土壤氮素内循环对生态覆被变化响应的研究进展*

2020-10-09 08:16杨莉琳姚琦馥鲁小明
中国生态农业学报(中英文) 2020年10期
关键词:氮素土地利用活性

杨莉琳, 姚琦馥, 梁 琍, 鲁小明

土壤氮素内循环对生态覆被变化响应的研究进展*

杨莉琳, 姚琦馥, 梁 琍, 鲁小明

(铜仁学院 铜仁 554300)

生态覆被; 土地利用变化; 活性氮; 氮转化; 土壤微生物

1 土壤活性氮及其环境效应

活性氮是相对于占地球大气总量79%的非活性氮(N2)而言。由于N2是稳定态氮素, 这个巨大的氮贮库并不能被自然界生物直接利用。只有将N2的分子键破坏, 得到的单个氮原子通过固氮作用或同化作用与其他营养元素如O、H或C相结合, 才能被大多数植物、动物和微生物利用[1]。活性氮直接关系到植被生长、气候变化和生态环境的安全与持续。

工业革命前自然界循环的活性氮总量很少, 人类对自然生态系统干预较少, 生物固氮是植物获得活性氮的主要途径, 植物生产力主要受土壤中氮量的限制。工业革命后, 尤其是近50年来, 工业合成铵和化肥在全球大量施用成为土壤活性氮的主要来源, 土壤因而成了人为活性氮的天然汇。全球人为活性氮在1860年只有15 Tg∙a–1(1 Tg=106t), 到了21世纪初已增加到165 Tg∙a–1, 增长了10倍, 其中来自于粮食生产的活性氮是能源生产的5倍。然而, 粮食生产的活性氮中人类每年只摄取大约12 Tg [每人2 kg(N)∙a–1], 其余近90%的活性氮以硝酸盐、亚硝酸盐或氮氧化物的形态排放到土壤、水体和大气等环境中[2-3]。这些活性氮一旦进入环境, 就会通过各生态系统迅速串联并蔓延开来, 在环境中积累或循环, 并影响着全球生态环境和许多生态过程[2]。如以NO (NO=NO+NO2)形式排放到大气中产生温室效应, 引起全球气候变暖[4]; 生物多样性丧失和亲氮杂草侵入; 生态系统功能发生改变; 之前受活性氮限制的生态系统生产力增加; 森林等系统土壤中氮饱和、水体污染、有毒藻类繁盛、鱼类死亡以及沿海生态系统富营养化; 通过食物链人类易患高铁血红蛋白血症、蓝婴儿综合症、癌症、呼吸系统和心脏疾病等。因此, 活性氮在土壤圈-生物圈-大气圈之间循环的改变与失衡, 对各环节中氮水平维持在适当范围内提出了严格的限制, 也是生态与环境学家、管理工作者和政策制定者的关注重点[5]。

2 生态覆被/土地利用变化对土壤氮库的影响

2.1 不同生态系统的土壤氮库差异分析

自然生态系统中, 不同覆被类型的土壤氮库差异很大。森林不仅影响全球气候的碳汇, 而且还是世界上最大的有机氮库[7]。特别是古森林, 其碎屑生物量和微生物固氮作用比成熟的次生林更能保留氮,是强大的氮汇[8]。尤其是土壤风化程度高的热带林区, 有机质及氮库在土壤功能和森林可持续性方面发挥着重要作用。当森林被清除时, 土壤有机质与有机氮几乎立即开始失去, 并引发一系列土壤退化[9]。

2.2 生态覆被/土地利用变化对土壤氮库的影响

3 土壤氮素内循环对生态覆被/土地利用变化的响应

3.1 人为扰动对自然生态系统土壤氮素内循环产物的影响

天然森林生态系统的净矿化和净硝化均很低, 天然林通常受土壤低氮供应的限制, 氮素处于封闭、积累型循环, 地上部每年的净初级生产力与土壤净氮矿化呈线性正相关[29]。美国北部的天然草地转换为森林35~75 a的土壤氮矿化和微生物活性基本没有变化[30]。因为氮损失与氮净矿化率和枯枝落叶氮通量(植物氮循环指标)密切相关, 尽管原始林和次生林的氮量没有显著差异, 但是原始森林的微生物固氮速度比次生林快, 原始森林的粗木屑和微生物量氮的吸收和转化也比次生林大。美国密西根州半岛西部原始阔叶林总氮矿化大约是次生林的2倍, 而总硝化没有差异[8]。

3.2 生态修复对土壤氮库消长的影响

3.2.1 退耕还林还草对土壤氮库积累的效应

植被种类直接影响生态系统的修复速率。在遗弃50 a以上的荒地上种植阔叶林、针叶林、牧场和种植园, 会显著影响土壤氮含量和硝化速率[20]。我国黄土高原退耕还林还草30 a后, 恢复的草原、刺槐()、红松()、油松()以及油松-紫穗槐()混交林等土壤有机质、全氮、有效氮均提高了2倍多, 其中, 刺槐-紫穗槐混合林恢复最迅速, 油松-紫穗槐混交林恢复较慢[45]。晋西黄土丘陵区退耕还林或撂荒地还林还草后, 荒草地土壤全氮表聚效应最强, 0~48 cm土层中以刺槐林地的全氮含量提升最快[46]。黄土高原的退化草地分别栽种油松和柠条()30多年后, 油松地0~20 cm土层有效氮减少, 而柠条灌丛林地的有效氮却增加[47]。在巴西里约热内卢州沿海城镇的退化土地上, 于1991年种植了7种速生的先锋豆科植物用以恢复退化土壤的肥力, 13 a中土壤氮库的年增长率为0.13 Mg×hm-2[9]。豆类植物能增加土壤氮和碳的积累, C3植物和杂草会降低氮和碳的积累率, C4植物提高了土壤C/N比[28]。

尽管种植林草是增加土壤对碳、氮固定的途径, 但生态系统恢复重建绝非易事, 正所谓毁坏容易修复难。明尼苏达州废弃61 a的农田要恢复到之前耕作时95%的水平, 氮库需要180 a, 碳库需要230 a, 且碳的积累速率受氮积累的影响[28]。也有研究结果报道, 在50 a内可以成功恢复严重退化的森林土壤氮的有效性, 但如果在恢复过程中继续收获林下植被和凋落物, 则难以实现这种恢复速率和恢复水平[15]。

3.2.2 恢复重建土壤氮碳库的其他措施

相对于单一植被系统, 农林复合系统对生态的恢复效果一直被广泛推崇。可可()林/农复合系统的土壤碳氮贮量低于天然林, 但高于单一的可可林, 在维持生态系统功能服务方面比单一农业种植更好, 并接近天然森林[48]。尤其是在障碍性土壤区域, 实施农林复合系统是克服土壤障碍, 恢复生态功能的重要途径。我国华北低平原盐碱地区枣()/冬小麦()-夏玉米间作22 a以上的研究表明, 枣/粮间作系统的种植和生态效益仍然比单作农业和单作枣树高[49]。

休耕和轮作也是恢复土壤有机质和氮含量的有效措施[50]。对亚马逊河流域多样化的森林研究表明, 土壤修复除了修复物或施用化肥, 还可以通过延长田间使用时间、缩短休耕期来提升土壤肥力, 提高生物多样性[51]。

3.3 土壤氮素内循环对生态修复的响应

4 土壤微生物对生态覆被/土地利用变化的响应

4.1 生态系统土壤微生物量与氮矿化的关系

土壤微生物是氮素等养分元素循环的引擎, 氨化作用、固氮作用、硝化作用和反硝化作用构成土壤氮循环的主要环节, 且每一个过程都需要相应微生物参与。土壤微生物群落结构控制了不同生态系统中的氮素转化, 进而调节生态系统的功能与稳定。自然森林土壤中有较高的微生物量氮, 净氮矿化相对较少[31], 因此森林系统常受供氮量低的限制。外生菌根等微生物也是森林系统的重要氮源, 澳大利亚国家公园强酸且贫瘠土壤上生长着极度濒危的Wollemi松树, 高度依赖于其根部一个独特的细菌群落[55]。可见不同森林的土壤微生物量差异很大。小兴安岭6种森林类型的土壤微生物碳与微生物氮的大小顺序依次为: 次生白桦()林>人工红松林>择伐林>阔叶红松林>人工落叶松()林>谷地云冷杉()林, 总体表现为阔叶林(次生白桦林、阔叶红松林和择伐林)的土壤微生物量高于针叶林或针叶树占比较高的森林类型[56]。

地上部植被和土壤环境均对土壤微生物生物量氮和氮矿化有影响[37]。幼龄草甸土壤微生物生物量氮较低, 随着年限增加, 微生物氮与全氮比(Nmic/TN)增加, 土壤总氮矿化率下降, 氮对植物的有效性降低, 植物产量下降[57]。

4.2 土壤微生物对生态覆被/土地利用变化的响应

城市化过程对土壤氮循环的关键微生物影响很大。城市草坪土壤中的氨氧化古菌(AOA)丰度高于郊区和农村的农田土壤, AOA对城市草坪土壤硝化起关键作用。城市草坪土壤中的根瘤菌、变形杆菌()和绿弯菌()也比农田土壤丰富, 但城市草坪土壤AOB和反硝化细菌nirS, nosZ)的相对丰度低于郊区草坪和农田[27]。

4.3 土壤氮素内循环对生态覆被/土地利用变化响应的研究方法展望

由于土壤环境的多样性和土壤微生物的复杂性,导致生态覆被/土地利用变化与土壤氮循环过程的效应至今难有确定结论。在生态覆被/土地利用加剧和全球气候变暖趋势下, 对这一科学问题的探索仍是研究热点。其瓶颈仍然在于土壤微生物, 因为土壤中多数微生物在休眠状态下长时间存活, 休眠期间细胞活性很低甚至没有活性。传统的平板培养法无法将它们分离出来。目前常用的熏蒸法测定土壤微生物碳和微生物氮误差非常大, 结果重现性差。运用分子生物学技术研究土壤微生物与土壤氮素循环之间的关系是目前的方向, 但是, 微生物群落的数量(丰度)以及多样性指数(如Shannon和Simpson指数)难以揭示复杂的微生物群落结构与功能微生物之间量化关系[63-65]。特别是找出微生物群落中控制生态功能的关键物种是本方向研究中的一个难点。近年来, 利用高通量基因芯片数据和微生物群落的生态网络分析方法是提升土壤微生物群落结构研究定量化和可视化新方向。

[1] ERISMAN J W, DE VRIES W, KROS H, et al. An outlook for a national integrated nitrogen policy[J]. Environmental Science & Policy, 2001, 4(2/3): 87–95

[2] GALLOWAY J N, ABER J D, ERISMAN J W, et al. The nitrogen cascade[J]. BioScience, 2003, 53(4): 341–356

[3] SMIL V. Detonator of the population explosion[J]. Nature, 1999, 400(6743): 415

[4] GÜTLEIN A, GERSCHLAUER F, KIKOTI I, et al. Impacts of climate and land use on N2O and CH4fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania[J]. Global Change Biology, 2018, 24(3): 1239–1255

[5] XU Z Z, JIANG Y L, ZHOU G S. Nitrogen cycles in terrestrial ecosystems: Climate change impacts and mitigation[J]. Environmental Reviews, 2016, 24(2): 132–143

[6] DILLY O, BLUME H P, SEHY U, et al. Variation of stabilised, microbial and biologically active carbon and nitrogen in soil under contrasting land use and agricultural management practices[J]. Chemosphere, 2003, 52(3): 557–569

[7] MARTY C, HOULE D, GAGNON C, et al. The relationships of soil total nitrogen concentrations, pools and C∶N ratios with climate, vegetation types and nitrate deposition in temperate and boreal forests of eastern Canada[J]. CATENA, 2017, 152: 163–172

[8] FISK M C, ZAK D R, CROW T R. Nitrogen storage and cycling in old-and second-growth northern hardwood forests[J]. Ecology, 2002, 83(1): 73–87

[9] MACEDO M O, RESENDE A S, GARCIA P C, et al. Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees[J]. Forest Ecology and Management, 2008, 255(5/6): 1516–1524

[10] 薛晓辉, 赵常万, 张嵩. 黔西北不同土地利用类型下土壤全氮及硝态氮的分布与残留[J]. 草地学报, 2016, 24(4): 819–824 XUE X H, ZHAO C W, ZHANG S. Distribution and residual of soil total N and nitrate-N under different land-use types in Northwest Guizhou[J]. Acta Agrestia Sinica, 2016, 24(4): 819–824

[11] PETRENKO C L, BRADLEY-COOK J, LACROIX E M, et al. Comparison of carbon and nitrogen storage in mineral soils of graminoid and shrub tundra sites, western Greenland[J]. Arctic Science, 2016, 2(4): 165–182

[12] YANG L L, ZHANG F S, MAO R Z, et al. Conversion of natural ecosystems to cropland increases the soil net nitrogen mineralization and nitrification in Tibet[J]. Pedosphere, 2008, 18(6): 699–706

[13] YANG W H, RYALS R A, CUSACK D F, et al. Cross-biome assessment of gross soil nitrogen cycling in California ecosystems[J]. Soil Biology and Biochemistry, 2017, 107: 144–155

[14] ZHAO H L, HE Y H, ZHOU R L, et al. Effects of desertification on soil organic C and N content in sandy farmland and grassland of Inner Mongolia[J]. CATENA, 2009, 77(3): 187–191

[15] MO J M, BROWN S, PENG S L, et al. Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China[J]. Forest Ecology and Management, 2003, 175(1/3): 573–583

[16] KONG W B, YAO Y F, ZHAO Z N, et al. Effects of vegetation and slope aspect on soil nitrogen mineralization during the growing season in sloping lands of the Loess Plateau[J]. CATENA, 2019, 172: 753–763

[17] 刘翥, 杨玉盛, 朱锦懋, 等. 中亚热带森林转换对土壤可溶性有机质数量与光谱学特征的影响[J]. 生态学报, 2015, 35(19): 6288–6297 LIU Z, YANG Y S, ZHU J M, et al. Effects of forest conversion on quantities and spectroscopic characteristics of soil dissolved organic matter in subtropical China[J]. Acta Ecologica Sinica, 2015, 35(19): 6288–6297

[18] ALLEN K, CORRE M D, TJOA A, et al. Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia[J]. PLoS One, 2015, 10(7): e0133325

[19] DILLY O. Regulation of the respiratory quotient of soil microbiota by availability of nutrients[J]. FEMS Microbiology Ecology, 2003, 43(3): 375–381

[20] COMPTON J E, BOONE R D. Long-term impacts of agriculture on soil carbon and nitrogen in new England forests[J]. Ecology, 2000, 81(8): 2314–2330

[21] MAHARJAN M, SANAULLAH M, RAZAVI B S, et al. Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top- and sub-soils[J]. Applied Soil Ecology, 2017, 113: 22–28

[22] TRIPATHI N, SINGH R S. Cultivation impacts nitrogen transformation in Indian forest ecosystems[J]. Nutrient Cycling in Agroecosystems, 2007, 77(3): 233–243

[23] PRASAD P, BASU S, BEHERA N. A comparative account of the microbiological characteristics of soils under natural forest, grassland and cropfield from Eastern India[J]. Plant and Soil, 1995, 175(1): 85–91

[24] GE N N, WEI X R, WANG X, et al. Soil texture determines the distribution of aggregate-associated carbon, nitrogen and phosphorous under two contrasting land use types in the Loess Plateau[J]. CATENA, 2019, 172: 148–157

[25] WANG Z P, HAN X G, LI L H. Effects of grassland conversion to croplands on soil organic carbon in the temperate Inner Mongolia[J]. Journal of Environmental Management, 2008, 86(3): 529–534

[26] YANG L L, ZHANG F S, GAO Q, et al. Impact of land-use types on soil nitrogen net mineralization in the sandstorm and water source area of Beijing, China[J]. CATENA, 2010, 82(1): 15–22

[27] WANG H T, MARSHALL C W, CHENG M Y, et al. Changes in land use driven by urbanization impact nitrogen cycling and the microbial community composition in soils[J]. Scientific Reports, 2017, 7: 44049

[28] KNOPS J M H, TILMAN D. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment[J]. Ecology, 2000, 81(1): 88–98

[29] BONITO G M, COLEMAN D C, HAINES B L, et al. Can nitrogen budgets explain differences in soil nitrogen mineralization rates of forest stands along an elevation gradient?[J]. Forest Ecology and Management, 2003, 176(1/3): 563–574

[30] MCKINLEY D C, RICE C W, BLAIR J M. Conversion of grassland to coniferous woodland has limited effects on soil nitrogen cycle processes[J]. Soil Biology and Biochemistry, 2008, 40(10): 2627–2633

[31] AGGANGAN R T, O’CONNELL A M, MCGRATH J F, et al. Fertilizer and previous land use effects on C and N mineralization in soils fromplantations[J]. Soil Biology and Biochemistry, 1998, 30(13): 1791–1798

[32] ROSS D J, TATE K R, SCOTT N A, et al. Land-use change: Effects on soil carbon, nitrogen and phosphorus pools and fluxes in three adjacent ecosystems[J]. Soil Biology and Biochemistry, 1999, 31(6): 803–813

[33] PARFITT R L, SCOTT N A, ROSS D J, et al. Land-use change effects on soil C and N transformations in soils of high N status: Comparisons under indigenous forest, pasture and pine plantation[J]. Biogeochemistry, 2003, 66(3): 203–221

[34] 杨雪玲, 陈群, 周育智, 等. 不同土地利用类型对土壤有机碳矿化过程的影响[J]. 安徽农业科学, 2017, 45(4): 110–114 YANG X L, CHEN Q, ZHOU Y Z, et al. Effects of different land use types on soil organic mineralization in Huainan City[J]. Journal of Anhui Agricultural Sciences, 2017, 45(4): 110–114

[35] NEILL C, PICCOLO M C, STEUDLER P A, et al. Nitrogen dynamics in soils of forests and active pastures in the western Brazilian Amazon Basin[J]. Soil Biology and Biochemistry, 1995, 27(9): 1167–1175

[36] RHOADES C C, COLEMAN D C. Nitrogen mineralization and nitrification following land conversion in montane Ecuador[J]. Soil Biology and Biochemistry, 1999, 31(10): 1347–1354

[37] TRIPATHI N, SINGH R S. Influence of different land uses on soil nitrogen transformations after conversion from an Indian dry tropical forest[J]. CATENA, 2009, 77(3): 216–223

[38] SILVER W L, THOMPSON A W, REICH A, et al. Nitrogen cycling in tropical plantation forests: Potential controls on nitrogen retention[J]. Ecological Applications, 2005, 15(5): 1604–1614

[39] 高雪峰, 韩国栋. 放牧对羊草草原土壤氮素循环的影响[J]. 土壤, 2011, 43(2): 161–166 GAO X F, HAN G D. Study on effect of grazing on steepe soil nitrogen cycle[J]. Soils, 2011, 43(2): 161–166

[40] 贾龙, 黄荣珍, 王赫, 等. 红壤区坡耕地改造后不同土地利用类型对土壤养分的影响[J]. 南昌工程学院学报, 2016, 35(6): 35–40 JIA L, HUANG R Z, WANG H, et al. Effect of different land use types on soil nutrients in red soil region[J]. Journal of Nanchang Institute of Technology, 2016, 35(6): 35–40

[41] 王志齐, 杜兰兰, 赵慢, 等. 黄土区不同退耕方式下土壤碳氮的差异及其影响因素[J]. 应用生态学报, 2016, 27(3): 716–722 WANG Z Q, DU L L, ZHAO M, et al. Differences in soil organic carbon and total nitrogen and their impact factors under different restoration patterns in the Loess Plateau[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 716–722

[42] ZOU L Q, CHEN F S, DUNCAN D S, et al. Reforestation and slope-position effects on nitrogen, phosphorus pools, and carbon stability of various soil aggregates in a red soil hilly land of subtropical China[J]. Canadian Journal of Forest Research, 2015, 45(1): 26–35

[43] LI X J, YANG H T, SHI W L, et al. Afforestation with xerophytic shrubs accelerates soil net nitrogen nitrification and mineralization in the Tengger Desert, Northern China[J]. CATENA, 2018, 169: 11–20

[44] 简兴, 王松, 王玉良, 等. 城市湿地转变为不同土地利用类型后土壤碳氮分布特征[J]. 应用生态学报, 2016, 27(5): 1408–1416 JIAN X, WANG S, WANG Y L, et al. Distribution characteristics of soil carbon and nitrogen in different land use types changed from urban wetlands[J]. Chinese Journal of Applied Ecology, 2016, 27(5): 1408–1416

[45] WANG B, XUE S, LIU G B, et al. Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area, Northwest China[J]. CATENA, 2012, 92: 186–195

[46] 杨帆, 潘成忠, 鞠洪秀. 晋西黄土丘陵区不同土地利用类型对土壤碳氮储量的影响[J]. 水土保持研究, 2016, 23(4): 318–324 YANG F, PAN C Z, JU H X. Effects of different land use types on storage of soil organic carbon and total nitrogen in western Shanxi Hilly Loess Plateau region[J]. Research of Soil and Water Conservation, 2016, 23(4): 318–324

[47] WEI X R, SHAO M A, FU X L, et al. The effects of land use on soil N mineralization during the growing season on the northern Loess Plateau of China[J]. Geoderma, 2011, 160(3/4): 590–598

[48] OBENG E A, AGUILAR F X. Marginal effects on biodiversity, carbon sequestration and nutrient cycling of transitions from tropical forests to cacao farming systems[J]. Agroforestry Systems, 2015, 89(1): 19–35

[49] YANG L L, DING X Q, LIU X J, et al. Impacts of long-term jujube tree/winter wheat-summer maize intercropping on soil fertility and economic efficiency — A case study in the lower North China Plain[J]. European Journal of Agronomy, 2016, 75: 105–117

[50] VAN EERD L L, CONGREVES K A, HAYES A, et al. Long-term tillage and crop rotation effects on soil quality, organic carbon, and total nitrogen[J]. Canadian Journal of Soil Science, 2014, 94(3): 303–315

[51] WOOD S L R, RHEMTULLA J M, COOMES O T. Cropping history trumps fallow duration in long-term soil and vegetation dynamics of shifting cultivation systems[J]. Ecological Applications, 2017, 27(2): 519–531

[52] 王敬, 张金波, 蔡祖聪. 太湖地区稻麦轮作农田改葡萄园对土壤氮转化过程的影响[J]. 土壤学报, 2016, 53(1): 166–176 WANG J, ZHANG J B, CAI Z C, et al. Effects of conversion of paddy field into vineyard on soil nitrogen transformation in the Taihu Lake region of China[J]. Acta Pedologica Sinica, 2016, 53(1): 166–176

[53] URI V, LÕHMUS K, KUND M, et al. The effect of land use type on net nitrogen mineralization on abandoned agricultural land: Silver birch standgrassland[J]. Forest Ecology and Management, 2008, 255(1): 226–233

[54] TEMPLER P H, GROFFMAN P M, FLECKER A S, et al. Land use change and soil nutrient transformations in the Los Haitises region of the Dominican Republic[J]. Soil Biology and Biochemistry, 2005, 37(2): 215–225

[55] RIGG J L, OFFORD C A, SINGH B K, et al. Variation in soil microbial communities associated with critically endangered Wollemi pine affects fungal, but not bacterial, assembly within seedling roots[J]. Pedobiologia, 2016, 59(1/2): 61–71

[56] 刘纯, 刘延坤, 金光泽. 小兴安岭6种森林类型土壤微生物量的季节变化特征[J]. 生态学报, 2014, 34(2): 451–459 LIU C, LIU Y K, JIN G Z. Seasonal dynamics of soil microbial biomass in six forest types in Xiaoxing’an Mountains, China[J]. Acta Ecologica Sinica, 2014, 34(2): 451–459

[57] BLAŠKO R, HOLM BACH L, YARWOOD S A, et al. Shifts in soil microbial community structure, nitrogen cycling and the concomitant declining N availability in ageing primary boreal forest ecosystems[J]. Soil Biology and Biochemistry, 2015, 91: 200–211

[58] POTTHAST K, HAMER U, MAKESCHIN F. Land-use change in a tropical mountain rainforest region of southern Ecuador affects soil microorganisms and nutrient cycling[J]. Biogeochemistry, 2012, 111(1/3): 151–167

[59] GOENSTER S, GRÜNDLER C, BUERKERT A, et al. Soil microbial indicators across land use types in the river oasis Bulgan sum center, Western Mongolia[J]. Ecological Indicators, 2017, 76: 111–118

[60] VAN LEEUWEN J P, DJUKIC I, BLOEM J, et al. Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain[J]. European Journal of Soil Biology, 2017, 79: 14–20

[61] MOSCATELLI M C, DI TIZIO A, MARINARI S, et al. Microbial indicators related to soil carbon in Mediterranean land use systems[J]. Soil and Tillage Research, 2007, 97(1): 51–59

[62] 杨莉琳, 毛任钊, 刘俊杰, 等. 土地利用变化对土壤硝化及氨氧化细菌区系的影响[J]. 环境科学, 2011, 32(11): 3455–3460 YANG L L, MAO R Z, LIU J J, et al. Impact of land-use type changes on soil nitrification and ammonia-oxidizing bacterial community composition[J]. Environmental Science, 2011, 32(11): 3455–3460

[63] KOWALCHUK G A, BODELIER P L E, HEILIG G H J, et al. Community analysis of ammonia-oxidising bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridisation[J]. FEMS Microbiology Ecology, 1998, 27(4): 339–350

[64] HERMANSSON A, BÄCKMAN J S K, SVENSSON B H, et al. Quantification of ammonia-oxidising bacteria in limed and non-limed acidic coniferous forest soil using real-time PCR[J]. Soil Biology and Biochemistry, 2004, 36(12): 1935–1941

[65] GRIFFITHS R I, WHITELEY A S, O’DONNELL A G, et al. Influence of depth and sampling time on bacterial community structure in an upland grassland soil[J]. FEMS Microbiology Ecology, 2003, 43(1): 35–43

Research progress on soil nitrogen internal cycling response to ecological cover change*

YANG Lilin, YAO Qifu, LIANG Li, LU Xiaoming

(Tongren University, Tongren 554300, China)

Ecosystem cover; Land use change; Active N; Nitrogen cycling; Soil microbe

S153

10.13930/j.cnki.cjea.190908

杨莉琳, 姚琦馥, 梁琍, 鲁小明. 土壤氮素内循环对生态覆被变化响应的研究进展[J]. 中国生态农业学报(中英文), 2020, 28(10): 1543-1550

YANG L L, YAO Q F, LIANG L, LU X M. Research progress on soil nitrogen internal cycling response to ecological cover change[J]. Chinese Journal of Eco-Agriculture, 2020, 28(10): 1543-1550

* 国家自然科学基金项目(31270521)、贵州省教育厅创新群体重大研究项目(黔教合KY字[2016]053号)、贵州省科技计划项目(黔科合基础[2019]1312)、贵州省创新人才团队(黔教合人才团队字[2015]67号)、铜仁学院博士基金项目(trxyDH1525)和农业生态创新团队(CXTD[2020-10])资助

杨莉琳, 主要研究方向为土壤养分循环与环境生态。E-mail: yangllin@sjziam.ac.cn

2019-12-24

2020-04-09

* This study was supported by the National Natural Sciences Foundation of China (31270521), the Major Research Project of Innovation Group for Guizhou Education Department (Qian Education NO. [2016] 053th), the Science and Technology Plan Project for Guizhou Province (Qian Science NO.[2019] 1312), the Guizhou Innovation Talent Group (Qian Education NO. [2015] 67th), the Doctoral Fund Project for Tongren University (trxyDH1525), and Agro-ecological Innovation Research Group (CXTD[2020-10]).

, YANG Lilin, E-mail: yangllin@sjziam.ac.cn

Dec. 24, 2019;

Apr. 9, 2020

猜你喜欢
氮素土地利用活性
土地利用变化与大气污染物的相关性研究
基于GIS⁃Logistic回归模型的土地利用变化及驱动机制研究
不同产量潜力小麦品种氮素积累与转运的差异
硅基膜材缓控释肥在红壤中的氮素释放特征研究
不同生育期大豆品种氮素积累特性研究
施氮水平对油菜生育后期氮素吸收积累和分配的影响
航天器表面抑菌活性微生物的筛选与鉴定
番茄红素生物活性及提取研究进展
二甲双胍通过调控PARP-1活性对Ⅱ型糖尿病肾脏的保护作用
中国地质大学(北京)土地利用与生态修复课题组