王玉芳, 郑棉海, 王森浩, 毛晋花, 莫江明
氮磷添加对华南地区2种人工林土壤氮磷循环酶活性的影响
王玉芳1,2, 郑棉海1*, 王森浩1,2, 毛晋花1,2, 莫江明1*
(1. 中国科学院华南植物园, 中国科学院退化生态系统植被恢复与管理重点实验室, 广东省应用植物学重点实验室, 广州 510650; 2. 中国科学院大学, 北京 100049)
为探究亚热带森林土壤中与氮、磷循环相关的土壤酶对长期氮、磷沉降的响应,在我国南方大叶相思()和尾叶桉()人工林施N、P肥8 a,对土壤中磷循环酶[磷酸单脂酶(PME)和磷酸二脂酶(PDE)]和氮循环酶[-1,4-乙酰氨基葡糖苷酶(NAG)和l-亮氨酸氨基肽酶(LAP)]的活性进行测定。结果表明,施50 kg/(hm2·a)氮肥对土壤氮和磷循环酶活性没有显著影响,施50 kg/(hm2·a)磷肥和氮磷肥[N、P各50 kg/(hm2·a)]均显著降低了土壤中PME和PDE活性,而对NAG和LAP活性没有显著影响。华南地区亚热带人工林的微生物和植物生长可能受磷限制而非氮限制,施P可以缓解P限制,这为人工林的管理与恢复提供依据。
氮沉降;磷添加;亚热带森林;土壤酶;磷限制
工农业快速发展进程中,人类通过化石燃料燃烧[1-3]、作物种植和N肥施放[4-5]等向大气中排放大量的N[6],导致全球N沉降趋势日益严峻。非豆科作物通过根系吸收或豆科植物通过生物固N将土壤或大气中的N固定到植物体内,富N植物残体的降解将通过硝化与反硝化过程增加大气中的活性N[7]。虽然近年来减排措施和经济转型使得N沉降量有所下降[8-9],但我国仍然是全球N沉降最严重的地区之一[6]。降雨监测表明,我国中部和华南地区总N沉降都大于35 kg/(hm2·a)[10],远高于全球大部分地区。研究表明,过量N沉降会引起土壤酸化[11]、改变生物体与土壤之间的养分供应关系等[12-1313]。亚热带森林土壤常被认为富N缺P[14]。N的输入可能加剧植物和微生物生长的P限制,而植物的P限制可能进一步抑制植物的生长和生物量的增加。然而目前对这些结论还存在很多争论,因此,继续开展N、P添加的响应研究, 对我们了解N沉降下植物的生存、生长有重要作用。
土壤胞外酶由植物和微生物共同产生,作用于凋落物与土壤有机质,有利于植物对有机养分的利用和获取,对生态系统物质循环和能量流动极为重要。其中,磷酸酶有磷酸单脂酶(phosphomonolipase, PME)和磷酸二脂酶(phosphodiesterase, PDE),可水解土壤有机P中的酯键,将磷酸盐释放到土壤中,供植物或微生物吸收[15]。-1,4-乙酰氨基葡糖苷酶(-1,4-acetyl- glucosaminidase, NAG)和l-亮氨酸氨基肽酶(l-leucine aminopeptidase, LAP)参与蛋白质、核酸等的水解,将复杂的含N化合物降解为植物可以吸收利用的小分子形式,在N循环中发挥作用[16]。有研究表明,N沉降直接或间接作用于土壤酶,影响凋落物的分解进程与速率,进而影响元素的生物地球化学循环[17-18]。
大叶相思()和尾叶桉()是我国南方应用最为广泛、种植面积较大的荒山绿化树种[19-20],在生态系统修复和管理中发挥着不可替代的作用。本研究通过野外施肥控制试验,探究长期N、P添加下2种人工林土壤中与N、P循环相关酶活性的响应及其与土壤理化性质的关系,为深入理解南亚热带森林的生物地球化学循环提供理论依据,为森林修复和管理提供建议。
研究样地位于广东省鹤山人工林国家定位研究站(112°50′ E, 22°34′ N),为亚热带季风气候,平均年降水量为1 543 mm,雨季从4月持续到9月。年平均气温为22.5℃,最冷月1月平均气温为10.9℃, 最热月7月平均气温为28.0℃[21]。大气N沉降背景值约为(43.1±3.9) kg/(hm2·a)[22]。土壤类型为红壤土[23]。本研究选取2个典型的南亚热带成熟人工林尾叶桉林()和大叶相思林(),人工林所栽树木树龄均已超过30 a[24]。
采用野外施肥控制试验,采用完全随机区组设计。参照Cleveland等[25]的方法设置样方和施肥量,人工林相距500 m,随机布置12个10 m×10 m样方,样方周围设10 m宽的缓冲带以防相互干扰。设置4个处理:对照(CK,不施肥)、施N肥(+N)、施P肥(+P)、同时施N和P肥(+N+P),N、P施肥量均为50 kg/(hm2·a),每处理均3次重复。试验从2010年7月开始,每2个月用人工背负式喷雾器喷洒NH4NO3和NaH2PO4溶液(10 L水溶解),对照样地喷洒等量等体积的去离子水以消除外加水的影响。
2018年8月底在样方内随机布点采样,用直径4 cm的土钻随机钻取6钻0~10 cm表层土壤,分别装入封口袋,4℃下保存带回实验室。将土样充分混合均匀,挑出细根和石粒等杂物,通过2 mm土筛后分为2部分, 一部分样品暂存-20℃冰箱用于酶活性测定,一部分用于测定土壤养分含量。
土壤全氮(total nitrogen, TN)、全碳(total carbon, TC)含量用总有机碳分析仪(IsoPrime100, IsoPrime)测定,全磷(total phosphorus, TP)含量用硫酸高氯酸消解-钼锑抗比色法测定。用改良的荧光法[26-27]测定4种土壤酶(PME、PDE、NAG和LAP)的活性, 其中, LAP以7-氨基-4-甲基香豆素(7-amido-4-methyl-cou- marin, MUC)为底物,另3种土壤酶以4-甲基伞形酮(4-methylumbelliferone, MUB)为底物。将100 mL醋酸缓冲液(50 mmol/L, pH=5.0)加入1.00 g鲜土中, 用匀浆机精准混磨1 min后过60目土筛制成匀浆待测液;样品孔、空白对照孔和底物对照孔分别加入匀浆液与酶底物溶液(200mol/L)、匀浆液与醋酸缓冲液、醋酸缓冲液与酶底物溶液各1 000L, 比例为1∶1;每样品重复3次。样品标线孔分别加500L土壤匀浆液和500L标准物溶液(0~100mol/L MUB或MUC)。摇匀后置于20℃下避光培养4 h,2 900×下离心3 min后,在吸收波长为365 nm和发射波长为450 nm下测定荧光值。酶活性计算方法: (1) 计算每个样品对应酶的MUB或MUC浓度(mol/L)标线,获得截距b,斜率k和2;(2) 根据样品荧光1和对照荧光0计算反应体系的酶浓度=(1-0-)/; (3) 酶活性[nmol/(h·gdry soil)]=××/(×)×1000, 式中,是稀释倍数,是混磨样品所用的缓冲液体积(L),是培养时间(h),是土壤干质量(g)。
采用单因素方差分析(ANOVA)和Turkey Kramer HSD比较N、P添加处理下人工林土壤酶活性的差异,独立样本检验用于分析2人工林对照样方酶活性差异(<0.05)。采用Person相关分析森林土壤酶活性与土壤养分及化学计量比间的相关关系。所有的统计分析过程都通过统计软件SPSS 20.0完成, 采用Origin 9.0绘图。
施N对土壤酶活性的影响不显著(图1),仅显著降低了相思林土壤中磷酸二酯酶(PDE)活性,对2人工林表层土壤中的P获取酶磷酸单脂酶(PME)、N获取酶-1,4-N-乙酰氨基转移酶(NAG)和l-亮氨酸氨基肽酶(LAP)活性均没有显著影响。
与对照相比,P添加和N、P共同添加显著降低了土壤中PME、PDE活性,对NAG、LAP活性没有显著影响。施P和同时施N、P处理后,大叶相思林土壤中PME酶活性分别下降了55%和26%,PDE酶活性分别下降了80%和34%;尾叶桉林土壤中PME活性分别下降了63%和46%,PDE活性分别下降了72%和71%。
图1 氮磷添加对人工林土壤酶活性的影响。柱上不同大写和小写字母分别表示林型间和施肥处理间的差异显著(P<0.05)。
由表1可见,施N仅显著降低了大叶相思林土壤TN,对土壤C、P含量和化学计量比没有显著影响;尾叶桉林和大叶相思林施P和施N+P后,土壤全磷(TP)显著增加,C∶P和N∶P则显著降低。
土壤酶活性与土壤养分含量与化学计量比间的相关性分析结果表明(表2),土壤PME和PDE活性与土壤C、N、P含量及化学计量比之间存在极显著相关关系,与C∶P和N∶P间的相关系数最大,为0.4~0.7。土壤NAG和LAP活性与土壤TN和TC间存在极显著正相关,相关系数为0.3~ 0.6。
表1 N、P添加对人工林土壤养分和化学计量比的影响
同列数据后不同字母表示差异显著(<0.05)。
Data followed different letters indicate significant differences at 0.05 level.
表2 土壤酶活性与土壤养分含量及化学计量比的相关系数(r)
=18; **:<0.01; *:<0.05.
本研究人工林对照样方的NAG和LAP活性与其他亚热带、热带森林[分别为12.9~73.6和2.7~112.3 nmol/(h·gdry soil)]的相近[17,28-29], 但低于多数温带森林[44.5~652.4和3.0~560.5 nmol/(h·gdry soil)][28-29]。这或许是因为亚热带森林土壤富含N并且相对缺少P,因此微生物可能需要通过大量N素来合成富含N的磷酸酶[30],以水解土壤中的有机态P。PME和PDE活性与其他热带森林[分别为230.4~ 1088.6 nmol/(h·gdry soil)]的相近[17,28-29],但高于多数温带森林[148.9~1303.6 nmol/(h·gdry soil)][28-29]。这说明亚热带森林土壤可利用的P含量相比温带森林较低,无法满足植物和微生物对P的需求。与尾叶桉林相比,相思林土壤的PME和PDE活性高, 而NAG和LAP活性低,资源分配理论[31]认为土壤微生物根据资源的可用性调节酶的生产,相思林土壤初始TN含量及N∶P更高,植物和微生物能产生更多的P获取酶来获得相对更匮乏的P资源。这一理论已多次用来解释类似的胞外酶活性研究[18,32],本研究结果也支持这一理论。酶活性差异可能与林型有关,有研究表明豆科植物根磷酸酶活性高于非豆科植物[33],且这种差异是豆科植物系统发育保留的保守性状[33-34],与固N能力没有直接联系。
有研究表明N沉降对中国森林6种土壤胞外酶活性的影响较小,其中2个为亚热带森林土壤中的NAG和LAP[28],这与本研究结果一致。许多研究及meta分析结果[32,35-36]也与本研究一致。本研究中土壤PME和PDE都属于磷酸酶,有报道土壤磷酸酶活性在施N后出现降低[18,30]、无效应[36]或增加[32,37]等响应,本研究中施N后土壤磷酸酶活性变化不显著。土壤酶活性可表征生物体的营养限制[38],当土壤富N缺P,且面临N沉降压力,植物和微生物则受到P的限制[39],因此,施N可能不会改变生物体的N、P限制,本研究土壤N∶P未发生变化也验证了这一观点。2 a施N处理后土壤的铵态N、硝态N、可利用性P及土壤TN含量均未发生变化[24,40],进入生态系统的N迅速被固定, 可能不足以引起植物和微生物酶生产投资的改变, 施N后叶片N含量增加[40]也支持这一观点。另外,影响酶活性的土壤微生物群落可能未发生变化,有研究表明,土壤微生物MBC、MBN在施N处理1 a后并没有发生显著变化[24],土壤C、N含量是微生物生物量的关键影响因素[41-42],本研究中土壤C、N含量也没有发生变化。微生物生长需要特定的pH范围[43],施N处理6 a土壤pH没有显著变化[12]。此外,土壤酶活性与森林类型[18]及酶活性的干湿季动态[36]等很多因素有关,本研究中N、P获取酶活性在施N后没有变化可能是这些因素综合表现的结果。
本研究添加P和N+P后土壤N获取酶NAG和LAP活性变化不显著,Taiki等[16]报道马来西亚热带森林土壤N获取酶与土壤TN、TC含量存在极显著的正相关关系,且初始N含量相对较高[39],植物和微生物生长不受N限制,这都是N获取酶活性变化不大的原因。这与本研究结果一致。土壤P获取酶与土壤TP及与TP相关的化学计量比分别存在极显著的负、正相关关系,这可能是土壤PME和PDE活性下降的原因。这与其他亚热带森林的研究结果[18,36,44]类似,施P缓解了森林P的供应和竞争压力,植物和微生物减少合成磷酸酶的投资,这符合资源分配理论[31]。同时也符合经济学理论[45],因为相对直接吸收无机P,通过磷酸酶来获取P更消耗能量[30]。同时施P通常会增加土壤中的有效P (available phosphorus, AP)含量,根据酶促反应理论,目标产物AP增加可能也会成为限制植物和微生物继续产生P获取酶的潜在原因,这种机制也被称作“最终产物抑制”[18]。土壤P获取酶活性及土壤N∶P在P添加(+P与N+P)处理下显著降低,说明施P可以缓解植物和微生物的P限制。而氮沉降会导致生态系统从N限制转为P限制[13],且会进一步加剧植物的P限制[15],因此施P或许可减轻N沉降对植物的影响,缓解植物和微生物的P限制。
研究表明单独施P对土壤磷获取酶活性的抑制作用更强烈,施N、P可缓解单独施P对土壤酶活性的负效应。土壤磷酸酶活性与土壤AP含量存在显著负相关关系[46-47],且N、P同时添加的土壤AP含量比单独添加P处理的增加幅度小,土壤AP含量增加可能间接导致了土壤PME和PDE活性的响应差异[11]。其次,同时施N、P和仅施P的土壤pH降低幅度不同[11,48],前者土壤pH值降低幅度不大,符合土壤微生物生长所需特定的酸碱度范围[43],土壤酸化程度差异或许也是造成磷酸酶活性响应差异的原因。前期养分添加的研究表明,单独施N对土壤固N酶活性、固N速率和可溶性无机N含量有显著影响,但单独施P和施N+P均没有显著影响[39-40]。本研究结果类似,说明同时添加N、P的响应可能是施P起主要作用。
本研究的2个亚热带人工林土壤酶对P的添加有强烈响应,但对N添加却无显著响应,P添加导致参与获取P的胞外酶活性显著降低。人工林微生物和植物生长可能是受P限制而不是N限制,且P输入会降低N沉降对植物的影响,减轻P限制。因此,我们建议未来我国华南地区人工林的管理可以考虑通过适当的施加P肥以缓解P限制,促进植物生长及生物量增加。
[1] CHEN Y, RANDERSON J T, VAN DER WERF G R, et al. Nitrogen deposition in tropical forests from savanna and deforestation fires [J]. Glob Change Biol, 2010, 16(7): 2024-2038. doi: 10.1111/j.1365-2486. 2009.02156.x.
[2] BOY J, ROLLENBECK R, VALAREZO C, et al. Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador [J]. Glob Biogeochem Cycl, 2008, 22(4): GB4011. doi: 10.1029/2007GB003158.
[3] LIU X J, ZHANG Y, HAN W X, et al. Enhanced nitrogen deposition over China [J]. Nature, 2013, 494(7438): 459-462. doi: 10.1038/nature 11917.
[4] HERRMANN M, PUST J, POTT R. Leaching of nitrate and ammonium in heathland and forest ecosystems in northwest Germany under the influence of enhanced nitrogen deposition [J]. Plant Soil, 2005, 273(1-2): 129-137. doi: 10.1007/s11104-004-7246-x.
[5] VITOUSEK P M, ABER J D, HOWARTH R W, et al. Human alte- ration of the global nitrogen cycle: Sources and consequences [J]. Ecol Appl, 1997, 7(3): 737-750. doi: 10.1890/1051-0761(1997)007[0737: HAOTGN]2.0.CO;2.
[6] GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Trans- formation of the nitrogen cycle: Recent trends, questions, and potential solutions [J]. Science, 2008, 320(5878): 889-892. doi: 10.1126/science. 1136674.
[7] GALLOWAY J N. The global nitrogen cycle: Changes and conse- quences [J]. Environ Pollut, 1998, 102(suppl 1): 15-24. doi: 10.1016/ S0269-7491(98)80010-9.
[8] ENGARDT M, SIMPSON D, SCHWIKOWSKI M, et al. Deposition of sulphur and nitrogen in Europe 1900-2050: Model calculations and comparison to historical observations [J]. Tellus B Chem Phys Metorol, 2017, 69(1): 1328945. doi: 10.1080/16000889.2017.1328945.
[9] YU G R, JIA Y L, HE N P, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade [J]. Nat Geosci, 2019, 12(6): 424-429. doi: 10.1038/s41561-019-0352-4.
[10] ZHU J X, HE N P, WANG Q F, et al. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems [J]. Sci Total Environ, 2015, 511: 777- 785. doi: 10.1016/j.scitotenv.2014.12.038.
[11] MAO Q G, LU X K, ZHOU K J, et al. Effects of long-term nitrogen and phosphorus additions on soil acidification in an N-rich tropical forest [J]. Geoderma, 2017, 285: 57-63. doi: 10.1016/j.geoderma.2016. 09.017.
[12] LU X K, VITOUSEK P M, MAO Q G, et al. Plant acclimation to long- term high nitrogen deposition in an N-rich tropical forest [J]. Proc Natl Acad Sci USA, 2018, 115(20): 5187-5192. doi: 10.1073/pnas.1720 777115.
[13] LU X K, MO J M, ZHANG W, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: An overview [J]. J Trop Subtrop Bot, 2019, 27(5): 500-522. doi: 10.11926/jtsb.4113.鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展 [J]. 热带亚热带植物学报, 2019, 27(5): 500-522. doi: 10.11926/jtsb.4113.
[14] VITOUSEK P M, SANFORD JR R L. Nutrient cycling in moist tropical forest [J]. Ann Rev Ecol Syst, 1986, 17(1): 137-167. doi: 10. 1146/annurev.es.17.110186.001033.
[15] PANT H K, WARMAN P R. Enzymatic hydrolysis of soil organic phosphorus by immobilized phosphatases [J]. Biol Fertil Soils, 2000, 30(4): 306-311. doi: 10.1007/s003740050008.
[16] MORI T, IMAI N, YOKOYAMA D, et al. Effects of nitrogen and phosphorus fertilization on the ratio of activities of carbon-acquiring to nitrogen-acquiring enzymes in a primary lowland tropical rainforest in Borneo, Malaysia [J]. Soil Sci Plant Nutr, 2018, 64(5): 554-557. doi: 10.1080/00380768.2018.1498286.
[17] WANG C, MORI T, MAO Q G, et al. Long-term phosphorus addition downregulates microbial investments on enzyme productions in a mature tropical forest [J]. J Soils Sediments, 2019, 20(2): 921-930. doi: 10.1007/s11368-019-02450-z.
[18] ZHENG M H, HUANG J, CHEN H, et al. Responses of soil acid phosphatase and beta-glucosidase to nitrogen and phosphorus addition in two subtropical forests in southern China [J]. Eur J Soil Biol, 2015, 68: 77-84. doi: 10.1016/j.ejsobi.2015.03.010.
[19] LI P H, WANG Q, REN H. The simulation on carbon stocks and dynamics inplantation ecosystem [J]. J Trop Subtrop Bot, 2009, 17(5): 494-501. doi: 10.3969/j.issn.1005-3395.2009.05.012.李平衡, 王权, 任海. 马占相思人工林生态系统的碳格局及其动态模拟 [J]. 热带亚热带植物学报, 2009, 17(5): 494-501. doi: 10.3969/ j.issn.1005-3395.2009.05.012.
[20] WANG W, XU J M, LI G Y, et al. Comprehensive selection on growth, stem form ofclones and resistance to[J]. J Trop Subtrop Bot, 2011, 19(5): 419-424. doi: 10.3969/j. issn.1005-3395.2011.05.005.王伟, 徐建民, 李光友, 等. 尾叶桉无性系生长、干形和抗枝瘿姬小蜂综合选择 [J]. 热带亚热带植物学报, 2011, 19(5): 419-424. doi: 10. 3969/j.issn.1005-3395.2011.05.005.
[21] WU J P, LIU Z F, WANG X L, et al. Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in twoplantations in south China [J]. Funct Ecol, 2011, 25(4): 921-931. doi: 10.1111/j.1365-2435.2011.01845.x.
[22] HUANG J, ZHANG W, ZHU X M, et al. Urbanization in China changes the composition and main sources of wet inorganic nitrogen deposition [J]. Environ Sci Pollut Res, 2015, 22(9): 6526-6534. doi: 10.1007/s11356-014-3786-7.
[23] CHEN D M, ZHANG C L, WU J P, et al. Subtropical plantations are large carbon sinks: Evidence from two monoculture plantations in South China [J]. Agric For Meteorol, 2011, 151(9): 1214-1225. doi: 10. 1016/j.agrformet.2011.04.011.
[24] ZHANG W, ZHU X M, LIU L, et al. Large difference of inhibitive effect of nitrogen deposition on soil methane oxidation between plantations with N-fixing tree species and non-N-fixing tree species [J]. J Geophys Res Biogeo, 2012, 117(G4): G00N16. doi: 10.1029/2012J G002094.
[25] CLEVELAND C C, TOWNSEND A R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmo- sphere [J]. Proc Natl Acad Sci USA, 2006, 103(27): 10316-10321. doi: 10.1073/pnas.0600989103.
[26] WANG C, LU X K, MORI T, et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest [J]. Soil Biol Biochem, 2018, 121: 103-112. doi: 10.1016/j.soilbio.2018.03.009.
[27] BELL C W, FRICKS B E, ROCCA J D, et al. High-throughput fluoro- metric measurement of potential soil extracellular enzyme activities [J]. J Vis Exp, 2013, 17(81): e50961. doi: 10.3791/50961.
[28] JING X, CHEN X, TANG M, et al. Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests [J]. Sci Total Environ, 2017, 607-608: 806-815. doi: 10.1016/j.scitotenv. 2017.07.060.
[29] XU Z W, YU G R, ZHANG X Y, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC) [J]. Soil Biol Biochem, 2017, 104: 152-163. doi: 10.1016/j.soilbio.2016.10.020.
[30] TRESEDER K K, VITOUSEK P M. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests [J]. Ecology, 2001, 82(4): 946-954. doi: 10.1890/0012-9658(2001)082[0946: EOSNAO]2.0.CO;2.
[31] ALLISON S D, VITOUSEK P M. Responses of extracellular enzymes to simple and complex nutrient inputs [J]. Soil Biol Biochem, 2005, 37(5): 937-944. doi: 10.1016/j.soilbio.2004.09.014.
[32] XIAO W, CHEN X, JING X, et al. A meta-analysis of soil extracellular enzyme activities in response to global change [J]. Soil Biol Biochem, 2018, 123: 21-32. doi: 10.1016/j.soilbio.2018.05.001.
[33] GUILBEAULT-MAYERS X, TURNER B L, LALIBERTÉ E. Greater root phosphatase activity of tropical trees at low phosphorus despite strong variation among species [J]. Ecology, 2020, 101(8): e03090. doi: 10.1002/ecy.3090.
[34] PNG G K, TURNER B L, ALBORNOZ F E, et al. Greater root phosphatase activity in nitrogen-fixing rhizobial but not actinorhizal plants with declining phosphorus availability [J]. J Ecol, 2017, 105(5): 1246-1255. doi: 10.1111/1365-2745.12758.
[35] CHEN H, LI D J, ZHAO J, et al. Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes: A meta-analysis [J]. Agric Ecosyst Environ, 2018, 252: 126-131. doi: 10.1016/j.agee.2017. 09.032.
[36] TURNER B L, WRIGHT S J. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest [J]. Biogeochemistry, 2013, 117(1): 115-130. doi: 10.1007/s10533-013-9848-y.
[37] MARKLEIN A R, HOULTON B Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems [J]. New Phytol, 2012, 193(3): 696-704. doi: 10.1111/j.1469-8137. 2011.03967.x.
[38] BURNS R G, DEFOREST J L, MARXSEN J, et al. Soil enzymes in a changing environment: Current knowledge and future directions [J]. Soil Biol Biochem, 2013, 58: 216-234. doi: 10.1016/j.soilbio.2012. 11.009.
[39] ZHENG M H, LI D J, LU X, et al. Effects of phosphorus addition with and without nitrogen addition on biological nitrogen fixation in tropical legume and non-legume tree plantations [J]. Biogeochemistry, 2016, 131(1): 65-76. doi: 10.1007%2Fs10533-016-0265-x.
[40] ZHENG M H, CHEN H, LI D J, et al. Biological nitrogen fixation and its response to nitrogen input in two mature tropical plantations with and without legume trees [J]. Biol Fertil Soils, 2016, 52(5): 665-674. doi: 10.1007/s00374-016-1109-5.
[41] LIU L, GUNDERSEN P, ZHANG T, et al. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China [J]. Soil Biol Biochem, 2012, 44(1): 31-38. doi: 10.1016/j.soilbio.2011.08.017.
[42] DEMOLING F, OLA N L, BÅÅTH E. Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils [J]. Soil Biol Biochem, 2008, 40(2): 370-379. doi: 10.1016/j.soilbio.2007.08.019.
[43] ROUSK J, BÅÅTH E, BROOKES P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil [J]. ISME J, 2010, 4(10): 1340-1351. doi: 10.1038/ismej.2010.58.
[44] YOKOYAMA D, IMAI N, KITAYAMA K. Effects of nitrogen and phosphorus fertilization on the activities of four different classes of fine-root and soil phosphatases in Bornean tropical rain forests [J]. Plant Soil, 2017, 416(1/2): 463-476. doi: 10.1007/s11104-017- 3225-x.
[45] BLOOM A J, CHAPIN F S, MOONEY H A. Resource limitation in plants: An economic analogy [J]. Ann Rev Ecol Syst, 1985, 16(1): 363-392. doi: 10.1146/annurev.es.16.110185.002051.
[46] ALLISON V J, CONDRON L M, PELTZER D A, et al. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand [J]. Soil Biol Biochem, 2007, 39(7): 1770-1781. doi: 10. 1016/j.soilbio.2007.02.006.
[47] ZHENG M H, HUANG J, CHEN H, et al. Effects of nitrogen and phosphorus addition on soil phosphatase activity in different forest types [J]. Acta Ecol Sin, 2015, 35(20): 6703-6710. doi: 10.5846/stxb 201405120970.郑棉海, 黄娟, 陈浩, 等. 氮、磷添加对不同林型土壤磷酸酶活性的影响 [J]. 生态学报, 2015, 35(20): 6703-6710. doi: 10.5846/stxb2014 05120970.
[48] WANG S H, ZHOU K J, MORI T, et al. Effects of phosphorus and nitrogen fertilization on soil arylsulfatase activity and sulfur availabi- lity of two tropical plantations in southern China [J]. For Ecol Manag, 2019, 453: 117613. doi: 10.1016/j.foreco.2019.117613.
Effects of Long-term Nitrogen and Phosphorus Additions on Soil Enzyme Activities Related N and P Cycle in Two Plantations in South China
WANG Yu-fang1,2, ZHENG Mian-hai1*, WANG Sen-hao1,2, MAO Jin-hua1,2, MO Jiang-ming1*
(1. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
Nitrogen (N) deposition has been increasing during recent decades and may affect supply of soil nutrients and resources acquired by organism. Soil enzyme activity is an important indicator for reflecting the nutrient acquisition of plants and microorganisms. To explore the effects of long-term N and phosphorus (P) additions on activities of N and P cycling enzymes in subtropical forest soil, two plantationsofandin south China were applied N and P fertilizers for 8 years, each with 50 kg/(hm2·a), and then the activities of soil enzymes, including P-cycling enzymes [phosphomonolipase (PME) and phosphodiesterase (PDE)] and N-cycling enzymes [-1,4-acetylglucosaminidase (NAG) and l-leucine aminopeptidase (LAP)] were measured. The results showed that N addition had no significant effect on activities of soil N and P cycling enzymes. P and N+P additions had significant negative effects on activities of PME and PDE, but which had no effect on activities of NAG and LAP. The growth of soil microorganisms and plants of subtropical plantations in south China may be limited by P rather than by N, and P fertilization could alleviate soil P limitation on plants and microorganisms. Therefore, these would provide an important insight for forest management in the future.
N deposition; P addition; Subtropical forest; Soil enzyme; P limitation
10.11926/jtsb.4293
2020-08-17
2020-09-23
国家自然科学基金项目(31770523, 31901164)资助
This work was supported by the National Natural Science Foundation of China (Grant No. 31770523, 31901164).
王玉芳(1992~ ),女,硕士研究生,研究方向为生态系统生态学。E-mail: wyufang@scbg.ac.cn
Corresponding author. E-mail: mojm@scib.ac.cn, zhengmianhai@scbg.ac.cn