罗玉琴,韦燕菊,林 琳,3,林馥茗,3,苏 峰,孙威江,3
·农产品加工工程·
基于GC-IMS技术的福建白茶产地判别
罗玉琴1,韦燕菊2,林 琳1,3,林馥茗2,3,苏 峰4,孙威江1,3※
(1. 福建农林大学园艺学院,福州 350002;2. 福建农林大学安溪茶学院,泉州 362400;3. 福建省茶产业技术开发基地,福州 350002;4. 福建省种植业技术推广总站,福州 350003)
为了实现福建省白茶产地的快速鉴别,采用气相色谱-离子迁移谱(Gas Chromatography-Ion Mobility Spectrometry,GC-IMS)技术对福建不同产地白茶挥发性物质进行检测,结合化学计量学方法建立白茶产地判别模型。结果表明,福鼎、福安、政和、建阳和松溪各产地间白茶挥发性物质含量存在差异,政和、建阳和松溪3地制成的白茶样品相似度相对较高。GC-IMS谱图数据和241种标记物质数据均可用于白茶产地区分。GC-IMS谱图数据建立的K近邻线性判别分析(K-near Neighbor Linear Discriminant Analysis,LDA-KNN)、多层感知机线性判别分析(Multi-layer Perceptron Linear Discriminant Analysis,LDA-MLP)和支持向量机线性判别分析(Support Vector Machine Linear Discriminant Analysis,LDA-SVM)模型判别率分别为91.84%、93.88%和93.88%;标记物质建立的Adaboost线性判别分析(LDA-Adaboost)、决策树线性判别分析(LDA-Decison Tree)、LDA-KNN、LDA-MLP、随机森林线性判别分析(LDA-Random Forest)和LDA-SVM模型判别率均为100%。结果表明基于标记物质数据建立的6种模型能更有效对白茶产地进行区分。研究结果为福建白茶原产地保护提供技术支持。
判别分析方法;风味;气相色谱离子迁移谱;白茶;挥发性物质
白茶依据原料采摘标准不同,可分为白毫银针、白牡丹、贡眉和寿眉[1]。白茶主产于福建闽东的福鼎、福安和闽北的政和、建阳、松溪等地。由于白茶的加工工艺基本一致,同一花色白茶外形相似,消费者依靠肉眼无法直接识别其产地。随着白茶市场升温,消费者越来越热衷于购买核心茶区,特别是福鼎产地的优质白茶,福鼎白茶供不应求,不良商家以次充好、乱贴标签造成市场紊乱,损害消费者和生产者权益[2]。因此亟需研发相应的检测手段来判别白茶产品产地,以规范白茶茶叶市场。
目前用于茶叶产地鉴别的检测技术主要有高效/超高效液相色谱[3-7],核磁共振波谱[8],傅里叶变换近红外、红外光谱[3,9-12],矿物质元素[13-14],元素[15-16]与稳定同位素[17-18],质子转移反应-飞行时间质谱[19],电子鼻[20],气相色谱离子迁移谱技术(Gas Chromatography-Ion Mobility Spectrometry,GC-IMS)[21]等。有研究表明矿物质元素可以用于白茶产地判别,利用线性判别分析(Linear Discriminant Analysis,LDA)、支持向量机(Support Vector Machine,SVM)和K-最近邻(K-nearest Neighbors,KNN)方法建立的白茶产地鉴别率分别达到98.44%、95.31%和100%[17]。该方法虽然产地鉴别效果好,但也存在操作复杂,检测速度慢的缺点。气相色谱离子迁移谱是一种快速、灵敏、无损的挥发性有机物检测技术,它兼具气相色谱的高分离能力和离子迁移谱的高分辨、高灵敏度,能够分离化合物的同分异构体,与气相色谱-质谱(Gas Chromatography-Mass Spectrometry,GC-MS)相比,具有不需要样品前处理,操作简单的优势[22-23]。GC-IMS被广泛应用于食品如橄榄油[24-25]、火腿[26]、蜂蜜风味分析[27]和酒[28-29]、水蜜桃[30]、咖啡[31]等产地区分中。在茶叶领域多应用于绿茶挥发性物质定性、绿茶风味、香型分类以及乌龙茶产地鉴别[21,32-34]。林若川等[33]、刘亚芹等[34]采用气相色谱-离子迁移谱技术检测绿茶挥发性物质,结果表明不同种类绿茶挥发性物质种类和含量存在差异,利用GC-IMS技术可以区分绿茶种类。Jin等[21]研究结果表明采用GC-IMS技术建立的闽北3个小产区大红袍模型正判率优于稳定同位素产地判别模型。基于此,本研究采用GC-IMS技术对福建5个不同产地白茶挥发性物质进行检测,结合化学计量学方法建立白茶产地判别模型,以期为白茶产地鉴别和原产地保护提供参考依据。
从福建省福鼎市、福安市、政和县、建阳县和松溪五地采购共98份白牡丹白茶茶样,除建阳县部分白茶茶样于2018年加工制成,其他白茶茶样均于2019年加工而成。其中福鼎市30份、福安市28份、政和县22份、建阳县13份、松溪县5份茶样。
FlavourSpec®风味谱仪,德国G.A.S.公司;高速粉碎机,上海鼎广机械设备有限公司;BSA124S 电子天平,德国Sartorius公司。
1.3.1 GC-IMS谱图的采集
采用高速粉碎机将茶样研磨成粉,置4 ℃冰箱备用。称取(0.2000±0.0005) g茶样,装入20 mL磁盖顶空瓶中。在孵化器中以80 ℃温度、500 r/min振动孵化15 min,通过80 ℃注射器将200L样品顶空自动注入GC-IMS设备中。配备气相色谱柱FS-SE-54-CB-1进行色谱分离,以氮气(纯度99.99%)为载气,程序运行流量:初始漂移气体流速EPC1为150 mL/min,载气流速EPC2为2 mL/min,运行10 min后EPC1维持150 mL/min,EPC2流量爬升至10 mL/min,运行至30 min 时EPC1为150 mL/min,EPC2为130 mL/min,在30 min 20 s时结束运行程序,每个样品检测2次。
1.3.2 数据分析
使用德国GAS公司的LAV2.2.1软件对处理数据,GCxIMS Library Search软件鉴定茶样中所含香气挥发物,LAV软件和GraphPad Prism8软件分别生成样品挥发性物质指纹谱图、样品相似匹配度图。利用Python软件对白茶两种GC-IMS数据进行主成分分析(Principal Component Analysis,PCA)、线性判别分析降维(LDA)。第一种数据类型为原始谱图数据:利用LAV软件将原始数据导出转换成*.CSV格式,每个样品数据矩阵大小为4 615×4 500(保留时间0~1 799.46 s,迁移时间0~29.993 ms),截取包含大多数分析信息的数据矩阵2 039×991(保留时间105.00~900.00 s,迁移时间8.000~14.600 ms)。首先将每一行数据剪切转置粘贴生成1×2 020 649大小的数据矩阵。然后,将全部样品谱图数据整合成一个数据集矩阵[24]。第二种数据类型为挥发性物质峰强度值:在GC-IMS图谱上共标记出241个挥发性物质,通过LAV定量插件自动获取样品的挥发性物质峰强度值,每个样品生成1×241大小的数据矩阵,整合全部样品生成600×241数据集矩阵。
结合Adaboost算法、决策树(Decision Tree)、K近邻算法(KNN)、多层感知机(Multi-Layer Perceptron,MLP)、随机森林算法(Random Forest)、随机梯度下降(Stochastic Gradient Descent,SGD)和支持向量机(SVM)分类方法建立白茶产地判别模型。
图1是采用LAV插件Reporter作的不同产地白茶GC-IMS三维谱图,图中每一个峰都代表一种挥发性香气物质。白色为谱图背景色,颜色代表物质的峰信号强度,深灰色表示峰信号强、物质浓度较高,颜色越深则物质浓度越高,浅灰色表示峰信号弱,物质浓度较低。如图1,不同产地白茶其挥发性香气物质组成是相同的,但在其物质含量上存在差异。
通过LAV软件在GC-IMS图谱中共标记了241种挥发性香气物质,根据气相保留时间和离子迁移时间,利用GCxIMS Library Search软件对物质进行NIST数据库匹配,共鉴定出41种挥发性物质的单体和部分物质的二聚体、三聚体。其中碳氢化合物1种,醇、醛类各14种,酮类3种,酯类2种,酸类4种,杂氧化合物1种,吡嗪类2种(表1)。
表1 白茶中部分挥发性物质定性结果
图2是不同产地白茶的GC-IMS二维谱图对比,以福鼎白茶谱图做为参比,其他茶样谱图扣除参比。由图2可知,福鼎白茶的大部分香气物质含量较其他4个产地白茶高,而松溪产地白茶只有少数的香气物质含量高于其他各产区地白茶(见图2b)。图2a中标注的红色方框内挥发性香气物质在福安、政和、建阳和松溪产地白茶中含量较高,而在福鼎白茶中含量相对较低;蓝色方框内挥发性香气物质在福鼎白茶中含量较高,而在其他4个产地中含量相对较低。
为了进一步比较不同产地白茶之间挥发性香气物质差异,以福鼎白茶(样品编号1、2)、福安白茶(样品编号1、2)、政和白茶(样品编号1、2)、建阳白茶(样品编号1、2)和松溪白茶(样品编号1、2)为例,通过LAV-Gallery软件生成GC-IMS指纹图谱。由图3a部分可知,不同产地白茶挥发性香气物质中2-乙基-6-甲基吡嗪和水杨酸甲酯含量差异不大。芳樟醇、青叶醇、己醛、苯甲醛、庚醛、2-庚酮、2-正戊基呋喃和柠檬烯在福鼎白茶中含量较高。氧化芳樟醇、2-苯基乙醇和6-甲基-5-庚烯-2-酮在福安白茶中含量较高。正辛醇、正己醇、癸醛、(E,E)-2,4-庚二烯醛、正辛醛、反-2-辛烯醛、反式-2-庚醛、糠醛、戊醛和辛酸在政和白茶中含量较高。在图3b部分中,不同产地白茶共有53种高含量特征挥发性未知物质,其中福鼎白茶29种,福安白茶9种,政和白茶6种,建阳白茶2种,松溪白茶7种。未知物质编号“88”和“89”未知香气物质在福鼎白茶和福安白茶中含量远高于其他3个产地,而编号“78”在政和白茶和松溪白茶中含量远高于福鼎、福安和建阳产地白茶。不同产地白茶各有其区别于其他产地白茶的高含量特征挥发性物质,可以用于白茶产地判别模型的建立。
基于图3a中69种挥发性标记物质含量对196份白茶样品进行相似度分析,结果如图4,颜色越深,相似度越高,颜色越浅,样品差异性越大。同一产地样品相似度大部分在80%~100%之间,少部分样品相似度为66%~79%。不同产地样品相似度大部分在64%~85%,极少部分组间样品相似度为90%。组内样品相似度高,组间样品差异性大。产自福鼎、福安的白茶与政和、建阳、松溪产地白茶样品相似度较低,挥发性香气物质含量差异较大。而政和、建阳和松溪3个产地生产的白茶样品相似度相对较高,挥发性香气物质含量差异较小。
PCA是一种无标签的数据降维方法,将多个原始指标化为少数几个新指标,并能最大限度保留样本原始信息[35]。而LDA是一种有监督的降维分类方法,能抓住样品判别特征,判别样品所属类别[36]。采用PCA、LDA对196个样品进行数据降维处理,由于松溪建阳产地样品数量过少,将松溪建阳产地样品归为一类(图 5)。图5a、c为不同产地白茶数据PCA降维结果,其中筛选谱图数据PC1、PC2累计贡献率为36%,标记物质PC1、PC2累计贡献率为47%。各产地白茶分布存在交叉,基于标记物PCA产地区分效果优于筛选谱图数据的PCA产地区分。在图5b、d中,不同产地白茶各有其自己的聚类群。福鼎白茶和福安白茶各自区分,政和白茶和建阳松溪白茶样本相似度较高,区分效果较福鼎、福安白茶差。同PCA降维结果相同,基于标记物LDA产地区分效果优于筛选谱图数据的LDA产地区分。
鉴于LDA降维效果优于PCA主成分分析,本文采用LDA对样本数据进行降维,基于两种类型数据结合不同分类方法建立白茶产地判别模型。随机抽取196份不同产地白茶样品的75%样品作为训练集,剩余25%样本数作为测试集。将筛选的谱图数据输入LDA-Adaboost、LDA-Decision Tree、LDA-KNN、LDA-MLP、LDA-Random Forest、LDA-SGD和LDA-SVM模型,各模型产地识别率分别为85.71%、85.71%、91.84%、93.88%、89.80%、79.59%和93.88% (表2)。LDA-Adaboost、LDA-Decision Tree、LDA-Random Forest和LDA-SGD模型产地判别率低,均低于90%,且LDA-Decision Tree、LDA-Random Forest模型存在数据过拟合问题。LDA-KNN、LDA-MLP和LDA-SVM模型受试者工作特征曲线(ROC)下的面积(AUC)分别为0.93、0.96、0.96,其产地模型性能好,产地判别率均高于90%,产地识别正确率高。结果表明选择香气谱图数据可用于白茶产地的区分。
同谱图数据模型一致,以3∶1的比例将196份白茶样品分为训练样和测试样。将241种标记挥发性物质的峰强度值输入LDA-Adaboost、LDA-Decision Tree、LDA-KNN、LDA-MLP、LDA-Random Forest、LDA-SGD和LDA-SVM模型,7种模型的产地识别率分别为100%、100%、100%、100%、100%、79.59%和100%(表2)。LDA-SGD模型产地判别率低,政和、松溪建阳产地白茶未被完全分隔开。LDA-Adaboost、LDA-Decision Tree、LDA-KNN、LDA-MLP、LDA-Random Forest和LDA-SVM模型ROC曲线下的面积(AUC)均为1.0,产地判别率均为100%。其产地模型性能好,产地识别正确率高。综上,采用标记物质峰强度值对白茶产地进行分类是可行的,且基于标记物质建立的产地模型正判率高于基于筛选谱图数据建立的产地判别模型。
表2 白茶产地模型判别结果
注:AUC为受试者工作特征曲线下的面积,AUC值越大,模型性能越好。
Note: AUC is the area under the receiver operating characteristic curve, the higher the AUC value was, the better the model performed.
本研究采用GC-IMS技术对不同产地白茶挥发性香气物质进行检测,共鉴定出41种香气物质,白茶香气成分主要以醇类、醛类化合物为主。许绍香[37]、王力等[38]研究结果也表明白茶香气主要以醇类、醛类化合物为主。通过不同产地白茶GC-IMS对比图谱和挥发性香气物质指纹图谱,初步确定福鼎白茶、政和白茶中高含量特征挥发性香气物质种类较福安、建阳、松溪产地白茶多。芳樟醇、2-庚酮、己醛三聚体、青叶醇等具有花果香、药香、青草气的挥发性物质在福鼎白茶样品中含量较高,正己醇二聚体、癸醛、正辛醛、反-2-辛烯醛、糠醛等在政和白茶样品中含量较高。其中正己醇、癸醛、正辛醛、反-2-辛烯醛分别呈花香和松香、甜香、果香、果仁香和青气、烘炒香[39-40]。具有花果香、甜香、木香的氧化芳樟醇在福安白茶中含量较高。不同产地白茶挥发性香气物质含量存在差异,这可能与茶树品种、加工工艺有关[41-42]。
已有研究表明利用GC-IMS技术能准确确定绿茶茶样的产地,基于GC-IMS的KNN模型对武夷山大红袍、安溪铁观音产地判别率分别为95.2%和97.8%[21,32,34]。本研究基于两种数据类型结合7种分类方法建立的白茶产地判别模型均能在一定程度上区分白茶产地,但不同模型具有不同的判别效果。在筛选谱图数据模型中LDA-KNN、LDA-MLP和LDA-SVM判别率分别为91.84%、93.88%和93.88%,产地识别率均>90%。而在标记物质模型中LDA-Adaboost、LDA-Decision Tree、LDA-KNN、LDA-MLP、LDA-Random Forest和LDA-SVM判别率均为100%。基于标记物质的白茶产地判别模型效果优于筛选谱图数据模型,Contreras等[24]基于两种GC-IMS数据类型构建橄榄油分类模型也进一步证明,使用标记物质对橄榄油进行分类准确率更高。
此外,对比两种GC-IMS数据模型中的误判样本发现,多数误判发生在政和白茶与松溪建阳白茶之间,在筛选谱图数据LDA-Adaboost模型中1份松溪建阳白茶被误判为福安白茶,而在标记物质LDA-SGD模型中10份松溪建阳白茶被误判为政和白茶。追溯白茶产区分布发现福鼎、福安属于闽东茶区,政和、建阳和松溪相接壤,同属于闽北茶区[1]。福鼎、福安产地白茶识别率高,与政和、建阳和松溪产地白茶相互区分,可能与闽东、闽北地区地理气候环境和主栽茶树品种不同有关。政和、建阳、松溪产地白茶误判率高可能与地理位置比邻,制茶工艺相关。后期可通过增加产地样本数量,进一步研究3个产地白茶的差异性,提高模型性能。
本研究结果表明不同产地白茶挥发性香气物质组成是相同的,但在其物质含量上存在差异。产自福鼎、福安白茶的香气组分含量与政和、建阳、松溪差异较大,而政和、建阳和松溪3地白茶香气组分含量较相似。基于筛选谱图数据和标记物质数据构建的模型进行白茶产地判别是可行的,标记物质数据构建的LDA-Adaboost、LDA-Decision Tree、LDA-KNN、LDA-MLP、LDA-Random Forest和LDA-SVM模型正判率均为100%,而筛选谱图数据构建的LDA-KNN、LDA-MLP和LDA-SVM模型判别率在91%~94%之间,说明使用标记物质数据建立产地判别模型能获得更高的正判率。
[1] 危赛明. 白茶的产区和品质特征[J]. 中国茶叶加工,2019,(3):77-78.
[2] 耳东. 呼之欲出的“福建白茶”[J]. 茶道,2018(9):29-31.
[3] 胡燕,齐桂年. 我国不同产地黑茶的FTIR指纹图谱分析[J]. 核农学报,2014,28(4):684-691. Hu Yan, Qi Guinian. Study on the FTIR fingerprinting of dark teas from different regions in China[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(4): 684-691. (in Chinese with English abstract)
[4] 邱晓红,张丹丹,陈静,等. 基于HPLC和模式识别方法的福建水仙茶产地判别分析[J]. 福建农林大学学报:自然科学版,2017,46(3):260-264. Qiu Xiaohong, Zhang Dandan, Chen Jin, et al. Discriminant analysis of Fujian Shuixian tea based on HPLC and pattern recognition method[J]. Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2017, 46(3): 260-264. (in Chinese with English abstract)
[5] 成浩,王丽鸳,周健,等. 基于化学指纹图谱的扁形茶产地判别分析研究[J]. 茶叶科学,2008,28(2):83-88. Cheng Hao, Wang Liyuan, Zhou Jian, et al. Discriminant classification of production area of flatten-shaped green tea based on multiple chemical fingerprint[J]. Journal of Tea Science, 2008, 28(2): 83-88. (in Chinese with English abstract)
[6] 范方媛,徐鹏程,李春霖,等. 基于HPLC多元指纹图谱的龙井茶产地判别研究[J]. 中国食品学报,2019,19(10):278-285. Fan Fangyuan, Xu Pengcheng, Li Chunlin, et al. Studies on geographical discrimination of Longjing teas based on multiple HPLC fingerprints[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(10): 278-285. (in Chinese with English abstract)
[7] Navratilova K, Hrbek V, Kratky F, et al. Green tea: Authentication of geographic origin based on UHPLC-HRMS fingerprints[J]. Journal of Food Composition and Analysis, 2019, 78: 121-128.
[8] Meng W, Xu X, Cheng K, et al. Geographical origin discrimination of Oolong Tea (TieGuanYin, Camellia sinensis (L. ) O. Kuntze) using proton nuclear magnetic resonance spectroscopy and near-infrared spectroscopy[J]. Food Analytical Methods, 2017, 10(11): 3508-3522.
[9] 梁珣. 典型相关分析算法及其在茶叶产地识别中的应用[D]. 杭州:中国计量大学,2017. Liang Xun. Canonical Correlation Analysis Algorithm and Its Application on Tea Origin Recognition[D]. Hangzhou: China Jiliang University, 2017. (in Chinese with English abstract)
[10] 占茉莉,李勇,魏益民,等. 应用FT-IR光谱指纹分析和模式识别技术溯源茶叶产地的研究[J]. 核农学报,2008,22(6):829-833. Zhan Moli, Li Yong, Wei Yimin, et al. Determination of the geographical origin of tea by ft-irspectroscopy analysis and pattern recognition technique[J]. Journal of Nuclear Agricultural Sciences, 2008, 22(6): 829-833. (in Chinese with English abstract)
[11] 于英杰,孙威江. 近红外光谱及高光谱技术在茶叶上的应用[J]. 亚热带农业研究,2014,10(4):269-273. Yu Yingjie, Sun Weijiang. Advances in application of near-infrared spectroscopy and hyperspectral technology to tea[J]. Subtropical Agriculture Research, 2014, 10(4): 269-273. (in Chinese with English abstract)
[12] 李余进,李超,李家华,等. 基于近红外光谱的普洱茶产地识别研究[J]. 湖北农业科学,2020,59(5):138-141. Li Yujin, Li Chao, Li Jiahua, et al. Identification of Pu'er tea origin based on near infrared spectroscopy[J]. Hubei Agricultural Sciences, 2020, 59(5): 138-141. (in Chinese with English abstract)
[13] 宋向飞. 基于矿质元素指纹图谱技术的碧螺春茶产地溯源研究[D]. 南京:南京农业大学,2018. Song Xiangfei. Study on the Geographical Origin of Biluochun Tea Based on Mineral Element Fingerprinting Technology[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese with English abstract)
[14] 王洁,石元值,张群峰,等. 基于矿物元素指纹的龙井茶产地溯源[J]. 核农学报,2017,31(3):547-558. Wang Jie, Shi Yuanzhi, Zhang Qunfeng, et al. Geographical origin discriminant of Longjing tea based on mineral element fingerprints[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(3): 547-558. (in Chinese with English abstract)
[15] 姚清华,颜孙安,张炳铃,等. 基于稀土元素指纹分析的铁观音原产地溯源技术[J]. 食品安全质量检测学报,2018,9(2):265-269. Yao Qinghua, Yan Sunan, Zhang Bingling, et al. The origin traceability technology of Tieguanyin based on the fingerprint analysis of rare earth elements[J]. Journal of Food Safety & Quality, 2018, 9(2): 265-269. (in Chinese with English abstract)
[16] 杨纯,颜鸿飞,吕小园,等. 元素指纹图谱用于安化黑茶的原产地判别[J]. 食品科学,2020,41(16):286-291. Yang Chun, Yan Hongfei, Lu Xiaoyuan, et al. Geographical origin discrimination of Anhua dark tea by elemental fingerprint[J]. Food Science, 2020, 41(16): 286-291. (in Chinese with English abstract)
[17] Ye X H, Jin S, Wang D H, et al. Identification of the origin of white tea based on mineral element content[J]. Food Analytical Methods, 2017, 10(1): 191-199.
[18] 童成英,何守阳,丁虎. 茶叶产地与品质的元素、同位素鉴别技术研究进展[J]. 生态学杂志,2018,37(5):1574-1583. Tong Chengying, He Shouyang, Ding Hu. Research progress of element and isotope identification technology for the origin and quality of tea[J]. Chinese Journal of Ecology, 2018, 37(5): 1574-1583. (in Chinese with English abstract)
[19] Zhang D, Wu W, Qiu X, et al. Rapid and direct identification of the origin of white tea with proton transfer reaction time-of-flight mass spectrometry[J/OL]. Rapid Communications in Mass Spectrometry, 2020, 34(20): e8830. [2020-12-25]https://doi.org/10.1002/rcm.8830
[20] 马会杰,蒋宾,潘玉兰,等. 电子鼻对不同产地名优绿茶和红茶香气特征的判别研究[J]. 食品安全与检测,2019,44(1):336-344. Ma Huijie, Jiang Bin, Pan Yulan, et al. Identification of aroma characteristics of famous green tea and black tea from various regions by electronic nose[J]. Food Science and Technology, 2019, 44(1): 336-344. (in Chinese with English abstract)
[21] Jin J, Zhao M, Zhang N, et al. Stable isotope signatures versus gas chromatography-ion mobility spectrometry to determine the geographical origin of Fujian Oolong tea (Camellia sinensis) samples[J]. European Food Research and Technology, 2020, 246(5): 955-964.
[22] 陈鑫郁,贺金娜,陈通,等. 气相色谱离子迁移谱联用技术在食用植物油品质检测中的应用[J]. 食品安全质量检测学报,2018,9(2):396-401. Chen Xinyu, He Jinna, Chen Tong, et al. Application of gas chromatography-ion mobility spectrometry in quality determination of edible vegetable oil[J]. Journal of Food Safety & Quality, 2018, 9(2): 396-401. (in Chinese with English abstract)
[23] 陈彦憬,于建娜,敬国兴,等. 气相色谱-离子迁移谱技术在农业领域的应用[J]. 分析试验室,2020,39(12):1480-1488. Chen Yanjing, Yu Jianna, Jing Guoxing, et al. Application of gas chromatography-ion mobility spectrometry in agriculture[J]. Chinese Journal of Analysis Laboratory, 2020, 39(12): 1480-1488. (in Chinese with English abstract)
[24] Contreras M, Jurado-campos N, Arce L, et al. A robustness study of calibration models for olive oil classification: Targeted and non-targeted fingerprint approaches based on GC-IMS[J]. Food Chemistry, 2019, 288: 315-324.
[25] Gerhardt N, Schwolow S, Rohn S, et al. Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, kNN, and SVM[J]. Food Chemistry, 2019, 278: 720-728.
[26] Arroyo-manzanares N, Martín-gómez A, Jurado-campos N, et al. Target vs spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace – gas chromatography–ion mobility spectrometry[J]. Food Chemistry, 2018, 246: 65-73.
[27] Wang X, Yang S, He J, et al. A green triple-locked strategy based on volatile-compound imaging, chemometrics, and markers to discriminate winter honey and sapium honey using headspace gas chromatography-ion mobility spectrometry[J]. Food Research International, 2019, 119: 960-967.
[28] Garrido-delgado R, Arce L, Guaman Av, et al. Direct coupling of a gas-liquid separator to an ion mobility spectrometer for the classification of different white wines using chemometrics tools[J]. Talanta, 2011, 84(2): 471-479.
[29] 祁兴普,陈通,刘萍,等. 基于气相离子迁移谱黄酒产地识别的研究[J]. 食品工业科技,2019,40(22):273-281. Qi Xingpu, Chen Tong, Liu Ping, et al. Origin identification of yellow wine based on gas chromatography-ion mobility spectrometry[J]. Science and Technology of Food Industry, 2019, 40(22): 273-281. (in Chinese with English abstract)
[30] 于怀智,姜滨,孙传虎,等. 顶空气相离子迁移谱技术对不同产地水蜜桃的气味指纹分析[J]. 食品与发酵工业,2020,46(16):231-235. Yu Huaizhi, Jiang Bin, Sun Chuanhu, et al. Analysis of nectarine odor fingerprints based on headspace-gas chromatography-ion mobility spectroscopy[J]. Food and Fermentation Industries, 2020, 46(16): 231-235. (in Chinese with English abstract)
[31] 弘子姗,谭超,苗玥,等. 基于顶空气相色谱-离子迁移谱的不同产地咖啡挥发性有机物指纹图谱分析[J]. 食品科学,2020,41(8):243-249. Hong Zishan, Tan Chao, Miao Yue, et al. Fingerprint analysis of volatile organic compounds in coffees from different geographical origins by headspace-gas chromatography-ion mobility spectrometry[J]. Food Science, 2020, 41(8): 243-249. (in Chinese with English abstract)
[32] 霍羽佳,任芳,陈硕. 气相离子迁移谱(GC-IMS):基于挥发性化合物指纹信息的茶叶质量评估新技术[C]. 青岛:第八届食品质量安全技术论坛,2017. Huo Yujia, Ren Fang, Chen Shuo. Quality assessment of tea based on volatile compounds fingerprint using GC-IMS analysis[C]. Qingdao: The 8th Forum on food quality and safety technology, 2017. (in Chinese with English abstract)
[33] 林若川,邓榕,许丽蓉. 基于GC-IMS技术的绿茶风味鉴别方法可行性的研究[J]. 广东化工,2017,44(23):19-21. Lin Ruochuan, Deng Rong, Xu Lirong. Feasibility study of green tea flavor identification based on GC-IMS technology[J]. Guangdong Chemical Industry, 2017, 44(23): 19-21. (in Chinese with English abstract)
[34] 刘亚芹,王辉,黄建琴,等. GC-IMS在绿茶挥发性物质定性分析中的应[J]. 中国茶叶加工,2020(1):55-59. Liu Yaqin, Wang Hui, Huang Jianqin, et al. Application of GC-IMS in qualitative analysis of volatile compounds in green tea[J]. China Tea Processing 2020(1): 55-59. (in Chinese with English abstract)
[35] 吴景社,康绍忠,王景雷,等. 基于主成分分析和模糊聚类方法的全国节水灌溉分区研究[J]. 农业工程学报,2004,20(4):64-68. Wu Jingshe, Kang Shaozhong, Wang Jinglei, et al. Zoning of water-saving irrigation in China using principal components analysis and fuzzy-C-means[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2004, 20(4): 64-68. (in Chinese with English abstract)
[36] 王晓慧. 线性判别分析与主成分分析及其相关研究评述[J]. 中山大学研究生学刊:自然科学、医学版,2007,28(4):50-61. Wang Xiaohui. A summary of LDA, PCA and relative work[J]. Journal of the Graduates Sun Yat-Sen University: Natural Sciences、Medicine, 2007, 28(4): 50-61. (in Chinese with English abstract)
[37] 许绍香. 白牡丹工艺优化与香气分析研究[D]. 北京:中国农业科学院,2012. Xu Shaoxiang. Technology Optimization of Baimudan and Its Aroma Analysis[D]. Beijing: Chinese Academy of Agricultural Sciences(CAAS), 2012. (in Chinese with English abstract)
[38] 王力,蔡良绥,林智,等. 顶空固相微萃取-气质联用法分析白茶的香气成分[J]. 茶叶科学,2010,30(2):115-123. Wanf Li, Cai Liangsui, Lin Zhi, et al. Analysis of aroma compounds in white tea using headspace solid-phase micro-extraction and GC-MS[J]. Journal of Tea Science, 2010, 30(2): 115-123. (in Chinese with English abstract)
[39] 陈维,曾斌,苗爱清,等. 基于化学计量学分析堆青时间对白茶香气的影响[J]. 现代食品科技,2018,34(5):241-250. Chen Wei, Zeng Bin, Miao Aiqing, et al. Effect of pile-up processing duration on the white tea aroma analyzed by chemometrics approaches[J]. Modern Food Science and Technology, 2018, 34(5): 241-250. (in Chinese with English abstract)
[40] 陈志达. 白茶风味品质的物质基础与量化评价研究[D]. 杭州:浙江大学,2019. Chen Zhida. Research on the Material Basis and Quantitative evaluation of the Flavor Quality of White Tea[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract)
[41] 黄赟. 福建白茶化学成分与感官品质研究初报[D]. 福州:福建农林大学,2013. Huang Yun. Studies on Chemical Components and Sensory Qualities of Fujian White Teas[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013. (in Chinese with English abstract)
[42] 王丽丽,张应根,杨军国,等. 顶空固相微萃取/气相色谱:质谱联用法分析绿茶和白茶香气物质[J]. 茶叶学报,2017,58(1):1-7. Wang Lili, Zhang Yinggen, Yang Junguo, et al. Analysis of aroma components in green and white teas using headspace solidPhase microextraction coupled with gas chromatography-mass spectrometry[J]. Acta Tea Sinica, 2017, 58(1): 1-7. (in Chinese with English abstract)
Origin discrimination of Fujian white tea using gas chromatography-ion mobility spectrometry
Luo Yuqin1, Wei Yanju2, Lin lin1,3, Lin Fuming2,3, Su Feng4, Sun Weijiang1,3※
(1.,,350002,;2.,,362400,;3.,350002,;4.350003,)
White tea is one of the six categories of tea. Fresh leaf picking, withering and drying are the three basic processing technology of white tea, which are relatively simple. White tea originated in Fujian Province, mainly produced in Fuding City, Zhenghe County, Jianyang county and Songxi County. Aroma is one of the important factors that determine the quality of tea. The main aroma components of Yunnan Yueyue white tea and Fujian Baihao Yinzhen tea were reported, but the differences of volatile aroma components of white tea from different main producing areas in Fujian Province were not clear. Gas Chromatography Ion Mobility Spectrometry (GC-IMS) is a new gas phase separation and detection technology in recent years, which has high resolution of gas chromatography and low detection limit of ion mobility spectrometry. In order to reveal the different volatile aroma components of white tea from different areas in Fujian Province, and to realize the rapid identification of white tea producing areas, GC-IMS technology was used to detect the volatile components of white tea from different areas in Fujian Province. Meanwhile, Linear Discriminant Analysis (LDA) was carried out to reduce the dimension of aroma data, and established a discrimination model of white tea producing areas combined with chemometrics method. The results showed that the contents of volatile compounds in white tea among the producing areas of Fuding, Fu’an, Zhenghe, Jianyang and Songxi were different. The white tea samples of Zhenghe, Jianyang and Songxi had higher similarity, and lower content of volatile aroma substances. Both GC-IMS spectrum data and 241 kinds of labeled aroma compounds data could be used to distinguish the origin of white tea, and LDA based on marker material data was better than it based on GC-IMS spectrum data. The discriminant rates of K Near Neighbor Linear Discriminant Analysis (LDA-KNN), Multi-Layer Perceptron Linear Discriminant Analysis (LDA-MLP) and Support Vector Machine Linear Discriminant Analysis (LDA-SVM) model based on the GC-IMS spectrum data were 91.84%,93.88% and 93.88%, respectively. By comparing the three patterns of misjudgment samples, it was found that the origin misjudgment occurred between Zhenghe white tea and Songxi Jianyang white tea, which was related to the small difference of volatile aroma components and high similarity of samples. The results showed that the discriminant rates of Adaboost Linear Discriminant Analysis (LDA-Adaboost), Decision Tree Linear Discriminant Analysis (LDA-Decison Tree), LDA-KNN, LDA-MLP, Random Forest Linear Discriminant Analysis (LDA-Random Forest) and LDA-SVM were 100%. The positive discrimination rate of the origin model based on the marker substance was higher than that based on the GC-IMS spectrum data. All six discriminant models based on the labelled substances data could effectively distinguish the origin of white tea. The results of this study can provide technical support for the origin protection of Fujian white tea.
discriminant analysis; flavors; gas chromatography ion mobility spectroscopy; white tea; volatile matter
罗玉琴,韦燕菊,林琳,等. 基于GC-IMS技术的福建白茶产地判别[J]. 农业工程学报,2021,37(6):264-273.doi:10.11975/j.issn.1002-6819.2021.06.032 http://www.tcsae.org
Luo Yuqin, Wei Yanju, Lin lin, et al. Origin discrimination of Fujian white tea using gas chromatography-ion mobility spectrometry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 264-273. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.032 http://www.tcsae.org
2020-10-27
2020-12-30
省级科技项目(2020N3014);福建农林大学茶产业链科技创新与服务体系建设项目(K1520005A04)联合资助
罗玉琴,研究方向为茶叶品质与检测。Email:756445997@qq.com
孙威江,教授。研究方向为茶叶品质与标准化。Email:swj8103@126.com。
10.11975/j.issn.1002-6819.2021.06.032
S37
A
1002-6819(2021)-06-0264-10