2(<1.3%)、Al2O3含量高且变化范围大(9%~20%)、强烈富集大离子亲石元素(LILE)和轻稀土元素(LREE)的富碱高钾岩浆岩, 包括火山岩(橄榄粒玄岩、钾玄岩、粗面粒玄岩和橄玄安粗岩等)以及对应的浅成和深成侵入岩(Morrison, 1980)。其初始的定义为钾玄系列(shoshonite)火山岩, 是Iddings (1895)在研究美国黄石公园Shoshone河地区中基性火山岩时发现了一套由粗玄岩(absarokite; SiO2=45%~52%)、钾玄岩(shoshonite; SiO2=52%~57%)和安粗岩(banakite; SiO2=57%~63%)组成的岩石而命名的。后来随着研究的不断深入, 一些学者将酸性火成岩中具有钾玄系列岩石特征的相关岩石也归属于钾玄质系列(Duchesne et al., 1998; 马昌前等, 1999; Jiang et al., 2002; 王建等, 2003; Bitencourt and Nardi, 2004; Lu et al., 2013), 包括了高硅(SiO2>63%)部分的火山岩和侵入岩, 如钾质‒超钾质英安岩和流纹岩、石英二长岩、石英正长岩、正长岩、辉石正长岩、角闪正长岩等, 使得钾玄岩成为包含了火山岩和侵入岩在内的独立完整岩浆岩系列(Duchesne et al., 1998; 李献华等, 1999, 2000, 2001; 马昌前等, 1999; Jiang et al., 2002; 王建等, 2003; Bitencourt and Nardi, 2004; 贺振宇等, 2008; 章邦桐等, 2011; Lu et al., 2013)。钾玄岩可以形成于各种构造背景, 如大陆弧、后碰撞弧、初始洋弧、晚期的洋弧以及板内环境(Duchesne et al., 1998; Li, 2000; 李献华等, 2000, 2001; Jiang et al., 2002; Bitencourt and Nardi, 2004; Williams et al., 2004; Chung et al., 2005; Wang et al., 2006; Gao et al., 2007; Zhao et al., 2009; Chen et al., 2010, 2012; Guo et al., 2013; Liu et al., 2014; Li et al., 2018, 2019; 2020)。但现有研究显示, 它们大部分形成于俯冲‒碰撞有关的构造背景, 主要起源于与俯冲作用有关的富钾和LILE的交代地幔(Foley and Peccerillo, 1992; Turner et al., 1996; Lu et al., 2013)。然而, 关于源区钾的富集机制是与俯冲洋壳沉积物有关(Turner et al., 1996; Miller et al., 1999; Williams et al., 2004), 还是俯冲的大陆地壳物质输入导致的(Ding et al., 2003; Gao et al., 2007; Zhao et al., 2009), 目前还存在争议。
缅甸地处喜马拉雅造山带的东段, 紧临喜马拉雅东构造结(图1)。作为喜马拉雅造山过程深部动力学在浅部的响应, 该区发育了大量晚中生代‒新生代岩浆岩(Mitchell, 1993; Acharyya, 2007; Mitchell et al., 2007; Searle et al., 2007; Mitchell et al., 2012)。这些岩浆岩作为特提斯演化的产物, 记录了特提斯东段不同洋盆的演化信息, 是研究青藏高原特提斯构造域大陆/地块裂解和聚合过程等深部动力学的重要窗口, 也是揭示中或新特提斯演化过程及缅甸不同地块与青藏高原内部各块体之间大地构造属性的物质记录。但是, 由于缅甸境内, 特别是密支那地区, 长期以来因政治因素很难开展相关的地质调查和研究, 因此, 整个缅甸的基础地质研究显得非常薄弱。近5年在参与基金重大项目“喜马拉雅山构造结碰撞变形过程”之二级重点课题“东西构造结大陆岩石圈俯冲的岩浆响应”的研究中, 通过与缅甸地质学会和密支那大学地质系同仁开展国际合作, 针对缅甸境内中‒新生代岩浆岩开展了系统的调查和相关的研究, 并首次报道密支那新识别的早白垩世钾玄质二长岩, 给出高精度的锆石U-Pb年代学结果、全岩元素和Sr-Nd同位素数据, 并探讨了该区钾玄质二长岩的成因及其相关的岩石大地构造意义, 为区域特提斯演化的动力学过程提供了重要的约束。
缅甸位于东南亚地区, 处于阿尔卑斯‒喜马拉雅造山带与印度尼西亚弧体系的交界位置。阿尔卑斯‒喜马拉雅造山带在喜马拉雅东构造结位置发生弯曲, 转为南北走向, 并且向南一直延伸, 经过印‒缅山脉, 继续向南至安达曼群岛和尼科巴群岛、苏门答腊, 直至印度尼西亚的巽他和班达弧。大地构造上, 从西向东可以划分为四个大的构造单元: 印‒缅山脉、西缅地块、密支那‒抹谷变质带和属于滇缅泰马地块一部分的掸邦高原(Searle et al., 2007, 2017)。其中印‒缅山脉地区发育有白垩纪蛇绿岩, 典型的古灵庙蛇绿岩被认为是青藏高原雅鲁藏布江缝合带在东南亚地区的南延(Liu et al., 2016a, 2016b), 同时该地区还发育有三叠纪的浊积岩、片岩、白垩纪的混杂堆积岩, 新生代的复理石和磨拉石沉积(Searle et al., 2007, 2017)。西缅地块主要被巨厚的新生代沉积所覆盖, 盆地内呈南北向线状分布有大量的火山口湖和破火山锥, 主要为第四纪火山活动产物(Searle et al., 2007)。新生代沉积地层之下, 为含菊石化石的白垩纪页岩、三叠纪浊积岩, 上述这些地层共同受中生代‒新生代火山岩浆作用的影响(Mitchell, 1993; Mitchell et al., 2007)。密支那‒抹谷变质带以长1200 km的大型右旋实皆走滑断裂与掸邦高原相隔, 区内主要发育原认为是早白垩世的超基性岩和相关的高级变质岩(Mitchell, 1993; Mitchell et al., 2007)。变质带包括北部的帕敢玉矿带、杰沙‒甘高片岩带、太公‒密支那片岩带以及南部的抹谷高级变质带(Mitchell, 2018)。帕敢玉矿带主要由高压变质岩石组成, 包括不同类型的硬玉、角闪岩和蛇纹石化橄榄岩(Shi et al., 2008; Franz et al., 2014), 目前大量玉矿年代学研究显示其原岩为晚侏罗世, 经历过多期次的交代变质作用(Shi et al., 2003, 2008; 丘志力等, 2008; Qi et al., 2013; Yui et al., 2013; 祁敏等, 2014; 蔡诗诗和张恩, 2018)。杰沙‒甘高片岩带主要由浅变质的岩石组成, 如石英岩、蓝晶石片岩、石英云母石榴石片岩(Mitchell et al., 2007)。太公‒密支那片岩带由低变质的云母片岩、绿泥石片岩、滑石片岩组成, 局部被浊积岩覆盖(Searle et al., 2007)。在密支那地区公文山脉(Kumon Range)还发现有榴辉岩相的高压变质岩(Enami et al., 2012)。密支那地区与超基性岩相伴生的中基性岩‒酸性岩蛇绿岩的年代学资料显示, 其形成时代为侏罗纪(Yang et al., 2012b; Liu et al., 2016a, 2016b)。南部抹谷变质带主要以大理岩和相关的泥质麻粒岩为主, 大理岩中产红宝石, 少量大的超基性岩体被认为是密支那超基性岩的南延, 零星分布在区内(Mitchell et al., 2007)。掸邦高原发育与周边板块有明显差异的古生代地层序列(发生了轻微变质的浊积岩序列), 古生代地层之上分别为石炭系‒下二叠统冰川陆源碎屑混杂岩和中‒上二叠统石灰岩, 各地层之间均呈角度不整合(Gardiner et al., 2016; Searle et al., 2017)。中‒新生代的岩浆岩, 特别是花岗质岩石大面积分布在中央盆地的北部文多‒班茂地区、密支那和掸邦高原及其以南的沿海地区(Searle et al., 2007)。
IBR. 印‒缅山脉; WBB. 西缅地块; MMB. 密支那‒抹谷变质带; BS-STB. 保山‒掸邦高原地块; IYSZ. 印度斯‒雅鲁藏布江缝合带; SGF. 实皆断裂; GDS. 冈底斯主俯冲增生造山带; NBS. 东构造结; STD. 藏南拆离系; MCT. 主中央冲断裂; MBT. 主边冲断裂; SSF. 掸邦陡崖断裂系; JL-GLGF. 嘉黎‒高黎贡断裂; LCF. 澜沧江断裂; TPF. 三塔断裂; MPF. 眉萍断裂; JMU. 帕敢翡翠矿带; ARFB. 阿萨姆‒若开前陆盆地; CVA. 缅甸中央火山弧; CBB. 察隅‒波密变质带; TMSZ. 太公‒密支那变质带; CMG. Chuangmagyi浊积岩; SLP. 西隆高原。
本次研究的4块新鲜二长质岩石样品采自缅甸密支那Wayan 地区蛇绿岩带内(25°21′57.43″N; 97°30′10.79″E)(图2a), 对所有样品进行岩相学研究及全岩主、微量元素含量测定, 并对其中1块代表性样品(16MF-58A)进行了锆石U-Pb年代学研究, 2块样品开展了全岩Sr-Nd同位素分析。
矿物组成显示, 3个样品为石英二长岩, 另一个样品为石英二长闪长岩(图3)。样品为中粒结构, 块状构造。除去表面风化部分后, 样品内部未见到形变(图2c), 矿物排布无明显定向。石英二长岩样品主要由钾长石(37%~38%)、斜长石(45%~48%)、石英(8%~10%)、斜方辉石(3%~4%)、单斜辉石(~1%)等组成, 同时含有少量锆石、钛铁矿、磁铁矿等副矿物。石英二长闪长岩样品的主要矿物包括钾长石(~25%)、斜长石(~55%)、石英(~7%)、斜方辉石(~6%)、单斜辉石(~4%), 同时含有少量锆石、钛铁矿、磁铁矿等副矿物。
锆石分选采用传统的重液相和磁选方法, 然后在双目镜下挑选无包体、透明干净、自形程度好的颗粒, 将代表性的锆石颗粒制成树脂靶。将制好的靶面抛光至少1/3锆石截面处, 并进行反射光和透射光照相, 然后开展锆石阴极发光图像(CL图像)拍摄, CL照相使用仪器为中国科学院广州地球化学研究所同位素国家重点实验室EPMA-JXA-8100扫描电子显微镜匹配Gatan Mono CL3型阴极发光系统。挑选出具有较好韵律环带的锆石颗粒进行U-Pb同位素测年, 测年工作在中国科学院青藏高原研究所大陆碰撞与高原隆升重点实验室利用激光剥蚀法(LA-ICP-MS)完成。激光剥蚀系统为193 nm, GeoLas Plus, ICP-MS为Agilent 7500a。U-Pb同位素定年中采用锆石标准91500(TIMS测定206Pb/238U=1062.4± 0.4 Ma(Wiedenbeck et al., 2004))作外标进行同位素分馏校正, 每8点个样品点分析一次91500标样。普通Pb校正参照Andersen (2002), 详细分析流程参考Liu et al. (2017)。数据处理采用软件ICPMSDataCal (Liu et al., 2010b, 2010c), 锆石U-Pb年龄计算和谐和图制作均采用软件ISOPLOT 3.0(Ludwig, 2003)完成。具体的分析结果见表1。
全岩主、微量元素和Sr-Nd同位素组成分析测试在中国科学院广州地球化学研究所同位素国家重点实验室完成。其中主量元素采用XRF法测试; 微量元素利用Perkin-Elmer ELAN 6000 ICP-MS测试, 标样为BCR-1, 大部分元素的分析精度优于3%, 具体的分析流程参阅刘颖等(1996); Sr-Nd同位素组成在VG354质谱仪上完成, NBS987标样87Sr/86Sr= 0.71026512, La Jolla143Nd/144Nd=0.51186210,86Sr/87Sr= 0.1194,146Nd/144Nd=0.7219。87Rb/86Sr、147Sm/144Nd比值用87Sr/86Sr=0.1194和146Nd/144Nd=0.7219进行分馏质量校正, 分析流程参考Liang et al. (2000)。
图2 密支那二长质岩石采样点地质图(a;修改自Liu et al., 2016a)及野外照片(b、c)
Q. 石英; A. 碱性长石; P. 斜长石。
缅甸密支那二长质岩石中大部分锆石呈黄色至棕色调的自形晶体, 长柱状或短柱状, 颗粒长度介于100~250 μm之间, 长宽比介于1∶1至3∶1之间(图4)。根据阴极发光(CL)图像上内部结构特征, 锆石可分为两类: 一类为内部结构简单且没有内核, 其CL图像呈现岩浆锆石常见的振荡环带结构(Hoskin and Schaltegger, 2003); 另一类结构略微复杂, 其中心部位常常含不规则的、具有熔蚀结构的内核, CL图像中内核呈现与外部明亮的环状外边不同的图案。
表1 密支那二长质岩石(16MF-58A)锆石LA-ICP-MS U-Pb定年数据表
图4 密支那二长质岩石锆石U-Pb年龄谐和图(a)及代表性锆石阴极发光图片(b)
本次测试共获得30个有效测试点, 所有测点均位于锆石边部。锆石的Th含量为87.9~834 μg/g, U为151~960 μg/g, Th/U值变化于0.4~1.0之间, 且绝大部分锆石具岩浆成因高Th/U值特征(表1)。所有分析点给出了206Pb/238U年龄范围为124~147 Ma, 在谐和曲线图上数据点成两组分布(图4a), 其中20个年轻的点给出了128.9±1.0 Ma的206Pb/238U加权平均年龄(MSWD=1.4), 代表了二长质岩石的形成时代; 其他10个略老的分析点获得了141.3±1.9 Ma的206Pb/238U加权平均年龄(MSWD=1.3), 可能是岩浆作用过程捕获的锆石, 与锆石CL图像呈现两种特征类型相对应(图4)。
密支那二长质岩石全岩主、微量元素测试结果见表2。4件样品SiO2含量为58.92%~63.73%, 具有低Mg#值(33~42)、高全碱含量(Na2O+K2O=7.94%~ 10.14%), 以及明显高K2O(3.88%~6.14%)、Al2O3(16.88%~17.46%)和K2O/Na2O值(0.96~1.55)、低TiO2(0.53%~0.61%)和全铁(Fe2O3T=3.96%~6.16%)特征(表2)。在TAS图解中显示为碱性的石英二长质岩石成分(图5), 在K2O-SiO2和K2O-Na2O图解中, 都落在钾玄质区域(图5)。
样品REE总量为78.0~91.4 μg/g。在球粒陨石标准化稀土元素配分图解中, 样品具有轻稀土元素明显富集, 轻重稀土元素中等分馏((La/Yb)N=4.1~5.7), 弱的Eu负异常(Eu/Eu*=0.78~0.88)(图6a)特征。在原始地幔标准化微量元素蛛网图中, 样品富集大离子亲石元素(Rb、U等), 亏损Nb、Ta、Ti等高场强元素(图6b)。与密支那蛇绿岩(Yang et al., 2012b)相比, 这些钾玄质岩石显示出明显的稀土和微量元素富集特征(图6b)。
表2 密支那二长质岩石全岩主量(%)、微量元素(μg/g)分析结果
续表2:
数据来源: 密支那蛇绿岩组合数据来自Yang et al., 2012b。
两个代表性样品Sr-Nd同位素测试结果见表3, 结果显示, 样品具有低87Sr/86Sr(0.704388~0.705084)和高143Nd/144Nd值(0.512933~0.512949), 对应(87Sr/86Si)i值为0.703613、0.703661 ,Nd()值为+6.9~+7.2 (=130 Ma), 二阶段模式年龄为0.34~0.36 Ga。与密支那蛇绿岩相比(Yang et al., 2012b), 其Sr-Nd同位素组成具有更加亏损的特征(图7)。
样品地球化学特征显示, 缅甸密支那地区二长质岩石在主量元素上, 具有高的全碱(Na2O+K2O= 7.94%~10.14%)、K2O(3.88%~6.08%)、Al2O3(16.88%~17.46%)和K2O/Na2O值(0.96~1.55), 以及低的TiO2(0.53%~0.61%)和全铁(Fe2O3T=3.96%~6.16%)的特征, 在K2O-Na2O图解中落在碱性区域, 与典型的钾玄质岩石特征非常一致(Morrison, 1980; 贾小辉等, 2017)。微量元素上, 它们明显富集LILE、LREE, 亏损Nb-Ta-Ti高场强元素, 与青藏高原新生代高硅钾玄质岩石相似(Wang et al., 2012; Lu et al., 2013; Huang et al., 2015)。因此, 缅甸密支那地区二长质岩石应该归类为钾玄质岩石。
数据来源: 密支那蛇绿岩组合数据来自Yang et al. (2012b); 球粒陨石、原始地幔、OIB、E-MORB、N-MORB数据来自Sun and Mcdonough (1989)。
表3 密支那二长质岩石Sr-Nd同位素组成
数据来源: 密支那蛇绿岩组合数据来自Yang et al. (2012b); 西缅地块白垩纪‒第四纪弧岩浆岩数据来自Mitchell et al. (2012); 冈底斯基性岩浆数据来自Ji et al. (2016); 大洋沉积物数据来自Chauvel et al. (2008)。
已有研究表明, 低硅(SiO2<63%)钾玄质岩石主要起源于岩石圈地幔, 其富钾的特征可能是: ①石榴橄榄岩地幔部分熔融或者其分离结晶的产物(O’Hara and Yoder, 1967); ②幔源岩浆地壳混染或与壳源岩浆混合的结果(Benito et al., 1999; Di Battistini et al., 2001; Hebert et al., 2014); ③幔源岩浆纵向分带富集而成(Harris and Middlemost, 1970); ④来自含金云母的交代岩石圈地幔的部分熔融(Nelson, 1992; Turner et al., 1996; Schiano et al., 2004)。但是, 对于高硅(SiO2>63%)钾玄质岩石的起源和成因, 虽然现有大部分研究显示为地幔起源(Huang et al., 2010; Wang et al., 2012; Lu et al., 2013), 但是也有部分学者认为可能是壳源的(Conceicao and Green, 2004; Yang et al., 2012a)。如Wyllie (1977)基于相平衡实验研究和岩相学对比后指出, 加厚的陆壳部分熔融形成的岩浆为粗面岩(正长岩), 与高硅钾玄质岩石类似, 而不是花岗岩; 邓晋福等(1996)依据岩石相平衡理论, 认同加厚的陆壳(深度大于50~60 km)岩石部分熔融可以形成钾玄质(正长岩)岩浆; 一些高压实验(压力为 1.3~2.0 GPa)也证实, 长英质岩石的高压部分熔融可以获得高钾的硅酸岩浆(Huang and Wyllie, 1981; Patino Douce and Johnston, 1991; Skjerlie and Johnston, 1993, 1996)。这些地壳起源的高硅钾玄质岩石都无一例外的要求其源区熔融的深度较大, 必须是加厚的地壳, 深度至少达50~ 60 km(Huang and Wyllie, 1981; Johannes and Holtz, 1990; 邓晋福等, 1996)。
缅甸密支那高硅(SiO2>63%)钾玄质岩石具有明显低Sr/Y值(20.2~20.3)和La/Yb值(5.69~6.99)、高Y(18.4~18.8 μg/g)和Yb(2.09~2.16 μg/g)含量, 但不同于加厚下地壳起源的岩浆, 由于其源区具石榴石的分离结晶导致熔体具有埃达克岩特征(Xu et al., 2002; Wang et al., 2006)。而且样品负Eu异常特征也说明岩浆源区存在一定量的斜长石分离结晶, 与加厚下地壳起源(无Eu负异常; Xu et al., 2002; Wang et al., 2006)不一致。因此, 密支那高硅钾玄质岩石不可能起源于加厚下地壳(Wyllie, 1977; 邓晋福等, 1996), 而应该是源于地幔。考虑到密支那钾玄质岩石中低硅(SiO2<63%)样品具有低Sr/Y值(28.72~35.1)和La/Yb(6.97~7.97)值、高HREE(Y=15.9~18.7 μg/g, Yb=1.57~1.97 μg/g)含量, 反应其岩浆的起源不是石榴石相岩石圈地幔, 而是相对浅部的尖晶石相地幔源区。此外, 基于亏损的Sr-Nd同位素组成(图7)以及富集LILE和LREE的特征, 密支那钾玄质岩石也不可能是幔源岩浆地壳混染或者壳幔混合的结果。结合密支那钾玄质岩石特别是低硅(<63%)样品高Nb/Ta值(16.4~16.7; Sun and Mcdonough, 1989)、富集LILE、LREE和亏损Nb-Ta-Ti的特征, 说明岩浆源于受俯冲流体交代为主的岩石圈地幔, 而不是OIB和MORB型地幔源区(Hawkesworth, 1993; Turner et al., 1996)。由于密支那钾玄质岩石具有高的Rb/Sr值(0.14~0.36)、缺乏中稀土元素(MREE)的异常的特征, 其源区应该是含金云母的交代的岩石圈地幔(Nelson, 1992; Turner et al., 1996; Schiano et al., 2004; Coban et al., 2019), 而不是含角闪石的富集地幔(Ge et al., 2002)。因为, 金云母更富集K、Sr、Ba 和Rb, 但具有略为低的REE、HFSE 和Th 含量(Green and Fallon, 1998)。考虑到大洋沉积物中富集Th和LREE, 且Th在流体中不易迁移, Rb、Ba、U和Pb是流体容易迁移的元素(Hochstaedter et al., 2001; Kessel et al., 2005), 而密支那钾玄质岩石显示明显富集的LILE、LREE、Rb、Ba、U和Pb元素, 以及相对较高的Ba/La(32.9~44.9)值和较低的Th/Nb值(1.03~1.33)特征, 反应其地幔源区除了受流体作用之外, 还受到少量的沉积物溶体的交代作用(Hawkesworth, 1993; Pearce and Peate, 1995; Kessel et al., 2005)。近年来藏南超钾质岩石含金云母地幔包体的发现, 以及元素和同位素研究和模拟, 均证实了含金云母的地幔橄榄岩在浅部尖晶石相条件下部分熔融可以形成钾质和超钾质岩浆(Liu et al., 2011)。因此, 密支那早白垩世钾玄质岩石源于受俯冲流体/溶体交代的含金云母的岩石圈地幔部分熔融, 岩浆演化过程中存在橄榄石、辉石、长石和磁钛铁矿的分离结晶。
已有的密支那蛇绿岩中基性‒中酸性岩石锆石U-Pb年代学研究结果显示, 该区蛇绿岩不是前人认为的属于早白垩世(130~120 Ma; Mitchell, 1993; Shi et al., 2008), 而应该形成于侏罗纪(180~165 Ma; Yang et al., 2012b; Liu et al., 2016a, 2016b), 时代上与班公湖‒怒江带蛇绿岩(180~165 Ma; Yang et al., 2012b; Liu et al., 2016a, 2016b)相对应。对蛇绿岩中超基性岩进一步研究发现, 密支那蛇绿岩属于俯冲交代(SSZ)型蛇绿岩, 而缅甸西部的印缅山脉的蛇绿岩主要以洋中脊(MOR)型为主, 有少量的水化熔融的印迹(Liu et al., 2016b)。与雅鲁藏布主要以SSZ型为主(Liu et al., 2010a; Niu et al., 2017)、且形成于靠近亚洲大陆边缘海盆的蛇绿岩(吴福元等, 2014)相比, 印‒缅山脉蛇绿岩可能并不是简单的雅鲁藏布蛇绿岩的南延。同样地, 基于密支那蛇绿岩以及其他地区的研究新进展(课题组未发表数据), 缅甸东部密支那蛇绿岩可能也不是青藏高原内部班‒怒带蛇绿岩的南延。因此, 缅甸境内蛇绿岩所代表的洋盆演化要比青藏高原内部的蛇绿岩更复杂。
尽管如此, 归纳分析现有的资料依然可以为密支那洋的构造演化提供重要约束。如, 在印多吉湖(Indawgyi Lake)蛇绿岩中获得辉长岩锆石U-Pb年龄约为184 Ma(课题组未发表的数据), 且其超基性岩地球化学与密支那橄榄岩一致(魏超等, 2018), 表明密支那蛇绿岩向西南延伸与印多吉湖蛇绿岩相连。而印多吉湖北部紧邻帕敢翡翠矿区, 且翡翠玉主要是以脉状产出于橄榄岩中(施光海等, 2001; Shi et al., 2003, 2008, 2014), 属于大洋俯冲过程交代变质形成的玉石(Shi et al., 2003, 2008), 来自翡翠玉中的锆石U-Pb年龄结果显示很宽的变化范围, 其中一组老的年龄(175~160 Ma)与密支那蛇绿岩时代一致(图8; Shi et al., 2008; Yui et al., 2013; 祁敏等, 2014)。因此, 帕敢矿区蛇绿岩所代表的洋盆在构造属性上也是密支那洋盆的一部分。综合缅甸帕敢矿区硬玉岩U-Pb年代学可见, 其年龄主要分为三组: 175~130 Ma、~120 Ma和90~70 Ma(图8)。由于大部分锆石年龄反应的是洋壳板片俯冲交代变质的时间(Shi et al., 2003, 2008;丘志力等, 2008; Qi et al., 2013; Yui et al., 2013; 祁敏等, 2014; 蔡诗诗和张恩, 2018), 因此密支那洋至少到70 Ma还存在洋壳板片的俯冲作用。此外, 该区大洋俯冲交代变质事件还得到了矿区变质矿物蓝闪石和角闪石的Ar-Ar热年代学的证实(~150 Ma、135 Ma、124 Ma和97 Ma), 反应了多期次俯冲有关的高压变质作用(Qi et al., 2013; Shi et al., 2014)。特别是早白垩世(135~124 Ma)硬玉岩的形成时代(Qi et al., 2013), 暗示该区存在早白垩世的深俯冲作用。
数据来源: 硬玉中锆石年龄数据来自Shi et al. (2008, 2003)、Qi et al. (2013)、Yui et al. (2013)。
本次研究在密支那蛇绿岩带中新发现的早白垩世钾玄质岩石, 其地球化学特征上显示弧岩浆作用的印迹(图9), 而且它们低Ce/Yb值特征与斐济和波多黎各洋弧钾玄质岩石非常一致(图9d), 而明显不同于大陆弧或者弧后的钾玄质岩石以及我国西藏和阿尔卑斯的大陆型钾玄质岩石(Gill et al., 2004), 说明该区早白垩世时期的岩浆‒交代变质作用主要发生在洋弧的构造背景。
底图来源: a 据Defant and Drummond (1993); b据Pearce and Peate (1995); c据Wood (1980); d据Gill et al. (2004)。
正如前面讨论, 密支那钾玄质岩石起源于含金云母岩石圈地幔的部分熔融, 而现有的研究表明, 含金云母的地幔橄榄岩在正常地热梯度下是很难部分熔融的, 因为其计算出来的矿物平衡温度达到1250 ℃(Liu et al., 2011)。很显然, 含金云母的地幔橄榄岩如果要发生部分熔融, 必须有更高的地幔潜能热贡献。我们认为研究区具有高的地幔潜热可能与缅甸西部印缅山脉早白垩世MOR型蛇绿岩形成和密支那东部腾冲地块早白垩世大量花岗质岩浆作用有关, 即在早白垩世密支那洋洋脊扩张过程中, 地幔对流必然更加强烈, 从而影响板块周缘的深部地幔动力学; 而130~115 Ma腾冲地块东部的大规模花岗质岩浆作用(图1), 同样也与密支那洋壳的东向俯冲动力学发生变化有关(Zhang et al., 2018; Dong et al., 2019)。洋脊的扩张导致两侧的洋壳板块运动速度增加, 从而引发洋壳岩石圈下的软流圈对流系统的扰动, 与此同时, 俯冲的密支那洋壳板片运动也会加速, 板片运动学体制的变化可能会引发俯冲的板片发生回撤或者断离, 导致软流圈的上涌及减压部分熔融, 产生的岩浆底侵到弧下富集岩石圈地幔, 引发岩石圈的部分熔融, 从而形成了早白垩世密支那地区的钾玄质岩石。如此的机制, 也会导致俯冲隧道中的部分物质因为上涌的软流圈的推挤作用, 终止了高压变质, 并因为软流圈的热作用以及流体的作用发生一次重要热接触交代变质作用, 如帕敢地区变质岩的130~124 Ma高压变质交代作用(Qi et al., 2013; Shi et al., 2014)。
综合研究表明, 密支那蛇绿岩虽然在形成时间上与青藏高原内部的班公湖‒怒江带蛇绿岩相同, 但是, 其洋盆的演化存在明显的差别。帕敢地区的洋壳俯冲交代变质成因的翡翠矿的形成时代最晚, 锆石U-Pb年龄为~70 Ma(祁敏等, 2014), 表明密支那洋盆的演化至少直到70 Ma还未关闭。已有的研究显示, 班公湖‒怒江洋盆的演化最晚到100 Ma已经完全关闭了(Zhu et al., 2009)。此外, 从察隅‒腾冲地块早白垩世岩浆作用方式上, 特别岩浆爆发的时间明显要比青藏高原内部班‒怒带岩浆作用早(Zhang et al., 2018; Dong et al., 2019); 更重要的是, 腾冲地块晚中生代‒早新生代的岩浆作用方式体现出从东往西变年轻的趋势(Xie et al., 2016), 如此的岩浆作用方式与西部缅甸境内的密支那洋壳俯冲的后撤非常吻合, 说明腾冲地块晚中生代‒早新生代的岩浆岩的产生是密支那洋演化过程洋壳向东持续俯冲作用的结果。因此, 大地构造演化上, 密支那洋盆可能并不是青藏高原班公湖‒怒江中特提斯洋的南延, 而是雅鲁藏布新特提斯洋的一部分, 可能代表的是西缅地块和腾冲地块之间洋盆, 从印缅山脉MOR型蛇绿岩的形成时代看, 新特提斯洋的主大洋盆可能位于密支那‒雅鲁藏布构造线(Yang et al., 2012b)。相反, 印缅山脉所代表的洋盆仅仅是新特提斯大洋盆中的一部分。
(1) 首次在缅甸密支那地区识别出一套早白垩世二长质岩石, 形成时代约为130 Ma, 其中一组捕获锆石的年龄约140 Ma, 暗示区域内存在多期次岩浆作用。
(2) 密支那二长质岩石具有高碱(Na2O+K2O> 5%)、K2O(>3.0%)、Al2O3(>15%)和TiO2(<1.0%)的特征, 属于钾玄质岩石; 元素和Sr-Nd同位素组成表明它们起源于受俯冲流体交代富集的岩石圈地幔的部分熔融, 并经过基性矿物和磁钛铁矿的分离结晶而成。
(3) 密支那早白垩世钾玄质岩石形成于洋内俯冲的环境, 是俯冲洋壳板片的断离或者回撤, 引发软流圈的上涌, 热的软流圈进一步引发含金云母岩石圈地幔的部分熔融的产物。
(4) 密支那洋并非班公湖‒怒江中特提斯洋的南延, 而是新特提斯洋的重要组成部分。
致谢:野外考察得到缅甸地质学会Kyaing Sein 教授, 密支那大学Hnin Min Soe、Me Me Aung 和Aung Naing Thu 三位老师, 以及中国科学院青藏高原研究所的丁林院士、蔡福龙副研究员和中国科学院地质与地球物理研究所的吴福元院士、陈意研究员的帮助, 锆石U-Pb定年测试得到中国科学院青藏高原研究所岳雅慧的帮助, 一并表示感谢!此外, 非常感谢两位审稿人的建设性意见!
蔡诗诗, 张恩. 2018. 缅甸翡翠中锆石的LA-ICP-MS微量元素U-Pb年龄: 对其成因的制约. 光谱学与光谱分析, 38(6): 1896–1903.
邓晋福, 刘厚祥, 赵海玲, 罗照华, 郭正府, 李玉文. 1996. 燕辽地区燕山期火成岩与造山模型. 现代地质, 10(2): 137–148.
贺振宇, 徐夕生, 王孝磊, 陈荣. 2008. 赣南橄榄安粗质火山岩的年代学与地球化学. 岩石学报, 24(11): 2524–2536.
贾小辉, 王晓地, 杨文强, 牛志军. 2017. 钾玄质系列岩石的研究现状. 地质论评, 63(6): 1587–1601.
李献华, 周汉文, 刘颖, 李寄嵎, 陈正宏, 于津生, 桂训唐. 2000. 粤西阳春中生代钾玄质侵入岩及其构造意义: Ⅰ. 岩石学和同位素地质年代学. 地球化学, 29(6): 513–520.
李献华, 周汉文, 刘颖, 李寄嵎, 陈正宏, 于津生, 桂训唐. 2001. 粤西阳春中生代钾玄质侵入岩及其构造意义: Ⅱ. 微量元素和Sr-Nd同位素地球化学. 地球化学, 30(1): 57–65.
李献华, 周汉文, 刘颖, 李寄嵎, 孙敏, 陈正宏. 1999. 桂东南钾玄质侵入岩带及其岩石学和地球化学特征. 科学通报, 44(18): 1992–1998.
刘颖, 刘海臣, 李献华. 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素. 地球化学, 25(6): 552–558.
马昌前, 杨坤光, 许长海, 李志昌, Ehlers C. 1999. 大别山中生代钾质岩浆作用与超高压变质地体的剥露机理. 岩石学报, 15(3): 379–395.
祁敏, 向华, 张泽明, 钟增球. 2014. 缅甸硬玉岩锆石U-Pb年龄及其对新特提斯洋俯冲带流体活动的制约. 岩石学报, 30(8): 2279–2286.
丘志力, 吴福元, 杨树锋, 朱敏, 孙金凤, 杨萍. 2008. 缅甸翡翠形成时代和成因的锆石U-Pb年龄与Hf同位素制约. 科学通报, 53(24): 3104–3114.
施光海, 崔文元, 刘晶, 于海侠. 2001. 缅甸含硬玉的蛇纹石化橄榄岩及其围岩的岩石学研究. 岩石学报, 17(3): 483–490.
王宏, 林方成, 李兴振, 施美凤, 刘朝基, 石洪召. 2012. 缅甸中北部及邻区构造单元划分及新特提斯构造演化. 中国地质, 39(4): 912–922.
王建, 李建平, 王江海. 2003. 滇西大理‒剑川地区钾玄质岩浆作用: 后碰撞走滑拉伸环境岛弧型岩浆作用的地球化学研究. 岩石学报, 19(1): 61–70.
魏超, 彭头平, 范蔚茗, 张靖祎, 高剑峰, 董晓涵, 梁细荣, 陈林丽. 2018. 缅甸密支那、抹谷地区地幔橄榄岩岩石和矿物化学组成研究及其构造意义. 地球化学, 47(6): 612–626.
吴福元, 刘传周, 张亮亮, 张畅, 王建刚, 纪伟强, 刘小驰. 2014. 雅鲁藏布蛇绿岩——事实与臆想. 岩石学报, 30(2): 293–325.
章邦桐, 吴俊奇, 凌洪飞, 陈培荣. 2011. 关于Shoshonite中译名的商榷和建议. 地质论评, 57(2): 216–217.
Acharyya S K. 2007. Collisional emplacement history of the Naga-Andaman ophiolites and the position of the eastern Indian suture., 29(2): 229–242.
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report204Pb., 192(1): 59–79.
Benito R, López-Ruiz J, Cebriá J M, Hertogen J, Doblas M, Oyarzun R and Demaiffe D. 1999. Sr and O isotope constraints on source and crustal contamination in the high-K calc-alkaline and shoshonitic Neogene volcanic rocks of SE Spain., 46(4): 773–802.
Bitencourt M F and Nardi L S. 2004. The role of xenoliths and flow segregation in the genesis and evolution of the Paleoproterozoic Itapema Granite, a crustally derived magma of shoshonitic affinity from southern Brazil., 73(1–2): 1–19.
Chauvel C, Lewin E, Carpentier M, Arndt N T and Marini J C. 2008. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array., 1(1): 64–67.
Chen J L, Xu J F, Wang B D and Kang Z Q. 2010. Geochemical comparison of Paleogene high-Mg potassic volcanic rocks in Sanjiang area and interior Tibetan Plateau: Compositional difference of the mantle sources., 26(6): 1856–1870.
Chen J L, Zhao W X, Xu J F, Wang B D and Kang Z Q. 2012. Geochemistry of Miocene trachytes in Bugasi, Lhasa block, Tibetan Plateau: Mixing products between mantle- and crust-derived melts?, 21(1): 112–122.
Chung S L, Chu M F, Zhang Y Q, Xie Y W, Lo C H, Lee T Y, Lan C Y, Li X H, Zhang Q and Wang Y Z. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism., 68(3–4): 173–196.
Coban H, Karsli O, Caran S and Yilmaz K. 2019. What processes control the genesis of absarokite to shoshonite-banakite series in an intracontinental setting, as revealed by geochemical and Sr-Nd-Pb isotope data of Karadak Stratovolcano in Central Anatolia, Turkey., 324: 609–625.
Conceicao R V and Green D H. 2004. Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite+pargasite lherzolite., 72(3): 209–229.
“不对,对这两个人,我们是要尽可能跟他们搞好关系,但决不能拿钱去砸,甚至还要尽可能与他们保持距离,明白吗?”
Defant M J and Drummond M S. 1993. Mount St Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc., 21(6): 547–550.
Di Battistini G, Montanini A, Vernia L, Venturelli G and Tonarini S. 2001. Petrology of melilite-bearing rocks from the Montefiascone Volcanic Complex (Roman Magmatic Province): New insights into the ultrapotassic volcanism of Central Italy., 59(1): 1–24.
Ding L, Kapp P, Zhong D L and Deng W M. 2003. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction., 44(10): 1833–1865.
Dong X H, Peng T P, Fan W M, Zhao G C, Zhang J Y, Liu B B, Gao J F, Peng B X, Liang X R, Zeng W and Chen L L. 2019. Origin and tectonic implications of Early Cretaceous high- and low-Mg series rocks and mafic enclaves in the Bomi-Chayu Fold Belt, SE Tibet., 334–335: 102–116.
Duchesne J C, Berza T, Liégeois J P and Vander A J. 1998. Shoshonitic liquid line of descent from diorite to granite: The Late Precambrian post-collisional Tismana pluton (South Carpathians, Romania)., 45(1): 281–303.
Enami M, Ko Z W, Win A and Tsuboi M. 2012. Eclogite from the Kumon range, Myanmar: Petrology and tectonic implications., 21(2–3): 548–558.
Foley S and Peccerillo A. 1992. Potassic and ultrapotassic magmas and their origin., 28(3–6): 181–185.
Gao Y F, Hou Z Q, Kamber B S, Wei R H, Meng X J and Zhao R S. 2007. Lamproitic rocks from a continental collision zone: Evidence for recycling of subducted Tethyan oceanic sediments in the mantle beneath southern Tibet., 48(4): 729–752.
Gardiner N J, Robb L J, Morley C K, Searle M P, Cawood P A, Whitehouse M J, Kirkland C L, Roberts N M W and Myint T A. 2016. The tectonic and metallogenic framework of Myanmar: A Tethyan mineral system., 79: 26–45.
Ge X Y, Li X H, Chen Z G and Li W P. 2002. Geochemistry and petrogenesis of Jurassic high Sr/low Y granitoids in eastern China: Constrains on crustal thickness., 47(11): 962–968.
Gill R C O, Aparicio A, El Azzouzi M, Hernandez J, Thirlwall M F, Bourgois J and Marriner G F. 2004. Depleted arc volcanism in the Alboran Sea and shoshonitic volcanism in Morocco: Geochemical and isotopic constraints on Neogene tectonic processes., 78(4): 363–388.
Green D H and Falloon T J. 1998. Pyrolite: A Ringwood concept and its current expression // Jackson I. The Earth’s Mantle: Structure, Composition and Evolution. Cambridge, UK: Cambridge University Press: 311–378.
Guo Z F, Wilson M, Zhang M L, Cheng Z H and Zhang L H. 2013. Post-collisional, K-rich mafic magmatism in south Tibet: Constraints on Indian slab-to-wedge transport processes and plateau uplift., 165(6): 1311–1340.
Harris P G and Middlemost E A K. 1970. The evolution of kimberlites., 3(1): 77–88.
Hawkesworth C. 1993. Mantle and slab contribution in arc magmas., 21: 175–204.
Hebert R, Guilmette C, Dostal J, Bezard R, Lesage G, Bédard É and Wang C. 2014. Miocene post-collisional shoshonites and their crustal xenoliths, Yarlung Zangbo Suture Zone southern Tibet: Geodynamic implications., 25(3): 1263–1271.
Hochstaedter A, Gill J, Peters R, Broughton P, Holden P and Taylor B. 2001. Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab.,,, 2: 1525–2027.
Hoskin P W O and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis., 53(1): 27–62.
Huang F, Chen J L, Xu J F, Wang B D and Li J. 2015. Os-Nd-Sr isotopes in Miocene ultrapotassic rocks of southern Tibet: Partial melting of a pyroxenite-bearing lithospheric mantle?, 163: 279–298.
Huang W and Wyllie P. 1981. Phase relationships of S-type Granite with H2O to 35 kbar: Muscovite granite from Harney Peak, South Dakota., 861: 10515–10529.
Huang X L, Niu Y L, Xu Y G, Chen L L and Yang Q J. 2010. Mineralogical and geochemical constraints on the petrogenesis of post-collisional potassic and ultrapotassic rocks from Western Yunnan, SW China., 51(8): 1617–1654.
Iddings J P. 1895. Absarokite-shoshonite-banakite series., 3: 935–959.
Ji W Q, Wu F Y, Chung S L, Wang X C, Liu C Z, Li Q L, Liu Z C, Liu X C and Wang J G. 2016. Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt-type magmatism in southern Tibet., 44(4): 283–286.
Jiang Y H, Jiang S Y, Ling H F, Zhou X R, Rui X J and Yang W Z. 2002. Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: Implications for granitoid geneses., 63(3–4): 165–187.
Johannes W and Holtz F. 1990. Formation and composition of H2O-undersaturated granitic melts // Ashworth J R and Brown M. High-temperature Metamorphism and Crustal Anatexis. Springer Netherlands, Dordrecht: 87–104.
Kessel R, Schmidt M W, Ulmer P and Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth., 437(7059): 724–727.
Li J X, Fan W M, Zhang L Y, Ding L, Sun Y L, Peng T P, Cai F L, Guan Q Y and Sein K. 2019. Subduction of Indian continental lithosphere constrained by Eocene- Oligocene magmatism in northern Myanmar., 348: 12–22.
Li J X, Fan W M, Zhang L Y, Peng T P, Sun Y L, Ding L, Cai F L and Sein K. 2020. Prolonged Neo-Tethyan magmatic arc in Myanmar: Evidence from geochemistry and Sr-Nd-Hf isotopes of Cretaceous mafic-felsic intrusions in the Banmauk-Kawlin area., 109(2): 649–668.
Li J X, Zhang L Y, Fan W M, Ding L, Sun Y L, Peng T P, Li G M and Sein K. 2018. Mesozoic-Cenozoic tectonic evolution and metallogeny in Myanmar: Evidence from zircon/cassiterite U-Pb and molybdenite Re-Os geochronology., 102: 829–845.
Li X H. 2000. Cretaceous magmatism and lithospheric extension in Southeast China., 18(3): 293–305.
Liang Q, Jing H and Gregoire D C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry., 51(3): 507–513.
Liu C Z, Chung S L, Wu F Y, Zhang C, Xu Y, Wang J G, Chen Y and Guo S. 2016a. Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites., 44(4): 311–318.
Liu C Z, Wu F Y, Chung S L and Zhao Z D. 2011. Fragments of hot and metasomatized mantle lithosphere in Middle Miocene ultrapotassic lavas, southern Tibet., 39(10): 923–926.
Liu C Z, Wu F Y, Wilde S A, Yu L J and Li J L. 2010a. Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism., 114(3–4): 413–422.
Liu C Z, Zhang C, Xu Y, Wang J G, Chen Y, Guo S, Wu F Y and Sein K. 2016b. Petrology and geochemistry of mantle peridotites from the Kalaymyo and Myitkyina ophiolites (Myanmar): Implications for tectonic settings., 264: 495–508.
Liu D, Zhao Z D, Zhu D C, Niu Y L, DePaolo D J, Harrison T M, Mo X X, Dong G C, Zhou S, Sun C G, Zhang Z C and Liu J L. 2014. Postcollisional potassic and ultrapotassic rocks in southern Tibet: Mantle and crustal origins in response to India-Asia collision and convergence., 143: 207–231.
Liu D L, Shi R D, Ding L, Huang Q S, Zhang X R, Yue Y H and Zhang L Y. 2017. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: Implications for the subduction of the Bangong-Nujiang Tethyan Ocean., 41: 157–172.
Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q and Wang D B. 2010b. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in ZIrcons from mantle xenoliths., 51(1–2): 537–571.
Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J A and Chen H H. 2010c. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS., 55(15): 1535–1546.
Lu Y J, Kerrich R, McCuaig T C, Li Z X, Hart C J R, Cawood P A, Hou Z Q, Bagas L, Cliff J, Belousova E A and Tang S H. 2013. Geochemical, Sr-Nd-Pb, and zircon Hf-O isotopic compositions of Eocene-Oligocene shoshonitic and potassic adakite-like felsic intrusions in Western Yunnan, SW China: Petrogenesis and tectonic implications., 54(7): 1309–1348.
Ludwig K R. 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. California: Berkeley Geochronology Center Special Publication.
Miller C, Schuster R, Klotzli U, Frank W and Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis., 40(9): 1399–1424.
Mitchell A. 2018. Mogok metamorphic belt // Mitchell A. Geological Belts, Plate Boundaries, and Mineral Deposits in Myanmar. Elsevier, Amsterdam: 201–251.
Mitchell A, Chung S L, Oo T, Lin T H and Hung C H. 2012. Zircon U-Pb ages in Myanmar: Magmatic- metamorphic events and the closure of a neo-Tethys ocean?, 56: 1–23.
Mitchell A H G. 1993. Cretaceous-Cenozoic tectonic events in the western Myanmar (Burma)-Assam region., 150: 1089–1102.
Mitchell A H G, Htay M T, Htun K M, Win M N, Oo T and Hlaing T. 2007. Rock relationships in the Mogok metamorphic belt, Tatkon to Mandalay, central Myanmar., 29(5): 891–910.
Morrison G W. 1980. Characteristics and tectonic setting of the shoshonite rock association., 13(1): 97–108.
Nelson D R. 1992. Isotopic characteristics of potassic rocks: Evidence for the involvement of subducted sediments in magma genesis., 28(3): 403–420.
Niu X L, Liu F, Yang J S, Yildirim D, Xu Z Q, Feng G Y, Xiong F H and Kyaing S. 2017. Kalaymyo peridotite massif in the Indo-Myanmar ranges (Western Myanmar): Its mineralogy and petrology.(), 91(S1): 24–25.
O’Hara M and Yoder H. 1967. Formation and fractionation of basic magmas at high pressures., 3: 67–117.
Patino D A E and Johnston A D. 1991. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites., 107(2): 202–218.
Pearce J A and Peate D W. 1995. Tectonic inplications of the composition of volcanic arc magmas., 23: 251–285.
Qi M, Xiang H, Zhong Z Q, Qiu H N, Wang H, Sun X L and Xu B. 2013.40Ar/39Ar geochronology constraints on the formation age of Myanmar jadeitite., 162: 107–114.
Schiano P, Clocchiatti R, Ottolini L and Sbrana A. 2004. The relationship between potassic, calc-alkaline and Na-alkaline magmatism in South Italy volcanoes: A melt inclusion approach., 220(1–2): 121–137.
Searle M P, Morley C K, Waters D J, Gardiner N J, Kyi H U, Nu T T and Robb L J. 2017. Tectonic and metamorphic evolution of the Mogok Metamorphic and Jade Mines belts and ophiolitic terranes of Burma (Myanmar) // Barber A J, Zaw K and Crow M J. Myanmar: Geology, Resources and Tectonics.,,: 261–293.
Searle M P, Noble S R, Cottle J M, Waters D J, Mitchell A H G, Hlaing T and Horstwood M S A. 2007. Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U-Th-Pb dating of metamorphic and magmatic rocks., 26(3): 1237–1321.
Shi G H, Cui W Y, Cao S M, Jiang N, Jian P, Liu D Y, Miao L C and Chu B B. 2008. Ion microprobe zircon U-Pb age and geochemistry of the Myanmar jadeitite., 165: 221–234.
Shi G H, Cui W Y, Tropper P, Wang C Q, Shu G M and Yu H X. 2003. The petrology of a complex sodic and sodic-calcic amphibole association and its implications for the metasomatic processes in the jadeitite area in northwestern Myanmar, formerly Burma., 145(3): 355–376.
Shi G H, Lei W Y, He H Y, Ng Y N, Liu Y, Liu Y X, Yuan Y, Kang Z J and Xie G. 2014. Superimposed tectono- metamorphic episodes of Jurassic and Eocene age in the jadeite uplift, Myanmar, as revealed by40Ar/39Ar dating., 26(2): 464–474.
Skjerlie K P and Johnston A D. 1993. Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: Implications for the generation of anorogenic granites., 34(4): 785–815.
Skjerlie K P and Johnston A D. 1996. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: Implications for anatexis in the deep to very deep continental crust and active continental margins., 37(3): 661–691.
Sun S S and Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes.,,, 42(1): 313–345.
Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, VanCalsteren P and Deng W. 1996. Post-collision, shoshonitic volcanism on the Tibetan plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts., 37(1): 45–71.
Wang Q, Li X H, Jia X H, Wyman D, Tang G J, Li Z X, Ma L, Yang Y H, Jiang Z Q and Gou G N. 2012. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium-rich mafic enclaves and dikes in the Tunchang-Fengmu area, Hainan Province (South China): Partial melting of lower crust and mantle, and magma hybridization., 328: 222–243.
Wang Q, Wyman D A, Xu J F, Zhao Z H, Jian P, Xiong X L, Bao Z W, Li C F and Bai Z H. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization., 89(3–4): 424–446.
Wiedenbeck M, Hanchar J M, Peck W H, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard J P, Greenwood R C, Hinton R, Kita N, Mason P R D, Norman M, Ogasawara M, Piccoli R, Rhede D, Satoh H, Schulz-Dobrick B, Skar O, Spicuzza M J, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q and Zheng Y F. 2004. Further characterisation of the 91500 zircon crystal., 28(1): 9–39.
Williams H M, Turner S P, Pearce J A, Kelley S P and Harris N B W. 2004. Nature of the source regions for post- collisional, potassic magmatism in southern and northernTibet from geochemical variations and inverse trace element modelling., 45(3): 555–607.
Wood D A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province., 50(1): 11–30.
Wyllie P J. 1977. Crustal anatexis: An experimental review., 43(1): 41–71.
Xie J C, Zhu D C, Dong G C, Zhao Z D, Wang Q and Mo X X. 2016. Linking the Tengchong Terrane in SW Yunnan with the Lhasa Terrane in southern Tibet through magmatic correlation., 39: 217–229.
Xu J F, Shinjo R, Defant M J, Wang Q and Rapp R P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust?, 30(12): 1111–1114.
Yang J H, Sun J F, Zhang M, Wu F Y and Wilde S A. 2012a. Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension., 328: 149–167.
Yang J S, Xu Z Q, Duan X D, Li J, Xiong F H, Liu Z, Cai Z H and Li H Q. 2012b. Discovery of a Jurassic SSZ ophiolite in the Myitkyina region of Myanmar., 28(6): 1710–1730.
Yui T F, Fukoyama M, Iizuka Y, Wu C M, Wu T W, Liou J G and Grove M. 2013. Is Myanmar jadeitite of Jurassic age? A result from incompletely recrystallized inherited zircon., 160: 268–282.
Zhang J Y, Peng T P, Fan W M, Zhao G C, Dong X H, Gao J F, Peng B X, Wei C, Xia X P, Chen L L and Liang X Q. 2018. Petrogenesis of the Early Cretaceous granitoids and its mafic enclaves in the Northern Tengchong Terrane, southern margin of the Tibetan Plateau and its tectonic implications., 318–319: 283–298.
Zhao Z D, Mo X X, Dilek Y, Niu Y L, DePaolo D J, Robinson P, Zhu D C, Sun C G, Dong G C, Zhou S, Luo Z H and Hou Z Q. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet., 113(1–2): 190–212.
Zhu D C, Mo X X, Niu Y L, Zhao Z D, Wang L Q, Liu Y S and Wu F Y. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet., 268(3–4): 298–312.
Petrogenesis of the Early Cretaceous Shoshonitic Rocks in Myitkina of Myanmar and its Tectonic Implications
ZHANG Jingyi1, 2, PENG Touping1, 3*, FAN Weiming3, 4, DONG Xiaohan1, 2, LIU Bingbing1, 2, GAO Jianfeng5, LIANG Xirong1and CHEN Linli1
(1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China; 4. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; 5. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China)
Myanmar is located in the east of the Himalaya orogenic zone and proximal to the Eastern Syntaxis. Voluminous late Mesozoic-Cenozoic magmatic rocks developed in Myanmar, which are the products of the Himalaya orogeny. The origin and tectonic regime of these igneous rocks are critical for the understanding of the geodynamic evolution of the Neo-Tethys and the tectonic correlation of the different terranes in between Myanmar and Tibetan Plateau. However, little attention has been paid to these igneous rocks, particularly for those in Myitkyina of Myanmar. In this study, a suite of shoshonitic rocks were first recognized, which are characterized by high SiO2(58.92%–63.73%), total alkali (Na2O+K2O=7.94%–10.14%), K2O (3.88%–6.14%), and K2O/Na2O ratios (>1) together with the strong enrichment of LILE and LREE and depletion of Nb, Ta and Ti. LA-ICP-MS zircon U-Pb dating results show that they were emplaced at ~130 Ma. The above signatures coupled with their depleted Sr-Nd isotopic compositions, low Sr/Y and La/Yb ratios, and high Y and Yb contents indicate that the Myitkyina shoshonitic rocks were derived from partial melting of the enriched, phlogopite-bearing lithospheric mantle metasomatized by the subduction-related fluids/melts. Combined with other geological data, we propose that the Myitkyna early Cretaceous shoshonitic rocks were generated in an oceanic arc in response to the slab rollback or breakoff. It is thus noted that the Myitkyina Tethyan Ocean was not closed before ~130 Ma, and the southern continuation of the Bangonghu-Nujiang Meso-Tethys was an important component of the Neo-Tethys.
Early Cretaceous; shoshonitic rocks; enriched lithospheric mantle; oceanic arc; Myitkyina
2020-04-26;
2020-05-06;
2020-12-10
国家自然科学基金重点项目(92055207)、第二次青藏科考项目(2019QZKK0702)、国家自然科学基金重大项目(41490613)和国家自然科学基金面上项目(41672058)联合资助。
张靖祎(1992–), 女, 博士研究生, 岩石大地构造学专业。Email: zhangjingyi@gig.ac.cn
彭头平(1974–), 男, 研究员, 从事岩石大地构造研究。Email: tppeng@gig.ac.cn
P581
A
1001-1552(2021)03-0553-017
10.16539/j.ddgzyckx.2020.06.017