纪雪峰,单 斌,王莎莎,马继平(青岛理工大学 环境与市政工程学院,青岛 266033)
随着经济的快速发展,工业生产中污染物的排放量不断增加,导致重金属污染问题越来越严重,不仅影响环境质量,还会对人体健康产生极大损害.尤其是生物毒性较大的汞、镉、铅、铬的污染,它们在水体中不能被分解,且微量就具有较高的毒性,会对人体的神经系统、消化系统、免疫系统及肾脏肝脏等造成较大危害[1-4].此外,铜、铁、锌等人体所必需的微量元素,过量的摄入同样会对机体产生严重的损害,引起阿尔茨海默病、帕金森病等一系列疾病[5-6].因此,对重金属离子的检测具有重要意义.
常规检测重金属离子的方法有原子吸收光谱法、原子发射光谱法、原子荧光光谱法、电感耦合等离子体质谱法等[7-8].虽然这些方法能较为准确地检测出金属离子的含量,但所需的仪器设备昂贵,操作复杂,且需要繁杂的样品前处理过程.可见-紫外分光光度法和电化学分析法仪器设备简单,也可以用于金属的分析,但是可见-紫外分光光度法测定金属选择性不好、灵敏度不高;电化学分析法存在电极衰减引起的重现性差等局限性.分子荧光法具有检测速度快、灵敏度高、选择性好、操作简单、成本低廉等特点,利用荧光探针检测重金属离子是一种便捷有效的方法.目前荧光探针主要应用于生物和环境领域,因此能够在水溶液中进行识别才具有更高价值.关于金属离子荧光探针的综述已有一些报道[9-10],但多是基于其中一种类型的荧光探针做的总结.本文从有机小分子荧光探针及纳米材料荧光探针两方面综述近几年来两种探针在水溶液中重金属离子检测中的研究现状.
典型的有机小分子荧光探针一般由识别基团、荧光基团和连接基团三部分组成(图1).由于荧光基团与识别基团的连接方式不同,使得荧光探针的识别机理也不尽相同.常见的重金属离子荧光探针识别机理主要包括:光诱导电子转移(PET)、分子内电荷转移(ICT)、荧光共振能量转移(FRET)以及激基缔合物(Excimer)等[11-12].
图1 荧光探针的结构
目前对于可以选择性检测某种离子的有机荧光探针的研究已有很多的文献报道,主要包括罗丹明类、喹啉类、香豆素类、荧光素类、萘酰亚胺类等,不同类型的荧光探针在重金属离子检测领域得到应用.
罗丹明类因具有良好的荧光性能和光稳定性,较高的荧光量子产率和水溶性,以及独特的螺内酰胺开环荧光增强响应,是制备荧光增强型探针的良好选择,也是目前为止研究最多的一类荧光探针.
SUNNAPU等[13]以罗丹明6G肼和3,4-二甲氧基苯甲醛为原料合成了一种新型荧光比色探针1(图2).在乙腈/水(体积比2∶8)溶液中,探针1对Cr3+表现出高选择性和灵敏度识别,加入Cr3+后,在554 nm处出现一个新的发射带,荧光强度增加100倍以上,而EDTA的加入可使荧光猝灭,说明识别过程是可逆的.该探针的检出限达到1.78×10-8mol/L.
图2 荧光探针1的结构
曾竟等[14]则合成一种可以在双波长下检测Fe3+的罗丹明类荧光探针(图3).在乙醇/水(体积比1∶1)溶液中,加入Fe3+后溶液由无色变为红色,而荧光强度则出现两种相反的变化.当激发波长为350 nm时,在508 nm处发生了荧光猝灭现象,而当激发波长为530 nm时,则在582 nm处出现明显的荧光增强现象,且两种荧光强度的变化均与Fe3+的浓度在一定范围内具有良好的线性关系,检出限分别为4.56×10-6,7.4×10-7mol/L.
比率型荧光探针,是通过两处荧光强度变化的比值来对金属离子的浓度进行检测,在实际应用中可减弱其他环境因素的干扰.陈家逸等[15]设计了一种萘酰亚胺-罗丹明B荧光探针3可对Hg2+实现比率荧光检测(图4).在甲醇/乙腈/HEPES缓冲液(体积比8∶1∶1)中,基于荧光共振能量转移机理,Hg2+浓度的增加使探针在540 nm处的荧光强度减弱,在580 nm处出现新的发射峰且荧光强度逐渐增加,两处荧光强度的比值(F580/F540)与Hg2+浓度呈良好的线性关系,检出限为1.05×10-8mol/L.由于Hg2+还能引起探针荧光颜色从绿色到橙色的变化,作者还用含有该探针的滤纸检测了湖水水样中Hg2+浓度引起的比色响应,结果可靠.
图4 荧光探针3的结构
具有检测多种离子功能的荧光探针在应用中更具优势.LI等[16]设计合成了一种基于罗丹明衍生物的双功能探针(图5),对Pb2+具有荧光增强响应,还可通过颜色的变化检测Cu2+.在含1%乙腈的HEPES缓冲液中,Pb2+的加入可以引起荧光强度显著增加,但Cr3+,Hg2+和Cu2+的共存会使荧光强度降低30%~50%;而Cu2+浓度的增加会引起567 nm处吸光度的增加以及颜色从无色到淡紫色的变化.探针4对Pb2+和Cu2+的检出限分别为2.5×10-7,5.8×10-7mol/L.
图5 荧光探针4的结构
香豆素的母体本身不具荧光,但通过引入吸电子基团、供电子基团可形成含有推拉电子体系的荧光团,因其容易修饰且具有高量子产率、大斯托克斯位移及光稳定性好等优势,被用于荧光探针的合成研究.
SHAIL等[17]合成了一种香豆素类荧光猝灭型分子探针5(图6),用于Pb2+的检测.在磷酸缓冲液中,只有Pb2+的加入可以使荧光发生猝灭,同时产生颜色的变化.实验表明,Pb2+与探针5形成1∶1的络合物,检出限达到1.9×10-9mol/L.另外,作者还将该探针溶液涂在测试带上用于金属离子的检测,发现Pb2+使测试带变为亮黄色且在紫外灯照射下无荧光.
图6 荧光探针5的结构
王海娜等[18]以香豆素为荧光基团、以酰腙为识别基团合成了2种检测Cu2+的荧光探针6a,6b(图7).在DMSO/H2O(体积比9∶1)溶液中,基于光诱导电子转移机理,随着Cu2+浓度的增加,两种探针在529 nm处的荧光强度呈下降趋势,且当加入1倍量的Cu2+时荧光完全猝灭.其中探针6a的荧光强度可以在加入EDTA后恢复,表明探针与Cu2+的结合是可逆的.两种探针对Cu2+的检出限达到1.0×10-9mol/L.
图7 荧光探针6的结构
刘琪梦等[19]则通过引入三羟基作为识别基团合成了可用于纯水中检测Fe3+的香豆素类荧光探针7(图8).探针7对Fe3+具有高选择性,且响应迅速,加入Fe3+后荧光在2 min内被猝灭,猝灭机理与Fe3+的顺磁性有关,其他金属离子的存在无干扰.该探针对Fe3+的检出限为1.16×10-6mol/L.
图8 荧光探针7的结构
喹啉及其衍生物是一种良好的金属离子螯合剂,且喹啉本身具有刚性结构、大共轭体系和较好的水溶性,因此容易与金属离子络合,适合作为荧光增强型分子探针用于金属离子的检测.
XU等[20]通过5-羟甲基-8-羟基喹啉和2,6 -二氯甲基吡啶反应合成了荧光探针8(图9).探针8在不同缓冲液(Tris-HCl,HEPES,PBS)及纯水中均能对Cd2+表现出良好的选择性荧光增强响应,检测的灵敏度也较高,检出限分别为2.301×10-7,2.389×10-7,3.261×10-7和2.165×10-7mol/L.VELMURUGAN等[21]以3-甲酰基-2-羟基喹啉和邻苯二胺为原料通过一步反应合成了荧光探针9(图10).该探针对Zn2+具有专一的选择性和灵敏度,在乙腈/水(体积比1∶1)溶液中加入Zn2+后,溶液表现出明显的颜色变化和荧光增强现象.
图9 荧光探针8的结构
图10 荧光探针9的结构
SHI等[22]则合成了一种基于喹啉的双光子荧光探针10(图11),对Cd2+表现出优良的选择性和高灵敏度的荧光增强反应.在乙醇/水(体积比2∶8)溶液中随着Cd2+浓度的增加,原本在407 nm处的发射带逐渐消失,在500 nm处出现一个新的显著增强的发射带,且在439 nm处形成了一个清晰的等发射点,这是由于探针与Cd2+形成的络合物发生了分子内电荷转移.该探针的检出限为2.363×10-8mol/L.
图11 荧光探针10的结构
过去几十年有关有机小分子荧光探针的研究已经有很多报道,除上述几种类型外,还有荧光素、萘酰亚胺、卟啉、氟硼二吡咯等其他类型的有机荧光探针也在重金属检测中被应用.表1总结了用于水体及细胞成像中重金属检测的小分子荧光探针的文献报道.
表1 用于水体及细胞中重金属离子检测的有机小分子荧光探针
随着纳米技术的快速发展,将纳米材料用于荧光探针的构建受到了越来越多的关注.与传统的荧光染料相比,荧光纳米材料不仅有较高的荧光强度和良好的光稳定性,同时还具有纳米材料所特有的小尺寸效应、量子效应和表面效应等特性,可以弥补传统荧光染料的不足.目前,研究比较多的荧光纳米材料主要包括金属纳米材料、半导体量子点、碳点及金属-有机骨架材料等,在重金属离子检测方面有应用研究报道.
金属纳米材料包括金属纳米粒子和由10~100个金属原子组成的金属纳米簇,其常用的金属主要有金、银、铜等.其中金属纳米粒子主要通过与荧光物质间的荧光共振能量转移作用使荧光物质发生荧光猝灭来实现荧光检测.而金属纳米簇是自身具有荧光发射,其与待测物的相互作用可使荧光性质发生改变,从而可用于荧光探针的构建.
本课题组制备了一种水溶性的金纳米粒子可以用于水中Cu2+的荧光检测[31].通过将异硫氰酸荧光素(FITC)加入到柠檬酸盐改性的Au NPs中,合成了FITC-Au NPs,由于两者间形成了FRET系统使得FITC的荧光被极大地猝灭,而半胱氨酸的加入可以取代FITC与Au NPs形成比Au-SCN亲和力更强的Au-S键从而将FITC释放出来使其荧光恢复.但当Cu2+存在时,Cu2+可以催化半胱氨酸被氧气氧化生成二硫胱氨酸,而二硫胱氨酸不能置换出FITC.因此,在半胱氨酸存在的条件下随着Cu2+浓度的增加,FITC-Au NPs在溶液中的荧光强度会降低,且存在良好的线性关系,可以实现Cu2+的定量检测,检出限达到3.7×10-10mol/L.在桶装矿泉水中加入Cu2+进行检测,检出限为6.4×10-10mol/L.
与金属纳米粒子相比,金属钠米簇因具有粒径小、荧光强、稳定性好以及核壳结构等特性在荧光探针方面的应用更多.ZHANG等[32]以胞嘧啶为稳定剂制备了金纳米簇作为检测Ag+和Hg2+的双功能荧光探针.在Au NCs溶液中加入Ag+会形成AuAg NCs使荧光增强,而在AuAg NCs溶液中再加入Hg2+则会引起荧光猝灭,响应速度快且稳定,推测其机理与Ag-Au金属键和Hg2+-Ag+高亲和金属键的相互作用有关.该探针对Ag+和Hg2+的检出限分别为1.0×10-8和3.0×10-8mol/L,将其用于湖水样品的检测结果显示,对Ag+的测定结果与给定浓度之间的相对误差小于5%,对Hg2+的检测回收率为97.7%~99.3%.
PENG等[33]则以甲硫氨酸做稳定剂制备了一种金纳米簇作为荧光增强型探针检测Cd2+.实验表明只有Cd2+的加入会使溶液荧光增强,推测是由于Cd2+与配体上的氨基或羧基螯合使Au NCs聚集所致,其他金属阳离子和阴离子均无响应.该方法的检出限为1.225×10-8mol/L,对自来水、湖水和奶粉样品的分析发现平均回收率在95.33%~106.21%.
与金银纳米簇相比制备铜纳米簇所需的前驱体更丰富且成本更低.HU等[34]以谷胱甘肽(GSH)作为还原剂和稳定剂制备了铜纳米簇(GSH-Cu NCs)检测Hg2+.Hg2+的加入与配体表面的羧基和巯基发生反应诱导了Cu NCs的聚集从而使荧光猝灭,检出限为3.3×10-9mol/L.该方法对自来水、嘉陵江水及大米中Hg2+的测定结果与氢化物发生原子荧光光谱法测定结果吻合度较好.
半导体量子点一般由II-VI族或III-V族的元素组成,是粒径在1~10 nm的零维纳米材料,由于其粒径小于或者接近激子半径,因此表现出量子限制效应使连续的能带结构变成分立状态,在被激发后可发射荧光.其独特的量子尺寸效应,使其光谱具有可控性,同时存在激发波长范围宽、发射光谱窄且对称的特性.
目前报道的该类荧光探针多为CdX(X=Te,Se,S)量子点,通过不同的物质对量子点表面进行修饰来增加其水溶性及对金属离子的选择性.高雪等[35]用巯基乙酸作稳定剂合成了CdTe量子点,然后通过乙二胺四乙酸钠(EDTA)与Cd2+的络合作用对量子点的表面进行了化学蚀刻,形成Cd2+空腔使荧光猝灭,以此作为一种Cd2+增强型荧光探针,检出限为1.0×10-9mol/L.用于自来水和海水水样中Cd2+的检测,回收率为97%~108%.
将有机荧光团连接到量子点上是制备比率型纳米探针的一种简单有效的方法.MA等[36]将具有绿光发射的咪唑荧光团(PIPT)螯合到有红光发射的CdTe@SiO2量子点表面,作为一种比率型纳米探针PIPT-CdTe@SiO2QDs用来检测Hg2+.由于PIPT与Hg2+存在强螯合作用,加入Hg2+后PIPT的荧光被猝灭,但CdTe量子点对Hg2+不敏感荧光不变,因此出现荧光比值的变化,该方法对Hg2+的检出限为6.5×10-9mol/L,用于自来水和湖水水样回收率为96.3%~107.0%.
碳点是以碳为基础的粒径小于10 nm的零维碳纳米材料,具有荧光性质,因具有水溶性好、光稳定性高、原料成本低、制备过程简单、易功能化、毒性低及发射光谱可调等优点,可用于催化、荧光检测、生物成像等领域,是一种较为理想的构建荧光纳米探针的材料.
ZHANG等[37]以天冬氨酸和碳酸氢铵为原料通过微波辅助热解法一步合成了石墨烯量子点(GQDs),可用于检测水中的Fe3+.选择性实验显示在Fe3+,Fe2+,Hg2+,Ca2+,Ba2+,Cu2+,Mn2+,Mg2+,Ni2+,Ag+中只有Fe3+会使荧光明显猝灭,因为Fe3+会与GQDs表面的酚羟基络合导致电子跃迁到Fe3+的d轨道,从而引起荧光猝灭.该探针的检出限为2.6×10-7mol/L.GEDDA等[38]则以虾壳为原料制备了一种低成本、响应速度快、选择性和灵敏度高的绿色荧光碳点(CD),基于Cu2+与CD表面氨基的配位作用形成铜胺络合物及内过滤效应使荧光发生猝灭,可对水中Cu2+进行检测,检出限为5.0×10-9mol/L.
碳点荧光探针对金属离子的选择性识别除上述通过CD表面官能团直接识别外,还可通过配体对CD的修饰提高选择性以及CD与其他物质结合形成复合物来提高识别能力.XU等[39]合成了一种经胸腺嘧啶(T)修饰的CD,用于检测Hg2+.通过形成T-Hg2+-T结构使CDs-T聚集,导致荧光强度降低.荧光探针CDs-T对Hg2+的检出限为9.3×10-10mol/L,用于自来水与池塘水水样的检测,回收率为97.2%~103.7%.
金属-有机骨架材料(MOFs)是由金属离子和有机配体自组装形成的多孔材料,具有尺寸、结构可调性,在催化、吸附、气体储存与分离等方面具有良好的应用前景.本课题组制备了磁性MOFs及MOF混合基质膜等复合MOFs材料,作为吸附剂去除环境中的污染物或作为色谱分析样品前处理的富集吸附材料[40-43].MOFs材料也具有优异的发光特性,可作为新型纳米荧光材料用于重金属离子的检测.
RUDD等[44]通过引入荧光团和功能化的二羧酸酯连接体合成了一系列MOFs材料(LMOF-261,262,263),用于检测和去除水中重金属离子.研究发现LMOF-263可在很低的浓度下(3.3×10-9,1.97×10-8mol/L)检测Hg+和Pb2+.另外,LMOF-263还可以对Hg+进行吸附,在30 min内去除率达到99.1%.
目前报道的MOFs荧光探针多为荧光猝灭型,易受周围环境因素影响,相比之下荧光增强型及比率型探针能更好地应用于水中重金属离子的检测.CHEN等[45]制备了含卟啉基团的金属-有机骨架材料PCN-222-Pd(Ⅱ)对水溶液中的Cu2+表现出荧光增强响应.Cu2+的加入取代了与卟啉中氮原子螯合的钯离子,将钯离子置换出来并还原成钯纳米粒子从而催化了Heck反应,使苯胺转化为具有荧光的吲哚产物,产生荧光增强响应.检出限为5.0×10-8mol/L.
WANG等[46]则合成了一种具有双发射峰的MOFs作为比率型荧光探针检测Cu2+.加入Cu2+后,Eu(III)复合物的中心Eu3+被Cu2+取代导致荧光发生猝灭,而荧光素异硫氰酸酯(FITC)的荧光信号不变可作为参考,呈现出比值荧光响应.该探针对Cu2+的检测灵敏度很高,检出限达到1.0×10-10mol/L,且在人血清样本、黄河水及自来水样品中1.0×10-10mol/L的Cu2+也可以被检测到,证明了这种探针的可行性.
稀土-有机骨架荧光探针由于稀土离子自身的特性和配体向稀土离子的能量转移而呈现的发光现象,使其在荧光分析检测方面得到应用.XIA等[47]采用溶剂热法合成了以稀土离子为中心的MOFs可用于水溶液中Hg2+的检测.向溶液中加入Hg2+后,由于Hg2+与配体的相互作用显著影响了配体向中心Tb3+的能量转移从而发生荧光猝灭,检出限为4.4×10-9mol/L.将该方法用于河水、饮用水和自来水水样的检测,相对标准偏差小于4.80%.
除上述几类纳米荧光探针外,还有磁性纳米粒子、硅纳米材料以及纳米纤维素等也被用于重金属离子荧光探针的构建.表2总结了用于水中重金属离子检测的纳米荧光探针的文献报道.
表2 用于水中重金属离子检测的纳米荧光探针
续表2
随着重金属污染问题日益加剧,重金属离子的检测受到越来越多的关注.近年来,荧光探针在重金属离子检测方面取得了较好的进展.然而,仍然存在一些问题亟待解决.例如:一些荧光探针特异性不高,容易受其他金属离子的干扰,或灵敏度不够,达不到检测的要求;部分荧光探针结构复杂,合成较为困难,多数有机荧光探针是在有机溶剂跟水的混合体系中进行的,很难广泛应用.因此,要优化已有荧光探针的性能,进一步提高检测的灵敏度和选择性以及探针的实用性.另一方面,对于性能优良、合成简单、成本低、水溶性好且能够实时检测的新型荧光探针的设计还需要进一步的探究.此外,还可以对荧光探针的检测机理进行深入研究,将多种检测手段联用,设计出抗干扰能力更强,更具实际应用价值的荧光探针.总之,随着荧光探针技术的进一步发展,新型、高效、适用范围广的荧光探针将被不断开发,使其在化学、环境科学、生物科学等领域具有更加广泛的应用前景.