贾 镕,王 峰,袁宏武,拓浩男,姜兆祯,吴云智
(1.中国人民解放军陆军炮兵防空兵学院 信息工程系,合肥 230031;2.偏振光成像探测技术安徽省重点实验室,合肥 230031)
指纹作为人类的生物特征,因具有唯一性和终生不变性,被广泛应用于刑事侦查及保密工作。指纹分为潜指纹、可见指纹和立体指纹,其中潜指纹[1]较常见并最早应用于指纹检测与识别,因此潜指纹无损检测技术成为关键的刑侦技术。潜指纹无损检测方法包括激光照射法、紫外荧光探测法以及紫外反射探测法等。研究人员将传统紫外探测方法与偏振探测方法相结合得到紫外偏振成像探测方法,该方法作为新型光电探测方法,可有效消除背景噪声,扩大目标信息量并提高目标探测与识别准确性[2]。和传统紫外强度图像相比,紫外偏振图像中目标与背景对比度更高且细节更清晰,同时两者具有良好的互补性,因此,将紫外强度图像与紫外偏振图像融合应用有助于更全面、准确地描述目标信息,从而更好地实现潜指纹检测与识别。
常见的偏振图像融合主要是将强度图像与偏振度图像进行融合。研究人员根据实际应用需求提出众多融合算法,其中金字塔变换[3]、曲率波变换[4]、小波变换以及非下采样轮廓波变换等基于多尺度变换(Multiscale Transform,MST)的经典偏振图像融合算法[5-7]应用较广泛。上述图像融合算法先将待融合图像分解为不同频率成分,再按照一定的融合规则将其进行整合,可取得良好的融合效果。然而单独使用多尺度方法将强度图像和偏振度图像进行融合易损失源图像中细节与纹理信息。
在实际应用中,偏振参量图像比偏振度图像更能表现目标特性,所以选择最能表征目标特征的偏振参量图像进行融合更有意义。2008年,ZHANG等人[8]提出一种基于自适应模糊聚类算法的图像融合算法,引入图像像素对聚类中心的隶属度,并采用最大规则得到融合图像隶属度作为加权平均策略的加权系数,进而利用加权平均策略得到融合图像。2013年,YUAN等人[9]提出基于Choquet模糊积分的偏振图像融合方法,以可见光偏振图像为研究对象,从多偏振参数图像中选择最佳偏振参数图像,目标细节更丰富且对比度更高。2016年,ZHOU等人[10]针对图像融合过程中不确定性问题,提出将模糊理论引入DT-CWT多聚焦图像融和算法,发现改进后的算法能保留原始图像中纹理与边缘等细节信息,并有效去除图像聚焦差异,具有更好的融合性能。
受上述工作启发,本文针对潜指纹紫外偏振图像融合问题,提出一种模糊自适应融合算法。采用紫外偏振成像探测系统获取潜指纹紫外偏振图像,解析偏振图像得到不同偏振参量图像,利用模糊积分自适应选择最佳偏振参量图像,通过离散平稳小波变换(Stationary Wavelet Transform,SWT)将强度图像和偏振参量图像变换到频域,并分别使用最大值规则[11-12]和稀疏表示规则融合高、低频系数,最终由离散平稳小波逆变换得到融合图像。
人造目标或自然地物在反射、散射和透射电磁辐射时,其表面呈现独特的偏振特性,该特性由人造目标或自然地物自身理化组成、介质特征、结构特征以及含水量等共同决定[13]。由于偏振成像包含目标强度信息与目标偏振信息,因此可在一定程度上提高目标探测与识别的准确性,有效解决强度图像中目标轮廓模糊及受背景干扰较大等问题[2]。
目标偏振信息通常采用斯托克斯(Stokes)向量表征,Stokes向量S=[I,Q,U,V]T包含偏振光的振幅、相位以及偏振度、偏振角和偏振态等偏振信息[14],表达式为:
(1)
其中,ax、ay分别为偏振光x、y振动分量的振幅,δ为两振动方向的相位差。Stokes向量的量纲是光强,4个分量是光强的时间平均值。其中由于自然地物反射光线中V分量极微小,因此计算时将其视为0。
描述偏振光的两个重要参量是线偏振度DOLP和偏振角AOP,其计算公式分别为:
(2)
(3)
根据线偏振度和Stocks向量的定义,计算得到偏振光在X轴方向的分量Ex、在Y轴方向的分量Ey以及两者之差ΔE如下:
(4)
根据式(4)可计算得到差分信息PDI,计算公式如下:
(5)
根据式(1)~式(5),可计算得到被测目标的I、Q、U、DOLP、AOP、Ex、Ey、ΔE和PDI等多个偏振参量图像。
图1为本文所提紫外偏振图像模糊自适应融合算法的架构。该算法包括2个阶段:1)从多个偏振参量图像选择1个能表征该场景的最佳偏振参量图像;2)将该最佳偏振参量图像与强度图像进行最优融合。
图1 本文算法架构
本文算法具体步骤如下:
1)偏振图像解析。输入3个偏振方向原始图,配准并解析出紫外强度图像以及不同的偏振参量图像。
2)最佳偏振参量图像选取。选用方差、信息熵和清晰度作为评价指标,对偏振参量图像的表现打分,并构建信任函数与模糊测度,计算偏振参量图像模糊积分值,选择模糊积分值最大的偏振参量图像作为最佳偏振参量图像。
3)离散平稳小波变换。使用SWT分别获取紫外强度图像和最佳偏振参量图像的高、低频系数。
4)最大值规则和稀疏表示整合。使用最大值规则整合高频系数,使用稀疏表示规则整合低频系数。
5)离散平稳小波逆变换。对各层融合后的高、低频系数进行离散平稳小波逆变换,得到最终的融合图像。
从偏振参量图像中选择最佳图像与强度图像融合是关键。偏振图像融合目的是在保留强度图像视觉效果基础上,突出目标细节和纹理特征,要求偏振参量图像具有良好的细节、纹理特征以及清晰度[15-16]。
在自适应选择最佳偏振参量图像中:方差是反映图像细节信息量的图像对比度测量;信息熵反映图像纹理,信息熵越大说明纹理越丰富;清晰度反映图像清晰程度以及纹理变换程度[17]。本文选用方差、信息熵和清晰度这3个属性衡量偏振参量图像质量,通过建立偏振参量图像信任函数和模糊测度,以及根据模糊积分值大小来选择最佳偏振参量图像。方差、信息熵和清晰度的表达式分别为:
Var=(x-μ)2
(6)
(7)
(8)
其中,μ为图像均值,M为图像灰度等级,n为图像大小。根据模糊积分关于信任函数的描述,对上述3个属性构建信任函数如下:
(9)
离散平稳小波变换的分解公式为:
(10)
(11)
离散平稳小波的重构公式为:
[g1(n-2k)]+g1(n-2k-1)]dj,k)
(12)
其中,g0(k)、g1(k)分别为h0(k)、h1(k)的对偶基。
离散平稳小波变换使用冗余离散小波基,其属于非正交类型的小波变换,具有平移不变性和冗余性。信号在小波基上可表示为离散小波基上的平均值,由于小波系数和尺度系数与原信号等长,因此可有效避免信号下采样后重构信号产生的Gibbs振荡效应[18]。
使用SWT分别获取紫外强度图像和最佳偏振参量图像的高、低频系数,其中高频系数含有图像细节部分,而对偏振图像而言保留图像细节是关键,因此按照最大值法规则对高频系数进行整合,得到:
(13)
其中,coefsHB和coefsHA分别表示紫外强度图像和最优偏振参数图像的高频系数,coefsHF表示整合后的高频系数。
由于紫外强度图像和最优偏振参量图像的低频系数包括两者共有和自身特有的部分,因此对低频系数采用稀疏表示融合规则。在对低频系数进行稀疏表示时,需应用合适方法获取过完备字典和稀疏系数,本文使用K-SVD方法获取过完备字典,采用正交匹配法获取稀疏系数。图2为低频系数融合框架,主要包括4个步骤:1)获取过完备字典和稀疏系数,其中使用K-SVD方法训练联合矩阵V12获得字典D;2)使用OMP算法分别获取稀疏系数矩阵a1和a2;3)将稀疏系数进行融合;4)获取融合后的低频系数。
图2 低频系数融合框架
搭建实验平台并选用主动偏振成像方式采集潜指纹3个偏振方向的图像。探测设备采用分时紫外偏振成像探测系统[19],如图3所示。系统配有滤光片转轮模块和偏振片滑动模块,并通过上位机对2个模块进行同步控制。
图3 分时紫外偏振成像探测系统
为验证本文算法的有效性,选取尺寸为2 048×2 040的玻璃镜面、牛皮纸和瓷砖介质上的潜指纹紫外偏振图像作为偏振原始图像。将本文提出的模糊自适应融合算法(本文算法)与基于拉普拉斯金字塔的融合算法(LP算法)、基于PCA的融合算法(PCA算法)、基于NSCT的融合算法(NSCT算法)、基于NSCT与PCNN的融合算法(NSCT-PCNN算法)4种参考融合算法进行对比。其中,4种参考融合算法选用紫外强度图像和偏振度图像融合,NSCT算法和离散平稳小波变换的分解层数设置为4层,高频系数融合采用最大值融合规则。
图4为玻璃镜面上潜指纹紫外偏振融合图像。可以看出:与原始偏振图像相比,LP算法所得融合图像能保留大部分目标信息且对比度较高,但引入较多噪声;PCA算法所得融合图像目标区域过亮造成目标不明显;NSCT算法所得融合图像视觉效果较好且对比度较高;NSCT-PCNN算法所得融合图像视觉效果较差且对比度较低,并损失部分紫外信息;本文算法所得融合图像很好地保留原始图像中目标的偏振与强度信息,并有效抑制背景干扰从而使目标更清晰。
图4 不同算法所得玻璃镜面上潜指纹紫外偏振融合图像
图5为牛皮纸上潜指纹紫外偏振融合图像。可以看出5种算法均能突出目标特征,其中:LP算法所得融合图像保留目标主要特征信息,但视觉效果较差并引入噪声;PCA算法所得融合图像目标区域过亮造成目标特征信息丢失;NSCT算法所得融合图像保留目标细节信息且对比度较高;NSCT-PCNN算法所得融合图像虽然对比度有所提升,但目标细节信息丢失;本文算法所得融合图像视觉效果较好且对比度较高,目标细节特征得到增强。
图5 不同算法所得牛皮纸上潜指纹紫外偏振融合图像
图6为瓷砖上潜指纹紫外偏振融合图像。可以看出:LP算法所得融合图像保留目标区域信息,但融合效果差且噪声多;PCA算法所得融合图像目标区域过亮造成目标特征信息丢失,视觉效果较差;NSCT算法所得融合图像保留目标细节信息,视觉效果较好;NSCT-PCNN算法所得融合图像目标对比度较高,但目标细节信息丢失较多;本文算法所得融合图像视觉效果较好且对比度较高,保留了更多目标细节信息。
图6 不同算法所得瓷砖上潜指纹紫外偏振融合图像
为进一步验证本文算法的融合效果,使用标准差(SD)、信息熵(En)、平均梯度(AG)和对比度(CR)作为图像融合效果评价指标[20]。上述5种算法在玻璃镜面、牛皮纸和瓷砖上的潜指纹紫外偏振图像融合评价指标结果如表1~表3所示。
表1 5种算法所得玻璃镜面上潜指纹紫外偏振图像融合评价指标结果
表2 5种算法所得牛皮纸上潜指纹紫外偏振图像融合评价指标结果
表3 5种算法所得瓷砖上潜指纹紫外偏振图像融合评价指标结果
由表1~表3可知,除了在玻璃镜面和牛皮纸上PCA算法所得融合图像的SD比本文算法高之外,其他情况下另外4种算法的评价指标值均低于本文算法,结合上文分析中PCA算法所得融合图像目标区域过亮造成目标特征信息丢失可知,与其他4种算法相比,本文算法所得融合图像能突出目标区域并保留更多目标细节特征,图像视觉效果最好。
本文针对潜指纹紫外偏振成像探测具有多偏振参量图像的特点,提出一种紫外偏振图像模糊自适应融合算法。将潜指纹紫外偏振图像解析出多偏振参量图像,利用模糊积分选择最优偏振参量与强度图像融合。实验结果表明,与LP、PCA等融合算法相比,该算法能更完整地保留潜指纹强度和偏振信息,具有更好的目标区域对比度与清晰度。下一步将针对不同目标融合规则的自适应选择展开研究,以扩大偏振图像自适应融合应用范围并提升检测效率。