王川 彭建堂, 徐接标 阳杰华 胡阿香 陈宪佳
1.中南大学地球科学与信息物理学院,有色金属成矿预测与地质环境监测教育部重点实验室,长沙 4100832.中国科学院地球化学研究所,矿床地球化学国家重点实验室,贵阳 5500023.湖南城市学院土木工程学院,益阳 413000
华南地处印支地块和华北地块之间,由华夏和扬子古陆组成。华南地区曾经历过Columbia超大陆、Gondwana超大陆、Pangean超大陆及欧亚大陆形成与演化的多期构造运动,晚古生代以来,古太平洋和特提斯构造域在华南产生了重要影响,由此形成不同时代的花岗岩及金属矿床。华南地区燕山期花岗岩分布广泛,与之相关的钨锡矿床和铅锌铜矿床众多,且很多达到了大型和超大型的规模,因此华南燕山期花岗岩的成岩、成矿作用受到人们高度重视和广泛关注(毛景文和王志良,2000;毛景文等,2004;Pengetal.,2006;彭建堂等,2008;胡瑞忠等,2010;陈骏等,2014;Yangetal.,2018;Yuanetal.,2018a,b,2019;Maoetal.,2019,2021)。而华南印支期花岗岩出露较少,且较为分散(周新民,2003;Wangetal.,2007;Heetal.,2010),故该期花岗岩的成因人们关注较少,其成矿作用在很长时间内更是无人提及。近年来,越来越多的高精度放射性同位素定年结果显示,华南地区的一些金属矿床是印支期形成的,特别是湘中地区,印支期成矿作用尤为显著,如大坪金矿、铲子坪金矿、古台山金锑矿、杏枫山金钨矿、包金山金矿、谢家山锑钨矿、曹家坝钨矿、大溶溪钨矿都是印支期形成的(李华芹等,2008;张龙升等,2014;彭建堂等,2017,2021;Lietal.,2018;Xieetal.,2019a;Zhangetal.,2019;吕沅峻等,2021),故华南印支期花岗岩及其成矿作用值得高度重视。然而,目前有关华南印支期花岗岩的成因还存在非常大的争议,王岳军等(2002)、Wangetal.(2007)认为华南印支期花岗岩为陆壳碰撞挤压、地壳叠置加厚重熔的产物;周新民(2003)则主张该区大部分印支期花岗岩,是在陆陆碰撞之后地壳伸展减薄的构造背景下中地壳发生部分熔融的产物;另外一些学者则认为华南印支期岩浆活动与古太平洋板块的俯冲作用有关,印支期花岗岩为岛弧岩浆作用的产物(Wangetal.,2005;Lietal.,2006,2007,2012;Li and Li,2007)。目前人们对华南燕山期花岗岩与钨锡、铅锌铜的成矿进行了大量研究,但对该区印支期花岗岩的成矿作用缺乏研究。上述两方面研究的不足,严重制约了人们对华南地区印支期花岗岩成岩、成矿机制的深入认识。
白马山花岗质复式岩体处于江南古陆之中(图1a),目前在该岩体周缘已发现了许多中型印支期金、钨矿床(图1b),是系统揭示华南印支期构造-岩浆-成矿的理想对象。尽管前人对该岩体已开展了部分研究(王岳军等,2005;陈卫锋等,2007;罗志高等,2010;Chuetal.,2012;刘建清等,2013;Qiuetal.,2014;李建华等,2014;Fuetal.,2015),但其精确的成岩时代、岩浆源区特征和构造背景仍存在较大的分歧,成岩与成矿关系的研究更是处于空白。本文试图通过对白马山复式岩体的锆石U-Pb年代学与Hf同位素分析,并结合全岩元素地球化学及Sr-Nd同位素研究,深入研究其岩石成因和构造背景,探讨该花岗质岩体的金、钨成矿效应,这将为揭示华南地区印支期花岗岩成岩、成矿机制提供一个重要窗口。
图1 白马山岩体地质图(据张义平等,2015修改)Fig.1 Geological map of the Baimashan granitic complex (modified after Zhang et al.,2015)
白马山复式岩体位于江南造山带的东南缘(图1a),在构造上处于NE向雪峰山弧形构造隆起带和EW向白马山-龙山-紫云山EW向构造带的交汇部位。地处隆回、新化、溆浦三县交界处,呈东西向串珠状分布,主要由黑云母花岗闪长岩、黑云母二长花岗岩和二云母二长花岗岩,出露面积约为1650km2(湖南省地质矿产局,1988)。岩体侵位于新元古界板溪群、震旦系、寒武系、志留系和泥盆系地层中。前人根据这些花岗岩的野外地质特征、年代学和岩石地球化学将白马山复式岩体划分为4个超单元:水车超单元、龙潭超单元、小沙江超单元和龙藏湾超单元,并认为水车超单元形成于晚志留世,龙潭超单元形成于中三叠世,小沙江超单元形成于晚三叠世,龙藏湾超单元形成于早侏罗世(湖南省地质矿产局,1988)。
水车超单元位于岩体的东部,呈南北向岩基展布,中间被印支期花岗岩侵入,出露面积约为550km2(图1b)。岩体侵入到新元古界板溪群及下古生界地层中,岩体基本被中泥盆统地层不整合覆盖。岩性主要为中细粒黑云母二长花岗岩、细粒二云母二长花岗岩和中细粒角闪石黑云母花岗闪长岩。岩石具中细粒结构,部分可见似斑状结构,斑晶以斜长石为主,块状构造。其中,斜长石含量为30%~55%,具有环带结构和聚片双晶,钾长石为10%~25%,常包裹斜长石和黑云母,石英为30%~35%,黑云母为7%~13%,常为自形-半自形鳞片状,多色性明显,角闪石为0.5%~2%。副矿物主要有榍石、锆石、磷灰石。
龙潭超单元西侧以黄茅园为界,向东包括龙潭-金石桥-高坪,东部延伸至天龙山,整体呈东西向展布,出露面积为500km2左右(图1b)。岩体侵入到中、上元古界至石炭系地层中。岩性主要为中细粒角闪石黑云母二长花岗岩、中细粒黑云母二长花岗岩和中粒黑云母花岗闪长岩。龙潭超单元中普遍发育暗色包体,多出现在黑云母花岗闪长岩和角闪石黑云母二长花岗岩中,包体与寄主岩界线明显(图2a)。岩石为中-细粒结构,部分可见似斑状结构,斑晶主要为斜长石,块状构造,局部发育似片麻状构造。其中,斜长石含量为35%~50%,钾长石为5%~20%,石英为24%~35%,有变形拉长,普遍存在波状消光(图2b),黑云母为8%~13%,角闪石为1%~5%。此外,岩石中还有少量的副矿物,如榍石、锆石、磷灰石等。暗色包体矿物颗粒较细,暗色矿物含量较高,主要为黑云母和角闪石,含有少量的副矿物榍石和锆石。
图2 白马山花岗岩手标本及显微照片(a)暗色包体与寄主岩界限清晰,矿物成分相似;(b)岩体受挤压石英发生变形,石英普遍存在波状消光现象;(c)碱性长石穿插交代酸性斜长石(正交偏光);(d)黑云母受力发生扭曲(单偏光);(e)微斜长石常包裹石英、黑云母和斜长石等矿物(正交偏光);(f)黑云母蚀变成白云母,仍保留原来的特征(单偏光).Ab-钠长石;Atp-反条纹长石;Bt-黑云母;Mc-微斜长石;Ms-白云母;Pl-斜长石;Qtz-石英Fig.2 Hand specimen and microphotographs of the Baimashan granitic complex(a) the boundary is clear and the minerals are similar between the dark inclusions and the host rocks;(b) the quartz distorted as the rock was extruded,and generally has a wave extinction phenomenon;(c) the acid plagioclase was replaced with the alkaline feldspar (crossed nicols);(d) the biotite was distorted (single nicols);(e) the quartz,the biotite and the plagioclase were wrapped by the microcline (crossed nicols);(f) the biotite turned into the muscovite (single nicols).Ab-albite;Atp-antiperthite;Bt-biotite;Mc-microcline;Ms-muscovite;Pl-plagioclase;Qtz-quartz
小沙江超单元位于岩体的中部和东部,呈岩株产出,整体呈东西向展布,出露面积约200km2(图1b)。岩体侵入到下志留统地层中。岩性主要为中粗粒黑云母二长花岗岩、中粒黑云母花岗闪长岩和中粒二云母二长花岗岩。与龙潭超单元相似,花岗岩中普遍发育暗色。岩石具中粗粒结构,部分为似斑状结构,可见斜长石和钾长石巨晶,块状构造。其中,斜长石含量为30%~45%,双晶纹细密,常被钾长石交代,钾长石为10%~25%,常交代斜长石或沿斜长石裂隙充填(图2c),石英为28%~39%,黑云母为3%~13%,常受力发生扭曲(图2d),角闪石为0.5%~1%。此外,岩石中还有少量的副矿物,如榍石、锆石、磷灰石、钛铁矿等。
龙藏湾超单元位于岩体的中心部位以及东部,由两个岩体组成,与龙潭超单元构成环状分布,出露面积为400 km2左右(图1b)。岩体主要侵入到下三叠统地层及龙潭超单元岩体中。岩性主要为中细粒二云母二长花岗岩和黑云母二长花岗岩。岩石具中细粒结构,块状构造。其中斜长石含量为30%~35%,发育卡氏双晶和聚片双晶,钾长石为25%~30%,常包裹石英、黑云母和斜长石等矿物(图2e),石英为35%~45%,黑云母为2%~6%,白云母为3%~9%(图2f)。副矿物主要有榍石、锆石、磷灰石、电气石等。
本文对白马山复式岩体中水车、龙潭、小沙江和龙藏湾4个超单元进行了系统采样,具体采样位置见图1b。经过详细的镜下观察,选取一部分代表性样品进行化学分析;另一部分通过粉碎、重力和磁选筛选之后,在双目镜下挑选晶形完整、无裂隙、无包体的锆石颗粒,制成锆石靶进行锆石原位U-Pb定年和Hf同位素分析。
在进行锆石U-Pb同位素分析之前,先对锆石进行透射光和反射光照相,然后在中国科学院地球化学研究所矿床地球化学国家重点实验室进行了锆石阴极发光拍照,结合光学和阴极发光图像,选择了环带发育良好,无裂纹无包裹体的位置进行锆石U-Pb同位素分析。锆石U-Pb同位素定年在中南大学地球科学与信息物理院LA-ICP-MS实验室完成,实验采用的193nm ArF准分子激光剥蚀器(型号为Analyte He Excimer)和Analytik Jena PlasmaQuant MS Ellite型电感耦合等离子体质谱仪(LA-ICP-MS)进行分析。激光束斑直径为32μm,剥蚀时间为45s。测试过程中以标准锆石91500为外标校正仪器质量歧视与同位素元素分馏;以标准锆石GJ-1为盲样,检验U-Pb定年数据质量(Liuetal.,2010a;Huetal.,2011)。原始的测试数据经过iolite软件离线处理完成。谐和图绘制采用ISOPLOT 3.70软件完成(Ludwig,2008)。
锆石Hf同位素分析位置靠近U-Pb同位素分析点,实验分析在中国科学院地球化学研究所矿床地球化学国家重点实验室配有RESOlution-LR-S-155激光剥蚀系统的Nu Plasma MC-ICP-MS质谱仪上进行(LA-MC-ICP-MS)。实验采用单点剥蚀模式对锆石进行数据采集(激光束斑为44μm),每次分析包括20秒空白信号和50秒剥蚀信号的采集时间。实验过程中,3种锆石标样(91500、Penglai、Plésovice)用以监控Hf同位素分析质量,详细的分析过程与方法见Huetal.(2008,2012)。ICPMSDataCal软件用以进行分析信号的离线处理及质量分馏校准等(Liuetal.,2010b)。εHf(t)值计算参考球粒状陨石现今的176Lu/177Hf =0.0332和176Hf/177Hf=0.28277(Blichert-Toft and Albrede,1997)。单阶段Hf模式年龄(tDM)和两阶段Hf模式年龄(t2DM)分别采用采用现今亏损地幔的176Hf/177Hf=0.28325和176Lu/177Hf=0.0384(Griffinetal.,2004),与假设大陆地壳的平均176Lu/177Hf=0.015(Griffinetal.,2002)进行计算。
全岩和暗色包体的主量元素分析采用X荧光光谱分析(XRF)方法,在澳实分析检测(广州)有限公司完成,实验仪器型号为荷兰PANalyticalPW2424型X射线荧光光谱仪。主量元素测试方法为ME-XRF26d,测定仪器为X荧光光谱仪(XRF),样品消解采用硝酸锂熔融,试样加入包含硝酸锂在内的助熔剂,充分混合后,高温熔融。熔融物倒入铂金模子形成扁平玻璃片后,再用X荧光光谱仪(XRF)分析。同时称取另一份试样在1000℃下测定烧失量(LOI)。主量元素的检测下限为0.01%,相对误差优于5%。全岩的微量元素分析在中国科学院地球化学研究所矿床地球化学国家重点实验室完成。微量元素测定采用ELAN DRC-e型Q-ICP-MS完成,实验过程中以Ar为载气,分析精度优于5%(Qietal.,2000)。Rb-Sr和Sm-Nd同位素分析在澳大利亚昆士兰大学放射性同位素实验室完成。实验仪器为VG 54多接收质谱计(TIMS),Sr同位素比值分析采用86Sr/88Sr=0.1194进行质量分馏校正,Nd同位素比值分析采用146Nd/144Nd=0.7219进行质量分馏校正(Mearns,1986)。
样品JSQ-15为水车超单元的代表性岩石样品,从中挑选的锆石晶型发育良好,韵律环带清晰,为典型的岩浆成因锆石(图3a)。锆石LA-ICP-MS分析显示,所有分析点的Th/U比值介于0.35~0.70(表1),13个测点的206Pb/238U谐和年龄为424.9±2.2Ma,加权年龄为424.5±1.9Ma(图3b),在误差范围基本一致,为加里东期岩浆作用。本文重点讨论的是印支期的成岩成矿作用,因此,对白马山岩体的加里东期成岩作用不做过多的涉及。
样品JSQ01采自龙潭超单元,锆石多为长柱状,大小比较均一,多为150~200μm,长宽比为2:1~3:1。CL图像显示锆石发育典型的振荡环带,部分锆石发育锆石核,具有核幔结构(图3a)。其Th/U比值较高,介于0.29~0.75之间(表1),具有岩浆成因锆石的特征。20个测点在谐和图上的下交点年龄为228.2±1.3Ma,206Pb/238U加权平均年龄为228.1±1.0Ma(图3c),其中对1颗锆石的边部(JSQ01-05)和核部(JSQ01-06)分别进行分析,得到其206Pb/238U年龄为220.1±1.8Ma和225.6±2.6Ma。
样品XSJ01采自小沙江超单元,锆石多为长柱状,大小为150~300μm,长宽比为2:1~5:1。CL图像显示锆石发育典型的振荡环带,少数锆石发育锆石核,呈核幔结构,但其核普遍较小(图3a)。其Th/U比值为0.25~0.60(表1),具有岩浆成因锆石的特征。16个测点的谐和年龄为225.3±1.1Ma,206Pb/238U加权平均年龄为224.1±1.1Ma(图3d)。
样品XSJ04同样采自小沙江超单元,锆石多为长柱状,大小为150~300μm,长宽比为2:1~6:1。CL图像显示锆石发育典型的振荡环带,部分锆石发育锆石核,具有核幔结构(图3a)。锆石的Th/U比值为0.22~0.74(表1)。24个测点的206Pb/238U谐和年龄为217.7±0.9Ma,加权平均年龄为216.7±0.8Ma(图3e)。
表1 白马山复式岩体花岗岩锆石U-Pb同位素定年分析结果Table 1 U-Pb isotopic dating of zircons from the Baimashan granitic complex
续表1Continued Table 1
图3 白马山复式岩体花岗岩锆石CL图像(a)和U-Pb年龄谐和图(b-f)右下角小插图为相应样品的206Pb/238U年龄分布和加权年龄Fig.3 Zircon CL images (a) and U-Pb concordia diagrams of (b-f) the Baimashan granitic complexThe 206Pb/238U ages of the corresponding samples and their weighted mean ages shown at the lower right of the figure
样品WYS07采自龙藏湾超单元,多为长柱状,大小为120~200μm,长宽比为2:1~4:1。CL图像显示锆石发育典型振荡环带,部分锆石发育锆石核,具有核幔结构(图3a)。其Th/U比值介于0.02~0.47之间,但大多数超过0.10(表1),具有岩浆成因锆石的特征。15个测点的206Pb/238U加权平均年龄为215.6±1.2Ma(图3f)。
龙潭超单元花岗岩的SiO2含量为65.94%~69.24%,其全碱含量(Na2O+K2O)为6.48%~7.27%,Al2O3含量为14.49%~16.48%(表2);岩性划分上落入花岗闪长岩区域(图4a);在K2O-SiO2判别图中(图4b),样品均落入高钾钙碱性系列区域内;A/CNK介于0.97~1.01之间,属于准铝质花岗岩(图4c);Mg#比较集中,介于0.52~0.54之间,里特曼指数σ介于1.83~2.02之间,属于钙碱性花岗岩。2件暗色包体SiO2含量(62.51%和63.29%)和全碱含量(6.45%和6.35%)较低,Al2O3含量较高(16.07%和16.31%),其岩性属于英云闪长岩(图4a),在K2O-SiO2判别图中(图4b),落入高钾钙碱性系列区域内,A/CNK较低(0.92),也属于准铝质花岗岩(图4c)。
表2 白马山复式岩体花岗岩主量元素组成(wt%)Table 2 Major element contents of granites from the Baimashan granitic complex(wt%)
图4 白马山复式岩体花岗岩TAS(a,据Middlemost,1994)、K2O-SiO2(b,据Peccerillo and Taylor,1976)和A/NK-A/CNK(c,据Middlemost,1985)图解Fig.4 Diagrams of TAS (a,after Middlemost,1994),K2O vs.SiO2(b,after Peccerillo and Taylor,1976) and A/NK vs.A/CNK (c,after Middlemost,1985) of the Baimashan granitic complex
小沙江超单元花岗岩的SiO2含量为65.78%~68.99%,其全碱含量(Na2O+K2O)为6.00%~6.90%,Al2O3含量为14.65%~15.76%(表2);岩性划分上落入花岗闪长岩区域(图4a);在K2O-SiO2判别图中(图4b),样品均落入高钾钙碱性系列区域内;A/CNK介于1.04~1.07之间,属于弱过铝质花岗岩(图4c);Mg#比较集中,介于0.52~0.53之间,里特曼指数σ介于1.53~1.83之间,属于钙碱性花岗岩。
龙藏湾超单元花岗岩的SiO2含量(72.01%~73.10%)、其全碱含量(7.46%~8.32%)和A/CNK值(1.12~1.29)均略高于龙潭和小沙江超单元,属于强过铝质高钾钙碱性花岗岩(图4a-c),Al2O3含量(14.49%~14.98%)和Mg#(0.36~0.40)值较低,里特曼指数σ介于1.92~2.31之间,也属于钙碱性花岗岩。
龙潭和小沙江超单元花岗岩具有相似的微量元素组成(表3)和配分型式(图5a),均显示了较强的Rb、Th、U、Pb正异常和中等的Nb、Sr、P、Ti负异常。Rb/Ba为0.23~0.76、Rb/Sr为0.70~1.43(表3),略高于中国东部(0.31和0.12,高山等,1999)和全球上地壳的平均值(0.32和0.21,Taylor and McLennan,1985);龙藏湾超单元花岗岩显示出较强的Rb、Th、U、Ta、Pb正异常和Ba、Nb、Sr、Ti负异常(图5a),Rb/Ba为1.14~3.64,Rb/Sr为4.73~8.15(表3),均高于中国东部、全球上地壳平均值(Taylor and McLennan,1985;高山等,1999)。2件暗色包体的微量元素配分型式与寄主岩石(龙潭超单元花岗岩)基本一致。龙藏湾超单元花岗岩与龙潭、小沙江超单元的微量元素组成有所差异,前者的岩浆演化程度要稍高后两者。
龙潭超单元花岗岩稀土总量为132×10-6~176×10-6(表3),稀土元素配分模式呈明显的的右倾(图5b),LREE/HREE和(La/Yb)N比值为10.6~16.0和11.2~20.8,属轻稀土富集型,(La/Sm)N比值为4.74~7.08,(Gd/Yb)N比值为1.50~2.12,δCe为0.99~1.03,δEu为0.55~0.80,显示出较弱的Eu负异常;小沙江超单元花岗岩稀土总量为93×10-6~176×10-6(表3),稀土元素配分模式呈明显的的右倾(图5b),LREE/HREE和(La/Yb)N比值为7.2~12.1和7.6~14.9,属轻稀土富集型,(La/Sm)N比值为3.98~5.16,(Gd/Yb)N比值为1.40~1.87,δCe为0.99~1.02,δEu为0.61~1.07,显示出较弱的Eu负异常;龙藏湾超单元花岗岩稀土总量较低,介于79×10-6~97×10-6之间(表3),稀土元素配分模式亦呈明显的右倾,LREE/HREE和(La/Yb)N比值为9.1~11.7和12.3~18.7,(La/Sm)N比值为3.98~4.35,(Gd/Yb)N比值为2.13~2.74,相对于龙潭和小沙江超单元,龙藏湾超单元花岗岩轻、重稀土分异更加显著,花岗岩的δEu值为0.28~0.51,显示更强的Eu负异常。
图5 白马山复式岩体花岗岩原始地幔标准化微量元素蛛网图(a,标准化值据Sun and McDonough,1989)和球粒陨石标准化稀土元素配分图(b,标准化值据Taylor and McLennan,1985)Fig.5 Primitive-normalized trace element (a,normalized values after Sun and McDonough,1989) and chondrite-normalized REE patterns (b,normalized values after Taylor and McLennan,1985) of the Baimashan granitic complex
暗色包体稀土总量较高,为79×10-6和97×10-6(表3),LREE/HREE和(La/Yb)N比值为10.3、10.9和11.6、13.2,(La/Sm)N比值为4.36和4.52,(Gd/Yb)N比值为1.73和1.91,δCe为1.03和1.02,δEu为0.63和0.59,整体上与寄主岩石龙潭超单元花岗岩配分模式基本相似。
表3 白马山复式岩体花岗岩微量元素组成(×10-6)Table 3 Trace element contentsof granites from the Baimashan granitic complex (×10-6)
全岩Sr-Nd同位素分析结果列于表4。龙潭超单元花岗岩的(87Sr/86Sr)i值为0.719027~0.721297,εNd(t)值为-10.5~-9.4,Nd同位素二阶段模式年龄为1.76~1.85Ga(表4),为古元古代。岩体内暗色包体的(87Sr/86Sr)i值为0.716520,εNd(t)值为-8.1,Nd同位素二阶段模式年龄为1.64Ga(表4)。小沙江超单元花岗岩的Sr-Nd同位素组成比较集中,其(87Sr/86Sr)i值为0.719216~0.719600,εNd(t)值为-10.1~-10.0(表4),Nd同位素二阶段模式年龄均为1.81Ga,为古元古代。因此,在Sr-Nd同位素组成上,龙潭和小沙江超单元的花岗岩非常相似。
龙藏湾超单元花岗岩的Sr同位素组成变化较大,但其Nd同位素组成较集中,其(87Sr/86Sr)i值为0.741441~0.748761,εNd(t)值为-11.3~-10.7(表4),Nd同位素二阶段模式年龄为1.87~1.91Ga,也属于古元古代,但比龙潭和小沙江超单元的Nd同位素二阶段模式年龄更老。
表4 白马山复式岩体花岗岩Sr-Nd同位素组成Table 4 Sr-Nd isotopic compositions of granites from the Baimashan granitic complex
锆石Lu-Hf同位素组成列于表5。龙潭超单元花岗岩样品JSQ01锆石的176Hf/177Hf比值为0.282420~0.282490,176Lu/177Hf比值为0.000762~0.002896。εHf(t)值的变化范围为-8.0~-5.1之间(图6a),平均值为-6.8,两阶段Hf模式年龄(t2DM)为1.59~1.75Ga。
表5 白马山复式岩体花岗岩锆石Hf同位素组成Table 5 Zircon Hf isotopic compositions of the Baimashan granitic complex
小沙江超单元花岗岩样品XSJ01锆石的176Hf/177Hf比值为0.282420~0.282523,176Lu/177Hf比值为0.001003~0.002802。εHf(t)值变化范围为-7.7~-4.1之间,两阶段Hf模式年龄(t2DM)为1.51~1.74 Ga。样品XSJ04锆石的176Hf/177Hf比值为0.282452~0.282569,176Lu/177Hf比值为0.001013~0.001884。εHf(t)值与样品XSJ01锆石相近(图6b),范围在-9.2~-2.7之间(图6),两个样品的εHf(t)平均值为-5.9。两阶段Hf模式年龄(t2DM)为1.42~1.83 Ga。
龙藏湾超单元的花岗岩样品WYS07锆石的176Hf/177Hf比值为0.282321~0.282543,176Lu/177Hf比值为0.000755~0.002164。εHf(t)值变化范围为-11.5~-3.5之间(图6c),平均为-6.7。两阶段Hf模式年龄(t2DM)为1.47~1.97Ga。
图6 白马山复式岩体各单元花岗岩锆石Hf同位素组成柱状图Fig.6 Histograms for zircon εHf(t) values from granites of the Baimashan granitic complex
白马山复式岩体由多个侵入单元组成,前人根据花岗岩的野外地质特征、年代学和岩石地球化学特征,将白马山复式岩体划分为水车超单元、龙潭超单元、小沙江超单元和龙藏湾超单元,并认为水车超单元形成于晚志留世、龙潭超单元形成于中三叠世、小沙江超单元形成于晚三叠世、龙藏湾超单元形成于早侏罗世(湖南省地矿局区调所,1995)。但每个侵入单元形成的精确时代一直没有得到系统研究,其年代学框架尚未完全搭建。本次通过对每个侵入单元进行系统取样,测定其形成时代,并通过与前人资料的综合分析和对比,来搭建其年代学格架。
续表5Continued Table 5
水车超单元 本次锆石U-Pb同位素分析结果显示水车超单元的侵入年龄为424.9±2.2Ma,为加里东时期岩浆活动的产物。
龙潭超单元 前人对龙潭超单元花岗岩的形成时代进行过限定,Chuetal.(2012)获得的SIMS锆石U-Pb年龄为217±2Ma,罗志高等(2010)、李建华等(2014)测得岩体锆石SHRIMP U-Pb年龄分别为223.3±1.4Ma和215.9±1.9Ma。本次研究获得的锆石U-Pb同位素年龄为228.2±1.3Ma,与罗志高等(2010)获得的锆石U-Pb年龄非常接近,说明龙潭超单元花岗岩形成于晚三叠世,属于印支晚期岩浆活动的产物。
小沙江超单元 对于小沙江超单元花岗岩的形成年龄,目前仅有湖南省地质矿产局(1988)利用锆石模式年龄法得到年龄为217~202Ma。本次研究测得小沙江超单元花岗岩锆石的LA-ICP-MS U-Pb年龄为225.3±1.1Ma和217.7±0.9Ma,表明小沙江超单元花岗岩形成于晚三叠世,也属于印支晚期岩浆活动的产物。
龙藏湾超单元 关于龙藏湾超单元花岗岩的形成年龄,目前所获得的年龄数据非常分散,如陈卫锋等(2007)测得其锆石边部年龄为176.7±1.7Ma,核部年龄为204±12Ma;张义平等(2015)利用锆石SHRIMP U-Pb定年得到岩体形成年龄为194±2 Ma和196±3Ma;刘建清等(2013)测得该岩体锆石边部年龄为177.6±4Ma;李建华等(2014)利用SHRIMP锆石U-Pb法获得了龙潭超单元215.9±1.9Ma和212.2±2.1Ma的成岩年龄;Fuetal.(2015)得到龙藏湾单元锆石SIMSU-Pb年龄为215.3±3.1Ma、211.1±4.2Ma、214.3±3.4Ma 和209.3±4Ma。本次研究测得龙藏湾超单元花岗岩锆石的LA-ICP-MS U-Pb年龄为215.0±1.2Ma,与李建华等(2014)和Fuetal.(2015)获得的年龄数据相当吻合。这些最新的年龄数据显示,白马山岩体的龙藏湾超单元的侵位时间为晚三叠世,而非前人认为的早侏罗世(湖南省地矿局区调所,1995;刘建清等,2013;张义平等,2015),该单元花岗岩应为印支晚期构造-岩浆作用的产物。无独有偶,近年湘桂赣地区一些早期认为形成于燕山期的花岗岩体也被逐渐证实为印支期岩浆活动的产物,例如湘桂交界处的越城岭(220±1Ma、215±1Ma,程顺波等,2013)、都庞岭(209Ma,邹先武等,2009)、五团岩体(220.5±4.4Ma,柏道远等,2014),湘中的紫云山岩体(222.5±1.0Ma、222.3±1.8Ma,刘凯等,2014;227.0±2.2Ma;鲁玉龙等,2017)。
因此,结合前人的年龄数据和本次测得的数据,我们系统建立了白马山复式岩体的年代学框架,其中水车超单元形成于加里东期,而龙潭、小沙江和龙藏湾超单元均形成于印支晚期(215~225Ma)。近年来,随着高精度年龄数据的积累,华南印支期花岗岩主要形成于240~225Ma和225~205Ma两幕(Wangetal.,2003,2007),而白马山复式岩体中印支期花岗岩主要形成于第二幕。
花岗岩的成因类型判别是研究花岗岩重要的一环,其判别结果不仅有助于揭示岩浆源区及岩石成因,而且可为探明其形成的地球动力学背景提供重要依据。通常,S型花岗岩为过铝质花岗岩(A/CNK>1.1),富含堇青石、白云母和电气石等过铝质矿物,成岩温度较低,通常小于750℃,具有较低的εNd(t)值(Lepvrieretal.,1997;Lanetal.,2000;Carteretal.,2001;Milleretal.,2003;Xiang and Shu,2010;Zhangetal.,2012);I型花岗岩为准铝质-弱过铝质花岗岩(A/CNK<1.1),暗色矿物以黑云母和角闪石为主,缺乏典型的过铝质矿物,成岩温度较高,通常大于750℃,具有较高的εNd(t)值(Milleretal.,2003;Zhouetal.,2006;Wangetal.,2007;Xiaetal.,2014)。
龙潭和小沙江超单元花岗岩,在矿物学上,都有较高含量的黑云母和角闪石。在化学组成上,铝饱和指数较低,A/CNK为0.97~1.07,属于准铝质;在Rb-Y协变图和Q-A-P图解中,这两个超单元大部分样品的变化趋势与I型花岗岩的演化趋势相似,个别样品处在I-S过渡类型花岗岩范围(图7c,d)。在形成的温度上,龙潭和小沙江超单元花岗岩形成的温度为753~803℃,均高于750℃。在矿物学、化学组成和形成温度上,龙潭和小沙江超单元大部分花岗岩都与I型花岗岩相似,少数几个样品显示I-S过渡类型性质。在(Na2O+K2O)/(CaO-Zr+Nb+Ce+Y)和FeOT/(MgO-Zr+Nb+Ce+Y)图解中,这两个超单元花岗岩的样品均落入未分异的I、S型花岗岩区域内(图7e,f)。根据以上特征可知,龙潭和小沙江超单元花岗岩主要为未分异的I型花岗岩,少数为I-S过渡类型。
图7 白马山复式岩体花岗岩成因类型判别图(a) SiO2-P2O5协变图(Li et al.,2007);(b) SiO2-Pb协变图(Li et al.,2007);(c) Rb-Y协变图(Li et al.,2007);(d)Q-A-P图解(Bowden and Kinnaird,1984);(e)(Na2O+K2O)/CaO-(Zr+Nb+Ce+Y)图解(Whalen et al.,1987);(f)FeOT/MgO-(Zr+Nb+Ce+Y)图解(Whalen et al.,1987).I、S、A分别代表I型、S型、A型花岗岩;FG代表分异的长英质花岗岩;OGT代表未分异的I、S、M型花岗岩Fig.7 Classification diagrams of genetic type for granites of the Baimashan granitic complex(a) SiO2 vs.P2O5 classification diagram (Li et al.,2007);(b) SiO2 vs.Pb classification diagram (Li et al.,2007);(c) Rb vs.Y classification diagram (Li et al.,2007);(d) Q-A-P diagram (Li et al.,2007);(e) (Na2O+K2O)/CaO vs.(Zr+Nb+Ce+Y) diagram (Whalen et al.,1987);(f) FeOT/MgO vs.(Zr+Nb+Ce+Y) diagram (Whalen et al.,1987).I:I-type granite;S:S-type granite;A:A-type granite;FG:fractionated felsic granite;OGT:unfractionated M-,I-and S-type granite
龙藏湾超单元花岗岩中白云母含量较高,含有少量电气石,A/CNK介于1.12~1.29之间,属于强过铝质,锆饱和温度为729~750℃,与S型花岗岩特征相似(Lepvrieretal.,1997;Carteretal.,2001;Milleretal.,2003;Wangetal.,2007;Xiang and Shu,2010;Zhangetal.,2012)。在Rb-Y协变图解中,龙藏湾超单元样品变化的趋势与S型花岗岩的演化趋势相似(图7c)。在Q-A-P图解中,龙藏湾超单元样品落入S型花岗岩的区域内(图7d)。在(Na2O+K2O)/CaO-(Zr+Nb+Ce+Y)和FeOT/MgO-(Zr+Nb+Ce+Y)图解中,龙藏湾超单元样品落入分异的长英质花岗岩区域内(图7e,f)。综合以上特征,龙藏湾超单元花岗岩为高分异的S型花岗岩。
前人已有研究表明,花岗岩全岩Sr-Nd同位素和锆石Hf同位素是判别岩浆源区较为理想的示踪剂,这是因为地壳和地幔储库的Sr-Nd-Hf同位素比值存在明显的差异,利用Sr-Nd和Hf同位素体系可以有效地判别壳、幔物质来源和壳/幔相互作用(肖庆辉等,2003;Kempetal.,2007;Daietal.,2008;李献华等,2009)。本次对白马山复式岩体的龙潭、小沙江和龙藏湾超单元印支期花岗岩进行了系统的全岩Sr-Nd同位素和锆石Hf同位素分析。研究表明,龙潭和小沙江超单元花岗岩的Sr-Nd同位素组成,均与扬子地块上地壳Sr-Nd同位素组成相似(图8a),而龙藏湾超单元花岗岩具有更高的放射成因Sr同位素组成,Sr-Nd同位素与华南古元古代变质沉积岩相似(图8a)。所有花岗岩的Nd同位素演化,基本与华南地区古元古代地壳Nd同位素演化趋势一致,同时,龙潭超单元花岗岩中暗色包体Sr-Nd同位素也与华南地区古元古代地壳Sr-Nd同位素组成一致(图8b)。白马山岩体中所有花岗岩的锆石Hf同位素组成都与古老地壳Hf同位素组成一致(图9)。同时,这些花岗岩具有古老的二阶段Nd模式年龄(1.76~1.91Ga)和Hf模式年龄(1.6~18Ga)。因此,全岩Sr-Nd同位素和锆石Hf同位素组成一致表明,白马山复式岩体中的印支期花岗岩,均是由华南地区古老地壳物质重熔产生的。
图8 白马山复式岩体花岗岩εNd(t)-(87Sr/86Sr)i(a)和εNd(t)-年龄(b) 图解(据孙涛等,2003修改)数据来源:华南地区亏损地幔(Li et al.,2004);扬子地块新元古代岩石(Zhang et al.,2009);扬子地块上地壳(祁昌实等,2007);古元古代变质沉积岩(袁忠信等,1991);DM和P-MORB (Zindler and Hart,1986);白马山其他文献(陈卫锋等,2007);紫云山花岗岩和大神山花岗岩(本课题组未发表的数据);锡矿山煌斑岩数据(胡阿香和彭建堂,2016)Fig.8 Diagrams of εNd(t) vs.(87Sr/86Sr)i (a) and εNd(t) vs.Age (b) of granites from the Baimashan granitic complex (modified after Sun et al.,2003)Data sources:Depleted mantle of South China Block from Li et al.(2004);Neoproterozoic rock of Yangtz Block from Zhang et al.(2009);upper crust data of Yangtz Block from Qi et al.(2007);Paleproterozoic metamorphic-sedimentary rock from Yuan et al.(1991);DM and P-MORB from Zindler and Hart (1986);Baimashan other granite from Chen et al.(2007);Ziyunshan granite and Dashenshan granite from our unpublished data;Xikuangshan lamprophyre from Hu and Peng (2016)
图9 白马山复式岩体锆石年龄-εHf(t)协变图Fig.9 Zircon age vs.εHf(t) plot for the Baimashan complex
前人研究表明,不同物质熔融形成的花岗岩具有特定的主量和微量元素(主要是高场强元素)组成,因此,利用某些元素的比值可以判别花岗岩的源区物质组成(Miller,1985;Sylvester,1998;Patio Douce,1999;Altherretal.,2000)。主量元素组成上,龙潭和小沙江超单元花岗岩样品大部分落入变质中基性岩石(变质玄武岩或变质英云闪长岩)部分熔融区域,少数落入处在变质砂岩与变质中基性岩石部分熔融重叠区域内(图10a)。相比龙藏湾超单元,龙潭和小沙江超单元花岗岩具有更低的Rb/Ba和Rb/Sr比值,暗示岩浆源区具有低的粘土含量。相反,龙藏湾超单元花岗岩样品全部落入变质砂岩部分熔融区域内(图10a),其Rb/Ba和Rb/Sr的比值较高,暗示龙藏湾超单元岩体的源区可能为富粘土的古老杂砂岩地层的部分熔融形成(图10b)。因此,龙潭和小沙江超单元花岗岩主要由贫粘土的古老基性变质火成岩混入变质沉积岩重熔产生,而龙藏湾超单元花岗岩的成岩物质可能主要为华南上地壳古元古代富粘土的变质沉积岩发生部分熔融所致。
图10 白马山复式岩体花岗岩源区性质判别图解(a)A/MF-C/MF图解(Altherret al.,2000);(b)Rb/Ba-Rb/Sr图解(Sylvester,1998)Fig.10 Classification diagrams of the sources for granites of the Baimashan granitic complex(a) A/MF vs.C/MF diagram (Altherret al.,2000);(b) Rb/Ba vs.Rb/Sr diagram (Sylvester,1998)
华南板块由扬子陆块与华夏陆块在新元古代碰撞拼贴,晚古生代末华南大陆形成(Shu and Charvet,1996;Lietal.,2002,2008;Charvet,2013),中生代与印支板块、华北板块等连为一体(Lepvrieretal.,1997;Nam,1998;Lanetal.,2000;Carteretal.,2001;Nametal.,2001),构成中国大陆的雏形。前人研究认为华南地区在中二叠世(267~262Ma)开始进入印支运动(Lietal.,2006),印支板块向北运动与华南板块发生碰撞拼合,并在258~243Ma达到高峰(Lepvrieretal.,1997;Nam,1998;Lanetal.,2000;Carteretal.,2001;Nametal.,2001),华南板块受到印支板块的挤压,地壳从南向北递进增厚(Zhouetal.,2006;Wangetal.,2007;Maoetal.,2011;张龙升等,2012;Zhaoetal.,2013),随后,受热-应力的松弛作用,华南地块进入伸展应力体制(周新民,2003;Wangetal.,2005;Lietal.,2012;张龙升等,2012)。Wangetal.(2007)认为华南印支早期花岗岩(243~228Ma)为挤压环境下的同碰撞花岗岩,而印支晚期(220~206Ma)则转变为伸展环境下的后碰撞花岗岩。同时,华南地区陆续确认了湖南锡田岩体、浙江大爽岩体、江西蔡江岩体和福建高溪岩体等为印支晚期A 型花岗岩(马振东和陈颖军,2000;Wangetal.,2007;柏道远等,2007;Sunetal.,2011;郭春丽等,2012;Maoetal.,2013;Xia and Xu,2020),也证实了华南地区在印支晚期由同碰撞挤压环境转为碰撞后伸展环境。湖南省内的印支期花岗岩年龄主要集中在225~202Ma(丁兴等,2005;刘伟等,2014),例如阳明山、邓阜仙、紫云山、沩山、大神山、锡田等岩体都被认为形成于碰撞后的伸展构造环境(丁兴等,2005;陈卫锋等,2006;柏道远等,2007;张龙升等,2012;郑佳浩和郭春丽,2012;蔡杨等,2013;刘凯等,2014;刘伟等,2014)。
根据前文的分析可知,白马山岩体中龙潭和小沙江超单元花岗岩属于I型或者I-S过渡型花岗岩,成岩物质主要为古元古代扬子地块上地壳中基性火成岩混有变质沉积岩发生部分熔融形成。通过Ta-Yb和Rb-(Y+Nb)图解(图11)以及Rb-Hf-Ta图解(图12)可以看出龙潭和小沙江超单元花岗岩属于板内碰撞后花岗岩,形成于碰撞后构造环境。对比华南地区的印支期花岗岩可以发现,紫云山、沩山、大神山、锡田、十万大山等岩体具有与龙潭和小沙江超单元花岗岩相似的地球化学特征,都具有较高的FeOT、MgO、TiO2、Sr、Ba、Zr含量、εNd(t)值和εHf(t)值,岩体属于I型花岗岩,成岩物质主要为古元古代变质火成岩混有变质沉积岩部分熔融产生(丁兴等,2005;柏道远等,2007;张龙升等,2012;刘凯等,2014;鲁玉龙等,2017)。本文认为龙潭和小沙江超单元花岗岩可能是华南板块受印支板块碰撞挤压后地壳发生伸展减薄,地幔物质底侵诱发扬子地块变质基底的中基性火成岩和沉积岩发生部分熔融。
图11 白马山复式岩体花岗岩Ta-Yb判别图解(a,据Pearce et al.,1984)和Rb-(Y+Nb)判别图解(b,据Pearce,1996)Fig.11 Discrimination diagrams of Ta vs.Yb (a,after Pearce et al.,1984) and Rb vs.(Y+Nb) (b,after Pearce,1996) for granites of the Baimashan granitic complex
图12 白马山复式岩体花岗岩Rb-Hf-Ta图解(据Harris et al.,1986)Fig.12 Rb-Hf-Ta diagram for granites of the Baimashan granitic complex (after Harris et al.,1986)
龙藏湾超单元花岗岩的地球化学特征与同样形成于印支晚期的龙潭、小沙江超单元花岗岩截然不同:龙藏湾超单元花岗岩具有较高的SiO2、K2O+Na2O含量、铝饱和指数以及Rb/Sr、Rb/Ba比值;稀土元素总量明显偏低,且具有较强的Eu负异常;岩体属于S型花岗岩,源区为杂砂岩和泥岩。与区域内栗木、阳明山、王仙岭、冒峰、柯树岭、邓阜仙等岩体相似(陈卫锋等,2006;柏道远等,2007;郭春丽等,2012;郑佳浩和郭春丽,2012;蔡杨等,2013)。通过Ta-Yb和Rb-(Y+Nb)图解(图11)以及Rb-Hf-Ta图解(图12)可以看出,龙藏湾超单元花岗岩也属于板内碰撞后花岗岩,形成于碰撞后构造环境。本文认为龙藏湾超单元花岗岩可能是华南板块受印支板块碰撞挤压后地壳发生伸展减薄,挤压加厚的华夏地块内变质沉积岩基底部分熔融形成的。
因此,本文认为龙潭、小沙江和龙藏湾超单元花岗岩形成于印支造山运动后的伸展构造环境中,是地壳伸展-减薄的构造背景下部分熔融的产物。华南中生代三叠纪构造-岩浆演化过程可能为:晚二叠世-早三叠世,华南板块受南部印支板块和北部华北板块的碰撞挤压,华南块体南北两侧的古特提斯洋闭合,随后,由于岩石圈物质重力不稳发生垮塌以及热应力松弛作用的影响,华南进入后造山期的陆内伸展构造环境,地壳减压熔融,幔源基性岩浆上升底侵,诱发不均一的古老地壳发生部分熔融。
白马山复式岩体周围发生强烈的金、钨成矿作用,但以往对白马山岩体和这些金属矿床的成因联系一直没有明确。近年来,随着研究程度的不断深入,在白马山复式岩体周围的金、钨矿床,除杨家山钨铜矿形成于加里东期(404.2±3.2Ma,Xieetal.,2019b)以外,其余的金、钨矿床均形成于印支期晚期(表6),如大坪金矿形成于204.8Ma(李华芹等,2008),铲子坪金矿形成于205.6Ma(李华芹等,2008),古台山金锑矿形成于223.6Ma(Lietal.,2018),杏枫山金钨矿形成于215.2±2.7Ma(吕沅峻等,2021)。这些金、钨矿床的形成时代与白马山复式岩体花岗岩的形成年龄基本一致(图1b)。区域上,湘中盆地周围一些金、钨矿床也形成于印支期,如渣滓溪矿区细脉型钨矿床形成于227.3±6.2Ma(王永磊等,2012)、大溶溪矽卡岩型钨矿床形成于223.3±3.9Ma(张龙升等,2014)、最近新发现的木瓜园斑岩型钨矿床形成于225.4±1.4Ma(陕亮等,2019)、谢家山石英脉型钨锑形成时间为209.5±2.4Ma(Zhangetal.,2019)、包金山石英脉型金钨矿床形成于207.8±1.5Ma(彭建堂等,2021),位于湘中盆地中的曹家坝矽卡岩型钨矿床的成矿时间为196~206Ma(Xieetal.,2019a),也形成于印支晚期。上述这些矿床均围绕印支期花岗岩或隐伏花岗岩分布(彭建堂等,2017),且其成矿年龄数据,与区域上白马山、紫云山、大神山、桃江等侵入岩的成岩年龄吻合较好,因此,湘中地区金、钨矿床,均是与花岗质侵入岩有关的矿床,包括白马山岩体在内的湘中印支期花岗岩,具有良好金、钨成矿潜力。
表6 白马山复式岩体周缘金、钨矿床的形成时间Table 6 Metallogenic ages of Au-Sb-W polymetallic deposits close to the Baimashan granitic complex
(1)白马山岩体是一个复式花岗质侵入体,水车超单元形成于424.9±2.2Ma,为加里东期岩浆活动产物;龙潭超单元形成于228.2±1.3Ma、小沙江超单元形成于225.3±1.1Ma和217.7±0.8Ma之间、龙藏湾超单元形成于215.0±1.2Ma,均为印支晚期岩浆活动的产物。
(2)龙潭和小沙江超单元花岗岩主要由华南古元古代上地壳中变质中基性火成岩混有部分沉积岩发生部分熔融形成,具有I型或I-S过渡型花岗岩的特征;而龙藏湾超单元主要由华南古元古代上地壳变泥质岩发生部分熔融形成,是典型S型花岗岩。白马山复式岩体印支期花岗岩可能是华南板块受印支板块碰撞挤压后地壳发生伸展减薄背景下形成的。
(3)白马山复式岩体中印支期花岗岩在时间、空间上与周缘的金、钨矿床基本一致,暗示其具有良好的成矿潜力,与金、钨矿床可能具有内在的成因联系。
致谢本文实验测试和分析过程中得到中南大学地球科学与信息物理学院张德贤老师、南京聚谱检测科技有限责任公司李亮老师、中国科学院地球化学研究所黄金川博士的热心帮助,在此表示衷心的感谢!感谢审稿专家提出的宝贵修改意见!