芦飞凡,谭秀成,王利超,唐青松,肖笛,董少峰,苏成鹏,潘政屹
1.油气藏地质及开发工程国家重点实验室,西南石油大学,成都 610500
2.中国石油天然气集团有限公司碳酸盐岩储层重点实验室西南石油大学研究分室,成都 610500
3.中国石油西南油气田分公司气田开发管理部,成都 610051
4.表生地球化学教育部重点实验室,南京大学地球科学与工程学院,南京 210023
5.中国石油西南油气田分公司勘探开发研究院,成都 610041
四川盆地中二叠统栖霞组白云岩是盆地天然气勘探的一个重要领域,长久以来深受关注[1-4],但该套白云岩储层的成因和分布规律长期以来存在争议。现有观点普遍认为该套白云岩储层的形成机制与白云岩化密切相关[1]。已报道的白云岩成因观点则包括混合水白云岩化[5-6]、埋藏白云岩化[6-9]、“玄武岩淋滤”[10]、“热次盆”[11]及构造—热液白云岩化[1-4,12]等,且以浅埋藏期发生的热液白云岩化模式占主导。按此规律,白云岩储层应该围绕深大断裂展开[12]。然而,近年来有报道表明四川盆地栖霞组顶部存在不整合暴露面,并遭受到大气淡水岩溶作用[13-14],这与空谷阶末期全球海退事件相对应[15-18]。在当前的生产实践中也发现,四川盆地栖霞组中上部均不同程度受到岩溶影响,且取芯井中的白云岩优质储层展布与孔隙特征十分明显地表现出经受溶蚀作用影响。这表明栖霞组的白云岩储层成因很可能与过去认识不同。因此,本次以钻孔资料较为丰富,且前人研究比较匮乏的四川盆地中部地区为例,收集了该区钻遇栖霞组的57口井资料,并对其中11口取芯井进行了细致的岩芯观察,制作薄片396片,进行小尺寸柱塞样品物性分析559件,以此为基础对这套岩溶型白云岩储层进行研究,分析了储层形成的主控因素,以期为四川盆地栖霞组油气勘探提供理论支持。
四川盆地是中国南方扬子准地台的一个次级构造单元,是中国西南部一个大型叠合含油气盆地。研究区位于盆地中部射洪—南充—广安一带(图1),大地构造位置处于川中古隆中斜平缓带,面积约3×104km2。
图1 研究区地质背景图Fig.1 Geological background of the study area
川中地区栖霞组地层顶部与上覆茅口组呈平行不整合接触[13-14],下部与下伏梁山组整合接触。栖霞组可分为栖一、栖二两个岩性段。栖一段主要为深灰—黑灰色含泥质泥晶灰岩与生屑泥晶灰岩,顶部偶见云岩段。栖二段为灰色生屑灰岩,部分位置发育白云岩及少量黑色硅质团块。栖霞组在研究区的地层厚度多介于100~150 m。前人的研究认为,川中地区栖霞组沉积环境为浅水开阔台地相[19]。研究区颗粒滩以台内滩为主,主要发育于栖一段顶部和栖二段(图1),横向上较为连续的特征显示了颗粒滩在平面上具有较大的展布规模。在岩芯观察中可以看到,栖霞组颗粒滩单滩体平均厚度较薄,多介于0.5~1.2 m,最厚处发现于合12井顶部,约2.1 m。本次针对57口井的地层和测井资料进行梳理后,结合区域地质背景、岩芯观察资料和地球物理资料,对栖霞组沉积相和颗粒滩展布进行分析后认为,研究区栖霞组以发育碳酸盐岩开阔台地沉积体系为特点,颗粒滩分布主要受古微地貌高地控制,滩体沿北西—南东向展布,北东—南西向颗粒滩和开阔海(或滩间海)相间展布(图1)。作为一种高能沉积建造,颗粒滩促进了岩溶水沿粒间孔隙进行充分的水—岩溶蚀作用,也为优质白云岩储层发育提供了物质基础[20-22]。
二叠系乌拉尔统沉积末期,全球气候处于冰室期向温室期过渡阶段[16],该期发生过多次全球海平面下降,其中包括与栖霞组对应的空谷阶末期海退事件[17-18]。四川盆地所在的扬子克拉通浅水区的海平面升降情况与全球海平面变化联系密切[15],全球海平面下降导致了四川盆地栖霞组末期迅速海退,进一步使得该区地层发生区域性暴露[13-14]。中二叠世中后期,南方冈瓦纳大陆与北方劳亚大陆逐渐汇聚并发生碰撞拼合,并伴随中国南方大范围的火山活动[9,23-24],为四川盆地中二叠统地层中的热液活动提供了大地构造背景。
研究区栖霞组白云岩在不同井区的产状变化较大,且横向分布不稳定,宏观上组构非均质性强,微观上不同的白云岩组构储集性能也存在较大差异。通过系统的基础资料整理,发现研究区栖霞组白云岩普遍见于颗粒滩较为发育的栖二段和栖一段上部,且多数与岩溶系统密切相关。按照白云岩与岩溶系统的关系,可将其分为岩溶改造云岩和岩溶系统基质云岩,岩溶改造云岩按其宏微观产出状态不同又可分为溶斑状云岩和溶洞充填云岩两类;岩溶系统基质云岩由于其孔隙发育程度的明显差异还可分为针孔状基质云岩和致密基质云岩两类。上述四种岩类约占取芯段总厚度的41%,其中又以针孔状基质云岩占比最高,约占取芯段总厚度的20%(图2)。下面将分别就这四种岩类的宏微观特征进行阐释。
图2 研究区栖霞组各类储集岩发育厚度比例Fig.2 Thickness percentages for different types of reservoir rocks of the Qixia Formation in study area
2.1.1 岩溶改造云岩类
溶斑状云岩:该岩类发育于研究区栖霞组上部栖二段。宏观上,斑块与基岩呈现出明显的组构颜色差异,斑块通常完全云化,内部孔隙较发育,偶见半充填—全充填小型溶洞(图3a,d);基岩为未云化或部分云化的灰岩(图3b,e)。偏光显微镜下,斑块为他型—半自形中晶白云石,局部发育晶间孔、晶间隙,并且可见泥级、细粉晶级云质碳酸盐岩碎片充填孔隙,整体面孔率分布在1%~3%(图3b,c)。此类溶斑状云岩发育段原岩为颗粒滩中上部的颗粒灰岩,在遭受一定程度的溶蚀作用改造后展现出了极强的非均质性。
图3 研究区栖霞组储层宏微观特征(一)(a)溶斑状云(灰)岩(D表示云化斑块,L表示灰质基岩,下同),广参2井,4 825.95 m,栖二段;(b)图3(a)对应镜下特征,右侧为中晶云岩,左侧为泥—亮颗粒灰岩,单偏光;(c)图3(d)中斑块内部对应镜下特征,白云石为自形—半自形,局部为沥青充填,铸体薄片,单偏光;(d)溶斑状云质灰岩,斑块完全云化,基岩为含云质灰岩,磨溪109井,4 421.32 m,栖一段;(e)图3(d)中基岩对应镜下特征,含云质灰岩,单偏光;(f)溶沟、溶洞充填云岩及其围岩,完全云化,部分基岩角砾化明显,磨溪117井,7 711.80 m,栖一段;(g)图3(f)中相应位置镜下照片,岩溶系统内部充填物,完全云化,孔隙发育,单偏光;(h)图3(f)中相应位置镜下照片,致密基质云岩,残余颗粒组构保留完整,单偏光;(i)图3(f)中相应位置镜下照片,岩溶系统中为泥质和具定向性的碳酸盐岩溶蚀产物混合充填;(j)溶洞充填云岩,见充填残余溶洞和角砾,磨溪117井,4 601.55 m,栖一段;(k)图3(j)中溶洞充填云岩对应镜下特征,为自形中晶白云石,晶间孔发育,见沥青充填,铸体薄片,单偏光Fig.3 Macroscopic and microcosmic features of the Qixia Formation reservoir in study area(I)
溶洞充填云岩:该岩类发育于岩溶作用强烈的栖一段上部层状云岩带内,在溶斑状云岩带之下。宏观上,溶洞充填云岩主要为岩溶洞穴中充填的疏松砂糖状晶粒白云岩,其中常见塑性角砾,溶洞基岩普遍云化(图3f,j)。显微镜下可见白云石以中晶为主,也有部分细晶和粗晶白云石,晶粒粒径多介于0.1~1 mm,自形程度高,多见雾心亮边,部分位置还可见泥质与碳酸盐岩充填物混合充填的特征(图3i)。该岩类晶间孔和晶间溶孔发育(图3g,k),镜下面孔率常达到5%~10%。
2.1.2 岩溶系统基质云岩类
针孔状基质云岩:该岩类发育于研究区栖二段和栖一段顶部,总体表现出针孔发育的特征,但针孔发育不均匀,非均质性较强(图4b,d),常作为溶洞充填云岩的围岩或岩溶系统内部云化角砾产出(图3j),也可独立成段产出;微观镜下观察,可见大量残余颗粒幻影,残余粒间孔和粒内溶孔发育(图4a,e,f),面孔率在3%~5%。该岩类宏微观上组构差异不明显,原岩为保留了较多沉积期原始孔隙的颗粒灰岩。
图4 研究区栖霞组储层宏微观特征(二)(a)图4(b)对应镜下特征,可见较多残余颗粒幻影,晶间孔发育,铸体薄片,单偏光;(b)针孔状基质云岩,磨溪42井,4 657.85 m,栖二段;(c)图4(b)对应镜下特征,致密基质云岩,铸体薄片,单偏光;(d)针孔状基质云岩,磨溪42井,4 656.25 m,栖二段;(e)图4(d)对应镜下照片,残余颗粒云岩,残余粒间孔发育,铸体薄片,单偏光;(f)图4(e)位置薄片下加垫70 g A4纸用以恢复原岩组构,单偏光;(g)泥晶灰岩中沿裂缝扩溶形成的囊状溶洞,内部可见沥青和鞍形白云石混合充填,4 651.50 m,栖二段;(h)致密基质云岩中的微裂缝,潼4井,4 398.50 m,栖二段,铸体薄片,单偏光;(i)晶粒云岩中的裂缝扩溶缝,为白云石半充填,磨溪42井,4 690.72 m,栖二段,铸体薄片,单偏光;(j)颗粒泥晶灰岩中见缝合线,合12井,4 129.51 m,栖一段;(k)颗粒灰岩和云岩之间的压溶缝,磨溪42井,4 652.24 m,栖二段;(l)泥晶灰岩中高角度张裂缝,为方解石及破碎角砾全充填,合12井,4 121.63 m,栖二段Fig.4 Macroscopic and microcosmic features of the Qixia Formation reservoir in study area(II)
致密基质云岩:该岩类发育于研究区栖一段顶部,仅以云化的岩溶组构围岩形式产出(图3f)。其宏观上表现为致密无孔的白云岩(图4b),微观上为他形镶嵌状中晶白云石,多见残余颗粒幻影(图3h、图4c)。该岩类宏微观上均基本表现出十分致密的特征,仅见少量晶间孔隙和裂缝(图4c),面孔率低于1%。
通过岩芯薄片镜下观察和统计发现,川中地区栖霞组云岩储集体储集空间类型多样,主要包括白云岩晶间孔、晶间溶孔、残余粒间孔、粒内溶孔、溶洞和裂缝等(表1)。
表1 研究区栖霞组储集空间类型Table 1 Reservoir space types of the Qixia Formation in study area
2.2.1 晶间(溶)孔
晶间孔(图3c,k)是白云岩晶粒之间的未充填孔隙,白云石与孔隙接触的边缘平直。晶间孔多呈现出不规则多边形的样式,常表现为三角孔的外形特征。此类孔隙发育频率较高,其孔径大小多介于0.02~0.25 mm,呈不规则多边形,内边缘具明显的溶蚀痕迹,面孔率大约分布在1%~10%。晶间孔主要见于云化的岩溶组构内部,包括溶斑状云岩和溶洞充填云岩,其喉道类型主要为缩颈喉道和片状喉道。
晶间孔可在酸性流体叠合作用下进一步发生溶蚀,形成晶间溶孔(图3g)。该类孔隙边缘的白云石晶粒具明显的港湾状溶蚀边,且白云石晶体溶蚀残余常见。晶间溶孔孔径大小约0.05~1 mm,面孔率可达3%~10%。晶间溶孔主要见于溶洞充填云岩和针孔状基质云岩中,其喉道类型主要为孔隙缩小型喉道和缩颈喉道,孔喉配位数低。孔隙内多见半充填的沥青。晶间孔和晶间溶孔是研究区栖霞组最主要的储集空间。
2.2.2 残余粒间孔
残余粒间孔主要发育在针孔状基质云岩当中,宏观上表现为基岩中发育针孔(图4b),微观上可见孔隙周围保留有大量残余颗粒幻影,部分完全云化的白云石保存了不完整的颗粒外形(图4a)。残余粒间孔的孔径约在0.1~0.8 mm,镜下面孔率约3%~8%,喉道类型多为片状喉道和管状喉道。该类孔隙在研究区发育频率中等。
2.2.3 粒内溶孔
粒内溶孔主要发育在针孔状基质云岩当中,宏观上表现为细小针孔发育的特征(图4d),微观上可见孔隙发育于生物体腔内部,颗粒外部结构相对完整(图4e,f)。粒内溶孔的孔径约在0.1~0.4 mm,镜下面孔率约1%~3%,孔隙较为孤立。该类孔隙在研究区发育频率较低。
2.2.4 溶洞
溶洞是研究区最为优质的储集空间之一,多见于溶洞充填云岩当中,表现为白云石或沥青充填残余溶洞的特征(图3j),残余溶洞的洞径多介于10~30 mm,在研究区发育频率中等。溶洞多为沿着基岩或岩溶系统内部的原始孔洞或裂缝持续扩溶形成(图4g)。
2.2.5 裂缝
研究区地层中发育的裂缝类型主要包括构造缝和压溶缝两类。构造缝以高角度缝为主(图4h,i,l),其发育受构造部位和断层控制;压溶缝主要发育在颗粒灰岩中(图4j)以及颗粒灰岩与云岩之间(图4k)。
对研究区11口单井的544个岩石样品的物性分析显示(图5),研究区灰岩类样品孔隙度最大值4.74%,最小值0.04%,平均值0.57%,孔隙度小于1%的样品占到总量的88.7%,整体随孔隙度的增加,分布频率急剧降低,孔隙度大于4%的样品仅占总量的0.4%。在灰岩样品中,颗粒灰岩和岩溶系统内部的灰质充填物孔隙度相比泥晶灰岩并无明显改善。云岩类样品孔隙度最大值为10.54%,最小值为0.4%,平均值为4.28%,孔隙度大于2%的样品占到总量的48.1%,其分布比例有随着孔隙度增加而增大的趋势。在渗透率方面,研究区栖霞组灰岩渗透率最小值趋近于0,最大值为90×10-3μm2,平均值为1.03×10-3μm2,渗透率小于1×10-3μm2的样品占样品总数的83.5%,灰岩类样品渗透率变化趋势同孔隙度一致,随渗透率的增加,分布频率降低;云岩渗透率最小值趋近于0,最大值为89.1×10-3μm2,平均值为 6.04×10-3μm2,大于 1×10-3μm2的样品约占总量的48.9%。
图5 研究区栖霞组灰云岩物性对比直方图Fig.5 Histogram of porosity and permeability of the Qixia Formation in study area
由上述数据可知,研究区栖霞组云岩的整体物性优于灰岩。为了精确判断四种类型云岩的储集性能差异,本次选取这四种白云岩的小直径样品孔隙度和渗透率绘制了孔渗交汇图(图6)。由图可知,该套云岩的非均质性极强,不同类型的云岩孔渗差别极大。按照在交汇图中投点的情况,可将云岩大致分为三类。第一类是中孔中渗型,以溶斑状云岩、溶洞充填云岩和针孔状基质云岩样品为主,其中溶洞充填云岩样品的物性又明显优于其他两类样品;第二类为低孔低渗型,以致密基质云岩为主,还包括少量针孔状基质云岩和斑块云岩样品;第三类为低孔高渗型,主要以受裂缝影响的致密基质云岩样品和针孔状基质云岩样品为主。通过以上分类可知,溶洞充填云岩及溶斑状云岩、针孔状基质云岩的物性特征明显优于致密基质云岩,而后者显示出和灰岩类似的低孔低渗特征。
图6 研究区栖霞组白云岩孔渗交会图Fig.6 Cross-plot of porosity and permeability of dolomites of the Qixia Formation in study area
综上,研究区的各类储集岩岩性特征、储集空间类型、物性特征均存在较大差异,分析发现溶洞充填云岩的储集性能最好,溶斑状云岩和针孔状基质云岩次之,而致密基质云岩宏微观均表现出致密无孔的特征,储集性能较差。此外,研究区的云岩和灰岩地层均不同程度受到(微)裂缝的影响,裂缝带的发育对于储集层的相互沟通具有积极意义,因而川中地区栖霞组的岩溶型白云岩储层属裂缝—孔洞型储层。
川中地区最主要的微相组合类型为颗粒滩和滩间海叠置的沉积序列,在纵向上往往反映为由泥晶岩类向上过渡为颗粒岩的岩石组合类型(图1)。如前所述,研究区栖霞组地层沉积后不久即经历了一定时间的整体抬升暴露[13],期间接受岩溶作用,形成了独具特色的岩溶系统。由于该期岩石尚未经深埋藏期成岩作用,故可将其看做一种区域性的早成岩期岩溶[14]。就早期岩溶作用机理而言,低能非颗粒岩虽在沉积期具有较高的原始孔隙度,但在浅埋藏初期的压实和胶结作用影响下很难保存原始孔隙而迅速趋于致密[20,25],由此在成岩期岩溶水很难进入储集层内部,仅附着于裂缝带进行水—岩作用,这往往在一定程度上仅优化原始储集层的渗透性[26],形成一类低孔高渗的裂缝型或孔洞—裂缝型储层;与之对比,颗粒岩类由于沉积期水体能量较高,簸选后细粒沉积物比例极低,颗粒间往往呈点—线接触,因而在浅埋藏期具较强支撑作用,且所受胶结作用较弱,得以大量保存原始孔隙[25-27],其作为岩溶水的高渗透层,可促使岩溶水沿粒间孔隙进行充分的水—岩作用,形成一类储渗性能更好的孔洞型或裂缝—孔洞型储层。岩芯观察中发现,储集性能较好的溶斑状云岩和溶洞充填云岩的原岩均为颗粒岩(图3b,h、图4a,e,f),而沿裂缝扩溶形成的孤立囊状溶洞则往往见于致密的泥晶岩类中(图4g),且栖霞组的这类溶洞充填带具有沿致密的泥晶岩类顶部展布的趋势[14],说明了致密层对高渗层中流体的封堵和制约作用。
在进一步的研究中,通过将取芯井位置与栖二段颗粒滩平面展布进行对比(图1),可以发现磨溪42井、磨溪117井、合12井等岩溶和白云岩十分发育的井段常见于栖二段颗粒滩的滩核部分,相较之下,位于滩缘位置的广参2井、涞1井、潼4井等井段虽颗粒岩也较为发育,但岩溶和白云岩化发育频率明显降低,颗粒岩中多见未云化或局部云化的小型垂直溶沟(图7a),且溶洞充填段不发育。通过梳理前人研究发现[22],对于非暴露型颗粒滩而言,滩核处由于更大的沉积速率而拥有更大地层厚度,在埋藏初期受到的地层压力也更大,导致颗粒间孔隙受到挤压,使颗粒呈点—线接触。而滩缘处则由于厚度较薄,地层压力较小,而使颗粒岩沉积后处于漂浮状态(图7b)。埋藏初期,碳酸钙过饱和流体沿滩缘进入滩体,在疏松的滩缘处迅速沉淀胶结,而在滩核处受到了一定程度阻挡,流通不畅。随着滩缘的逐渐胶结,也会阻挡后续流体的进入,导致滩核处颗粒岩留存更多的原始孔隙。因而,研究区滩核部分在浅埋藏后接受表生岩溶作用时,相较滩缘保留了更多的粒间孔隙,可以充分接受岩溶水的作用,其中的部分孔隙云化后以残余粒间孔的形式保存至今,即宏观上以针孔状产出的云岩;而滩缘处则更为致密,岩溶作用的范围和幅度远小于滩核处。
研究区栖霞组存在早成岩期软岩石岩溶的典型识别标志,如溶蚀体具有蜂窝状、海绵状、花斑状等溶蚀形态(图7c,g);岩溶充填物中多见塑性角砾(图7e,f),且富含离解的基岩颗粒、生物碎屑、渗流碳酸盐岩泥砂等(图3f,i);可识别出组构选择性溶蚀或粒间漫流溶蚀特征(图4f、图7d)等。此外,区域性的早成岩期岩溶往往可在垂向上划分出垂直渗流带、水平潜流带和深部缓流带三个分带[19](图8)。而岩溶分带的发育对储层中的溶蚀体形貌和孔隙性存在显著的控制作用。
图7 研究区栖霞组成岩组构宏微观特征(a)颗粒灰岩,见垂直溶沟,涞1井,4 298.47 m,栖二段;(b)亮晶颗粒灰岩,潼4井,4 367.9 m,栖二段,单偏光;(c)溶斑状云岩,磨溪42井,4 650.01 m,栖二段;(d)图7(c)中斑块对应镜下特征,晶间溶蚀孔发育,单偏光;(e)岩溶系统中角砾及充填物,具明显定向性,涞1井,4 320.60 m,栖一段;(f)图7(e)对应镜下照片,塑性角砾和岩溶充填物,均未云化,单偏光;(g)顺层溶洞发育的白云岩,磨溪117井,4 603.79 m,栖一段;(h)层状云岩之下的致密泥晶灰岩,磨溪108井,4 657.52 m,栖一段;(i)图7(h)对应镜下照片,单偏光;(j)溶洞中充填鞍形白云石,涞1井,4 300.3 m,栖二段,单偏光;(k)斑马状构造,涞1井,4 249.40 m,栖二段;(l)溶洞充填云岩,白云石晶间溶孔发育,可见热液石英和沥青充填,磨溪108井,4 671.33 m,栖二段,铸体薄片,单偏光Fig.7 Macroscopic and microcosmic diagenetic petrofabrics of the Qixia Formation in study area
垂直渗流带发育在研究区栖霞组顶部,该分带内,岩溶系统明显受到岩性岩相的约束和控制,其主要表现在岩溶水对于颗粒岩和泥晶岩类的差异溶蚀。暴露时期,岩溶水首先作用于滩体顶部的高渗层,由于重力作用的影响,其主要是在颗粒岩疏松的颗粒间孔隙中自上而下漫流,在局部形成垂直溶沟(图7a)或半离解的溶蚀斑块(图7c,d)。相比之下,泥晶岩类则由于整体岩性极为致密,较难直接接受岩溶水改造。但泥晶岩类中常见早期沿微裂缝、解理缝扩溶形成的小型溶蚀缝洞,半充填或未充填(图4g)。另外,泥晶岩类中还常见中晚成岩期形成的裂缝系统,如为方解石全充填的卸载张裂缝,裂缝间多见破碎角砾(图4l)。受后期构造运动影响,也可造成泥晶灰岩中形成互相切割的多期网状缝。这些裂缝通常具有和早期扩溶缝洞伴生的特征,具有“洞控型”裂缝[20]的特征(图7g)。伴随着更长时间的岩溶作用,泥晶灰岩中裂缝较为发育、或较为薄弱的区域会被岩溶水“击穿”,导致岩溶水经过致密层,进入下一个滩体旋回顶部的高渗层中(图8)。
川中地区栖一段中下部为较厚的致密泥晶岩类(图1,8),因而在该致密层上部的高渗层中长时间聚集了大量岩溶水,强烈的溶蚀作用致使该致密层之上多个旋回的颗粒灰岩几乎被完全溶尽,形成了垂向上占据整个高渗层的大型顺层状溶洞系统,其构成了发育在垂直渗流带之下的水平潜流带。水平潜流带中,大量岩溶水聚集在大型顺层状溶洞内部,在重力势能作用下会沿高渗层下倾方向流动,过程中形成了的大量半充填溶洞体系,因而该分带的溶洞充填物为具一定定向性的残余颗粒组分和角砾(图7e,f),表现了沉积物具搬运特征,并且溶洞本身也存在顺层分布特征(图7g)。由此推断,潜流带的充填过程中受到地下径流或岩溶地貌的控制[27-28],因而在横向上必然也具一定的规模性。
水平潜流带下的深部缓流带(图8)形成于栖霞组中下部大套致密低能沉积物的基础之上(图7h,i),其下界为古岩溶影响的最大深度。由于深度较大,岩溶水经过上部各岩溶带后,溶蚀能力大大下降,化学沉淀作用相对加强,且该分带的致密灰岩具较大厚度,岩溶水仅能沿最上层微裂缝作用,因此该分带仅局部产出零星小型溶缝,此外几乎不发育岩溶现象,基本不具储集意义。
川中地区中二叠统栖霞组沉积环境为碳酸盐岩开阔台地,其中未见存在潮上带或暴露环境[29],不存在(准)同生白云岩发育的沉积背景。前人研究表明,东吴运动在中晚二叠世之交到达顶峰,表现在该期大规模喷发峨眉山玄武岩[30-31]。具体到川中地区,强烈的地幔活动和火山运动使得大量富含镁离子的热液流体沿构造裂缝涌入中二叠统地层,发生了剧烈的热液白云岩化作用[1-4,22]。在本次工作中也发现了热液白云岩较为典型的岩石学识别特征[32-34],如马鞍状白云石充填岩溶系统中的溶蚀孔洞(图7j),斑马状构造(图7k),及干净明亮的热液石英(图7l)。这些岩石学证据基本与前人的结论相呼应。此外,在研究区热液白云岩十分发育的井段中,可以见到明显的白云岩沿岩溶系统发育的趋势,如磨溪117井中岩溶系统充填物充分云化,而非岩溶段则云化程度有限(图8)。这说明热液流体的充分作用极为依赖流体通道[35],川中地区栖霞组存在的滩控岩溶系统则提供了这一优势通道条件[36-39]。据此我们认为,由于岩溶系统中存在着松散充填物和残余孔洞,深部富镁流体沿深大断裂进入栖霞组地层时首先选择作用于孔隙性最优的滩控岩溶系统内部,交代潜流带中的半充填溶洞系统及渗流带中的溶斑、溶沟充填物,最终形成溶洞充填云岩和溶斑状云岩(图9)。需要注意的是,在经历早期的压实和胶结作用后,虽然部分颗粒岩组构趋于致密,仍有较多未受岩溶作用的颗粒岩尚且保留了一定的残余孔隙,也可作为热液流体的通道,进一步形成了一类针孔发育的孔隙型云岩(图9)。泥晶岩类及胶结致密的颗粒岩由于云化期孔隙欠发育,热液流体对其改造极为有限。
图9 研究区栖霞组储层形成与成岩演化过程Fig.9 Formation mechanism of reservoir and diagenetic evolutionary pattern of the Qixia Formation in study area
通过镜下观察和物性数据的比对发现,岩溶改造云岩类的孔隙性明显优于岩溶系统基质云岩。从小直径样品物性统计数据上来看(表2),溶斑状云岩平均孔隙度约5.62%,溶洞充填云岩平均孔隙度约6.55%,优于针孔状基质云岩的平均孔隙度3.93%和致密基质云岩的1.02%。这说明了岩溶改造对储层孔隙优化的贡献。系统观察还发现,岩溶系统内白云石多呈现出漂浮状半自形—自形的晶粒结构特征(图3k),岩溶系统基质云岩则多呈现他型镶嵌状特征(图4a,c)。这可能是因为富镁热液作用研究区栖霞组地层之前,作为岩溶系统基岩的颗粒岩较岩溶系统充填物更为致密,Mg2+充足的流体作用基岩时,等体积交代灰质形成的白云石相对欠缺生长空间,则以他型镶嵌状产出;而岩溶系统内部由于围岩的支撑作用等原因,白云岩成岩流体进入时尚且保留了更多自由空间,因而岩溶系统内白云岩相较围岩组构中的云岩明显更为自形(图9)。以上实例说明了白云岩化后的颗粒结构和孔隙度较大程度上受到原岩孔隙结构的影响,由此可以推断,发生在晚二叠世龙潭组的热液白云岩化作用[30-31],仅仅对岩溶系统内部的原始孔洞进行了调整和重新分配,对储层的孔隙度优化有限。
表2 研究区栖霞组岩芯物性实测统计表Table 2 The statistics of core physical property of Qixia Formation in study area
此外,表2中显示未受岩溶影响的颗粒灰岩与云化后形成的针孔状基质云岩相比平均孔隙度低3%。这是因为对于碳酸盐岩储集体而言,压实和压溶作用是最主要的破坏性成岩作用[32],而白云岩在埋藏条件下具有较灰岩更为抗压的格架[38],更大程度上抵抗了压实作用对储集空间的破坏,保留了原始粒间、粒内孔隙;且在中低温环境下,云岩较灰岩难溶[39],故能避免压溶作用产生大量钙离子随流体迁移并沉淀堵塞孔隙,灰岩内部和灰岩云岩边界发育大量缝合线(图4j,k),而在云岩内部极少发育即为其证据。少量在早期胶结过程中已趋于致密化的颗粒岩仍发生了云化,形成了致密基质云岩,但该类岩石往往紧邻岩溶系统或原始优势孔渗层(图4b,d)。致密基质云岩相比灰岩平均孔隙度差距则小于1%(表2)。
综上所述,大气淡水岩溶作用为储层中孔洞形成的主因,白云岩中的孔隙来自于对先期颗粒滩和岩溶系统中孔隙的继承。不过,虽然白云岩化并未优化储层的孔隙性,但岩溶系统中的孔隙和颗粒岩残留孔隙却由于白云岩化作用而得以保存,最终促成了岩溶改造型储层和针孔发育的原生孔保存型储层的形成。也就是说,白云岩化作用的主要意义在于为储层原始孔隙提供了抵抗压实和压溶作用的能力,属一类保持性成岩作用[40]。
(1)川中地区白云岩储层主要发育于栖霞组中上部滩相地层中,按白云岩与岩溶系统的关系可将储集岩分为岩溶改造云岩和岩溶系统基质云岩。岩溶改造云岩包括弱岩溶改造的溶斑状云岩和较强岩溶改造的溶洞充填云岩。岩溶系统基质云岩包括保留了颗粒岩原始孔隙的针孔状基质云岩和致密基质云岩两类。分析发现溶洞充填云岩的储集性能最好,储集空间以残余未充填溶洞和晶间孔隙为主,针孔状基质云岩和溶斑状云岩次之,致密基质云岩最差。此外,较为发育的裂缝带对于储集层的相互沟通具有积极意义,因而川中地区栖霞组岩溶型白云岩储层属裂缝—孔洞型储层。
(2)栖霞组多期滩体叠置的沉积体系为岩溶型白云岩储层的形成奠定了良好的物质基础,颗粒岩中的原生孔隙可作为后期淡水岩溶和白云岩化流体的通道,在此基础上形成的白云岩具有相控性的特点。栖霞组沉积后发生的区域性早成岩期岩溶对先期沉积的碳酸岩差异改造,形成了存在明显垂向分带的岩溶系统,其中潜流带溶洞系统横向上具一定规模性,贡献了栖霞组最主要的储集空间。其后的热液白云岩化是一次等体积交代的过程,白云岩中的孔隙主要来自于对先期颗粒岩中的原生孔和岩溶孔洞的调整和保存,因而具有继承性的特点。虽然白云岩化作用并未优化储层的孔隙性,但对岩溶改造云岩和针孔状基质云岩中孔隙的保存具有重要意义。