国网浙江嵊州市供电有限公司 黄行星 童啸霄
配电自动化技术属于智能电网中的重要环节,在提高供电安全可靠性方面具有高效经济运行价值,它也属于配电自动化配合背景下配电网故障处理的重要内容,在自动定位、隔离以及恢复供电方面都能发挥一定价值作用。本文中简单介绍了继电保护与配电网多级保护配合的可行性,思考了配电网故障定位的改进热区域搜索方法,同时探讨了模式化接线配电网的模式化故障恢复方法。
所谓配电自动化系统一旦在配电网发生故障以后就需要利用到备用设备迅速跳闸切断故障电流,其配电自动化主站中主要结合不同终端上报故障完成信息故障定位,基于遥控命令隔离故障并恢复区域供电,优化配电自动化系统建设,确保供电企形成继电保护与配电自动化配合统一认知,为配电网故障处理奠定基础。
针对供电半径偏长、分段数量偏少问题,需要结合开环运行对配电线路进行分析,如果线路发生任何故障,其故障位置上游不同分段开关位置都会出现短路电流水平明显差异问题,严重时对电流定值或延时级差配合方式会产生一定影响,必须基于限过流保护进行分析,解决多级保护配合问题,或者考虑有选择性的切除故障,确保配电网多级保护到位。
针对供电半径偏短且开环运行城市配电线路而言,它需要基于线路所发生故障进行分析,确保故障位置上游不同分段开关位置短路电池水平有效优化调整,减小差异性问题,主要针对不同开关设置不同电流定值,结合保护动作延时时间级差配合展开分析,有选择性的切除某些故障性问题。
基于多级级差保护配合展开分析,要针对变电站中10kV的出线开关与馈线开关设置不同保护动作,优化延时时间,提高配电自动化配合下的配电网多级保护配合能力。换言之,要在减少短路电流的基础之上对系统冲击进行分析,提高变电站变压器公低压侧开关进行分析,对过流保护动作时间进行分析,可将其设置为0.5s~1.0s,主要对0.5s的过流保护动作时间进行分析,主要设置多级保护配合分析系统,避免对上级保护整定值产生影响,同时对0.5s内的多级级差保护延时配合内容进行分析,提高配电自动化配合下的配电网多级保护能力。
就两级级差保护配合为例,由于它是拥有馈线断路器的(其中配置了弹簧储能操动机构),所以需要基于开关机械动作对动作时间进行规范,一般规范时间范围为30~40ms左右。在该过程中要考虑到一定的时间裕度,专门对变电站中10kV的出线开关进行设置(设置范围为200~250ms),优化保护动作延时时间,确保变压器低压侧开关始终保持250~300ms的级差,要确保选择性,进而实现两级级差之间的保护配合规范。
在三级级差保护配合可行性研究方面,要基于永磁操动机构与无触点驱动技术对保护动作时间进行分析,发现其时间缩短明显,这里要分析永磁操动机构在通过工作参数后的设计与配合优化,确保在分闸时间内分析电子式分合闸驱动电路延时时间,保证其延时时间小于1ms。此时还要利用到快速保护算法,主要对10ms左右的故障判断内容进行分析,确保基于先进技术背景下的保护断路器能能够在40ms内实现故障电流有效切除。可考虑将馈线开关设置为0s保护动作延时,并充分考虑一定的时间裕度,为上一级馈线开关设置100~150ms左右的保护动作延时时间,同时为变电站10kV出线开关设置供200~300ms的保护动作延时时间。如此实现变电站变压器低压侧开关与级差选择性的有效优化,进而试下三级级差保护配合优化。当然,这里要充分考虑到包括变压器、断路器、隔离开关、线路以及电流互感器的多级后备保护优化,分析其保护优化动作时间,实施热稳定性校验,避免设备热稳定性受到一定影响。一般来说,为有效减少变电站10kV母线近端短路故障影响问题,需要为其配备低电压速断保护或母线电压阈值整定速断保护装置,对电流定值进行调整。
在提高故障区域定位准确性与效率过程中,需要首先确保变电站出现开关跳闸信息内容,启动故障定位程序,结合变电站出现开关跳闸信息内容对确定所发生故障馈线,结合区域搜索方法查找故障区域,它的具体工作流程如下:
故障定位程序入口→判断故障馈线→收集故障馈线上开关的故障信息→最小配电区域分解→区域耗散电流计算→查找过热区域→输出故障定位结果→退出。
在配电网发生故障后,需要对变电站出现开关跳闸信息启动故障内容进行分析,建立故障定位流程,确保配电自动化主站出现开关跳闸信息优化,建立故障馈线。确定流过区域中不同端点的故障电流极性,基于区域中某一个端点的故障方向进行分析,优化配电自动化主站对故障馈线区域内部进行分析处理。该过程中,需要计算不同区域的耗散电流情况,基于区域的耗电散电流对所有端点的核算故障电流代数和进行优化调整。实际上,结合仿真结果分析,对分布式电源的配电网进行分析,主要是对过热区域进行改进,确保逆变器并网分布式电源故障方向得到正确优化,建立故障区域定位优化结果体系,有效解决含分布式公单电源配电网故障区域定位。
就单电源开环运行情况,建立过热区域搜索方法,考虑到单电源辐射状配电网故是相同的,配备电流互感器TA,结合配置压感器TV,建立配电自动化配合下的配电网多级保护终端,优化通信与操作电源内容,对终端中所需要的故障电流值进行调整。在单主电源点、分布式电源进行分析,建立分式电源容量对安装限流电抗器进行分析,优化分布式电源对电流贡献,确保过热区域搜索到位。客观讲,在单电源开环运行过程中应该融入互感器TV内容,建立终端、通信、操作电源提高其多电源点闭环配电网可行性,对量测流过开关故障电流与电压进行调整。保证配置电压互感器TV严格观测故障方向,有效抵御故障所带来的不利影响。
就仿真结果而言,它在建立热区域搜索方法体系过程中需要解决分布式电源配电网故障区域定位问题,提高电源配电网故障区域定位效率。
针对典型模式化接线配电网模式化故障恢复问题,建立多分段多联络配电网模式化故障恢复策略进行分析。要建立多分段多联络配电网模式化故障恢复策略体系。
结合主干线故障问题进行分析,建立故障隔离恢复策略,对故障变电站出线开关相邻区域,恢复对故障位置健全区域供电,优化故障位置下游恢复健全区域分段,优化故障位置下游健全区域分段,对各段对应联络开关,建立备用电源恢复一段线路供电,确保备用电源中一段线路的供电水平始终保持较高水准。换言之,基于网架结构与模式化故障恢复方案优化线路利用率,其利用率可达到75%以上,为网架结构搞设备利用率提高创造有利条件。
针对多供一备配电网,建立主干线发生故障问题,优化故障隔离中的故障恢复策略,建立故障位置供电线路的电源点发生故障问题,对线路变电站线路建立线路隔离,优化线路末端联络开关,对故障位置下游对健全区域内容进行分析,优化故障位置健全区域供电。就网架结构与模式化故障恢复方案建设看来,可采用N供1备电缆配电网中的平常供电效应,进而满足N-1准则要求,确保N供1备电缆配电网的平均利用率达到66%以上,建立N供1备电缆配电网平均利用率达到75%以上,有效发挥网架结构,提高设备利用效率。
最后,针对典型模式化接线配电网的模式化故障恢复开关操作策略进行分析,基于事先制定典型模式化内容进行调整,分析了解不同区域的故障固定故障进行分析,建立操作逻辑图,主要针对典型模式化接线配电网模式化故障内容进行分析,确保故障恢复模式始终一成不变,如此可保证配电自动化主站的软件算法建立依赖网络重构体系,对配电自动化故障处理能力区域进行分析,建立人工手动故障恢复操作系统。在针对备用配电网描述结构实施调整过程中,也要分析其备用配电网模式化故障处理算法内容,优化备用配电网,确保模式化故障恢复开关操作逻辑优化到位。总而言之,就是要针对多分段、多联络、多供一备设备进行调整,建立4x6接线模式,简化描述结构内容,充分发挥模式化接线优点,这对提高配电设备利用率也有一定好处,可确保接线配电网中的模式化故障被有效回复。与粗同时,在简化配电自动化主站故障恢复算法方面也有好处,其对人工操作优化是具有极大好处的。
总结:在针对继电保护与配电自动化配合的配电网故障处理实施深入研究分析过程中,需要结合配电网多级级差保护配置方案进行分析,建立保护协调配合配电网故障处理策略,追求实现配电网故障快速分析体系,选择性切除继电保护中的配电网故障内容,有效缩短用户停电时间,有效提高配电网供电可靠性。