PARAMETRIC REPRESENTATIONS OF QUASICONFORMAL MAOOINGS*

2021-01-07 06:45:08ZhenlianLIN林珍连
关键词:擎天

Zhenlian LIN (林珍连)

School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China E-mail : zhenlian@hqu.edu.cn

Qingtian SHI (石擎天)

School of Mathematics and Computer Science, Quanzhou Normal University,Quanzhou 362000, China E-mail : shiqingtian2013@gmail.com

2 Two Counterexamples of the Parametric Representations

3 Parametric Representation of

Given a measurable functionµ(z),letfµbe the normal solution of the Beltrami equation∂zf=µ∂zf.Ifµhas compact support on∆,thenfµcan be represented as follows:

Theorem 3.1([2])Letµ(z)be a measurable function which has compact support onΩ⊂C.If‖µ‖∞≤k<1,then there exists a unique solutionf=fµsuch thatf(0)=0 andfz−1∈Lpforp>2.Moreover,fcan be expressed in the following form:

4 Auxiliary Application of Parametric Representation

Using the parametric representation ofin Theorem 1.1,Eremenko and Hamilton derive the formula(1.6)to prove the area distortion theorem[6].This method is relatively simple compared to others,and the sharp constants in the area distortion inequality are obtained from it,but we find that the parametric representation theorem is false and the area distortion formula(1.6)can not be derived from the equalities(1.3)–(1.5).In this section,by applying Theorem 3.4,we get that the formula(1.6)still holds true for allf∈;that is,the method used by Eremenko and Hamilton in[6]can still be used to prove the area distortion theorem.

In fact,because

we have that

Astis a real variable,then,by applying the parametric representation in(3.3),

Therefore,from(4.2),the relation(4.1)can be simplified to

by the fact that(Pρ)ω=Tρ,which implies that the relation(1.6)holds true for the parametric representation in(3.3).

猜你喜欢
擎天
缘劫
当代作家(2023年3期)2023-04-23 01:58:26
古柏
擎天一柱
宝藏(2020年10期)2020-11-19 01:47:48
一峰擎天、门当户对
宝藏(2020年9期)2020-10-14 01:37:48
登上擎天峰的猴子
万柱擎天
擎天一柱党光荣
中华魂(2017年11期)2017-11-21 19:58:39
登上擎天峰的猴子
鹳雀楼
扬子江诗刊(2015年5期)2015-11-14 06:21:16
伴他擎天守长空
海峡姐妹(2015年5期)2015-02-27 15:10:45