二十世纪六十年代,产生了模糊数学这门新兴学科.
一、模糊数学的产生
现代数学是建立在集合论的基础上.一组对象确定一组属性,人们可以通过说明属性来说明概念(内涵),也可以通过指明对象来说明它.符合概念的那些对象的全体叫做这个概念的外延,外延其实就是集合.从这个意义上讲,集合可以表现概念,而集合论中的关系和运算又可以表现判断和推理,一切现实的理论系统都可能纳入集合描述的内容中.
但是,数学的发展也是阶段性的.经典集合论只能把自己的“表现力”限制在那些有明确外延的概念和事物上.它明确地限定:每个集合都必须由明确的元素构成,元素对集合的隶属关系必须是明确的,决不能模棱两可.对于那些外延不分明的概念和事物,经典集合论是不会将其反映出来的,属于待发展的范畴.
在较长时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,获得显著效果.但是,在客观世界中还普遍存在着大量的模糊现象.以前人们回避它,但是由于现代科技所面对的系统日益复杂,模糊性总是伴随着复杂性出现.
当人们研究人类系统,或者处理可与人类系统行为相比拟的复杂系统,如航天系统、人脑系统、社会系统等时,参数和变量就会变多,各种因素相互交错,系统变得更加复杂,它的模糊性也会更明显.在日常生活中,人们经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述.比如,比较年轻、高个、大胖子、好、漂亮、善、热、远…….在人们的工作经验中,往往也有许多模糊的东西.例如,要确定一炉钢水是否已经炼好,除了要知道钢水的温度、成分比例和冶炼时间等精确信息外,还需要参考钢水颜色、沸腾情况等模糊信息.因此,除了很早就有涉及误差的计算数学之外,人们还需要模糊数学.各门学科,尤其是人文、社会学科及其它“软科学”的数学化、定量化趋向把模糊性的数学处理问题推向中心地位.更重要的是,随着电子计算机、控制论、系统科学的迅速发展,要使计算机能像人脑那样对复杂事物具有识别能力,就必须研究和处理数学中的模糊性.
人与计算机相比,一般来说,人脑具有处理模糊信息的能力,善于判断和处理模糊现象.但计算机对模糊现象识别能力较差,为了提高计算机识别模糊现象的能力,就需要把人们常用的模糊语言设计成机器能接受的指令和程序,以便机器能像人脑那样简洁灵活地做出相应的判断,从而提高自动识别和控制模糊现象的效率.这样,就需要寻找一种描述和加工模糊信息的数学工具,这就推动数学家深入研究模糊数学.所以,模糊数学的产生是有其科学技术与数学发展的必然性.
二、模糊数学的研究内容
美国控制论专家、数学家L.A.扎德(L.A.Zadeh,1921--)于1965年发表了题为《模糊集合论》(《FuzzySets》)的论文,从而宣告模糊数学的诞生.1975年他所发表的长篇连载论著《The Concept of a Linguistic Variable & Its Application to Approximate Reasoning》(中文译本为:模糊集合、语言变量及模糊逻辑),提出了语言变量的概念并探索了它的含义.模糊语言的概念是模糊集合理论中最重要的发展之一,语言变量的概念是模糊语言理论的重要方面.语言概率及其计算、模糊逻辑及近似推理则可以当作语言变量的应用来处理.
模糊数学的研究内容主要有以下三个方面:
第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系.扎德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广.他提出用“模糊集合”作为表现模糊事物的数学模型.并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法.
在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态.比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是1-40岁的人肯定不算老人,它的从属程度为0,按照查德给出的公式,55岁属于“老”的程度为0.5,即“半老”,60岁属于“老”的程度0.8.查德认为,指明各个元素的隶属集合,就等于指定了一个集合.当隶属于0和1之间值时,就是模糊集合.
第二,研究模糊语言学和模糊逻辑.人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断.
为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立和是的模糊数学模型,这是运用数学方法的关键.查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化.
如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他近义的,以及能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度.这样,就把模糊语言进行定量描述,并定出一套运算、变换规则.目前,模糊语言还很不成熟,语言学家正在深入研究.
人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,既非真既假,然后进行判断和推理,得出结论.现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力.
为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑基础上,研究模糊逻辑.目前,模糊罗基还很不成熟,尚需继续研究.
第三,研究模糊數学的应用.模糊数学是以不确定性的事物为其研究对象的.模糊集合的出现是数学适应描述复杂事物的需要,扎德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补.在模糊数学中,目前已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支.
三、模糊数学的应用
模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面.在气象、结构力学、控制、心理学等方面已有具体的研究成果.然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系.
目前,世界上发达国家正积极研究、试制具有智能化的模糊计算机,1986年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒.1988年,我国汪培庄教授指导的几位博士也研制成功一台模糊推理机──分立元件样机,它的推理速度为1500万次/秒.这表明我国在突破模糊信息处理难关方面迈出了重要的一步.
模糊数学的理论尚未成熟、体系还未形成,人对它也还存在不同看法和意见.这些都有人们待日后完善和用实践去检验。